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A predictive computational model reveals 
that GIV/girdin serves as a tunable valve for 
EGFR-stimulated cyclic AMP signals

ABSTRACT  Cellular levels of the versatile second messenger cyclic (c)AMP are regulated by 
the antagonistic actions of the canonical G protein → adenylyl cyclase pathway that is initi-
ated by G-protein–coupled receptors (GPCRs) and attenuated by phosphodiesterases (PDEs). 
Dysregulated cAMP signaling drives many diseases; for example, its low levels facilitate nu-
merous sinister properties of cancer cells. Recently, an alternative paradigm for cAMP signal-
ing has emerged in which growth factor–receptor tyrosine kinases (RTKs; e.g., EGFR) access 
and modulate G proteins via a cytosolic guanine-nucleotide exchange modulator (GEM), GIV/
girdin; dysregulation of this pathway is frequently encountered in cancers. In this study, we 
present a network-based compartmental model for the paradigm of GEM-facilitated cross-
talk between RTKs and G proteins and how that impacts cellular cAMP. Our model predicts 
that cross-talk between GIV, Gαs, and Gαi proteins dampens ligand-stimulated cAMP dynam-
ics. This prediction was experimentally verified by measuring cAMP levels in cells under dif-
ferent conditions. We further predict that the direct proportionality of cAMP concentration 
as a function of receptor number and the inverse proportionality of cAMP concentration as a 
function of PDE concentration are both altered by GIV levels. Taking these results together, 
our model reveals that GIV acts as a tunable control valve that regulates cAMP flux after 
growth factor stimulation. For a given stimulus, when GIV levels are high, cAMP levels are 
low, and vice versa. In doing so, GIV modulates cAMP via mechanisms distinct from the two 
most often targeted classes of cAMP modulators, GPCRs and PDEs.

INTRODUCTION
Cells constantly sense cues from their external environments and 
relay them to the interior. Sensing and relaying signals from cell-
surface receptors involves second messengers such as cyclic nucleo-
tides (Beavo and Brunton, 2002; Newton et al., 2016). Of the various 
cyclic nucleotides, the first to be identified was cyclic adenosine 
3,5-monophosphate (cAMP), a universal second messenger. cAMP 
relays signals triggered by hormones, ion channels, and neurotrans-
mitters (Sassone-Corsi, 2012) and also binds and regulates cAMP-
binding proteins such as PKA and Epac1 (Sutherland and Rall, 1958).

Intracellular levels of cAMP are regulated by the antagonistic 
action of two classes of enzymes: adenylyl cyclases (ACs) and cyclic 
nucleotide phosphodiesterases (PDEs). ACs are membrane-bound 
enzymes that utilize ATP to generate cAMP. PDEs, on the other 
hand, are soluble enzymes that catalyze the degradation of the 
phosphodiester bond, resulting in the conversion of cAMP to AMP. 
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Overall, the level of cellular cAMP in physiology is finely balanced 
between synthesis by AC, degradation by PDEs, and regulatory 
feedback loops from PKA to PDE (Tremblay et al., 1985; Sette and 
Conti, 1996; MacKenzie et al., 2002; Murthy et al., 2002; Sassone-
Corsi, 2012) or others that act on ACs and PDEs (Yoshimasa et al., 
1987; Bruce et al., 2003; Goraya and Cooper, 2005). Too much or 
too little cAMP is seen in many diseases. For example, high levels of 
cAMP have been shown to be generally protective in diverse can-
cers (e.g., breast, Tagliaferri et al., 1988; melanoma, Dumaz et al., 
2006; pancreas, Boucher et al., 2001), whereas low cAMP levels fuel 
cancer progression (reviewed in Fajardo et al., 2014). This is because 
cAMP inhibits several harmful properties of tumor cells such as pro-
liferation, invasion, stemness, and chemoresistance, while enhanc-
ing differentiation and apoptosis. Although drugs targeting the ca-
nonical GPCR/G-protein-cAMP signaling pathway have successfully 
translated to the clinic for tackling a wide range of ailments (Filmore, 
2004), from hypertension to glaucoma, such strategies have largely 
failed to impact cancer care or outcomes. Thus, how tumor cells 
avoid high levels of cAMP appears to be incompletely understood, 
and therapeutic strategies to elevate cAMP remain unrealized.

Recently, the regulation of cAMP by noncanonical G-protein sig-
naling that is initiated by growth factors (Ghosh, 2015, 2016; Ghosh 
et al., 2017; Aznar et al., 2016) has emerged as a new signaling para-
digm. Growth factor signaling is a major form of signal transduction 
in eukaryotes, and dysregulated growth factor signaling (e.g., copy 
number variations or activating mutations in RTKs, increased growth 
factor production/concentration) is often encountered in advanced 
tumors and is frequently targeted with various degrees of success 
(Lowery and Yu, 2012). A body of work published by us and others 
has revealed that RTKs bind and activate trimeric G proteins via a 
family of proteins called guanine-nucleotide exchange modulators 
(GEMs; Ghosh et al., 2017). GEMs act within diverse signaling cas-
cades and couple activation of these cascades to G-protein signal-
ing via an evolutionarily conserved motif of ∼30 amino acids that di-
rectly binds and modulates Gαi and Gαs proteins. Most importantly, 
GIV-GEM serves as a GEF for Gαi and as a GDI for Gαs (Gupta et al., 
2016). Despite this apparent paradox, both forms of modulation 
lead to suppression of cellular cAMP (Ghosh, 2016). By demonstrat-
ing how GIV, a prototypical member of a family of cytosolic guanine-
nucleotide exchange modulators (GEMs; Gupta et al., 2016; Ghosh 
et al., 2017), uses a SH2-like module (Lin et al., 2014) to directly bind 
cytoplasmic tails of ligand-activated RTKs such as EGFR (Ghosh 
et al., 2010), we provided a definitive structural basis for several de-
cades of observations made by researchers that G proteins can be 
coupled to and modulated by growth factors (reviewed in Marty and 
Richard, 2010). A series of studies since have revealed that growth 
factor–triggered noncanonical G protein→cAMP signaling through 
GIV has unique spatiotemporal properties and prolonged dynamics 
that are distinct from canonical GPCR-dependent signaling (re-
viewed in Aznar et al., 2016). In parallel, studies have also found that 
high levels of GIV expression fuel multiple ominous properties of 
cancer cells, such as invasiveness, chemoresistance, stemness, and 
survival, and are associated with poorer outcome in multiple can-
cers. Inhibition of GIV’s G protein–modulatory function has emerged 
as a plausible strategy to combat aggressive traits of cancers (re-
viewed in Ghosh, 2015; Ghosh et al., 2017; Ma et al., 2015). These 
findings provide us a unique opportunity to investigate, from a sys-
tems level, how modulation of trimeric GTPase Gαi and Gαs by GIV 
downstream of growth factors regulates cAMP and what impact such 
regulation might have on the aggressiveness of cancers.

In this study, we develop a mathematical model of cAMP signal-
ing that is triggered by ligand stimulation of EGFR, and investigate 

how cAMP dynamics in cells is affected by the GIV-Gαi/s and PDE 
axes. Further, we also seek to connect findings from the cell-based 
model to survival data from cancer-afflicted patients by identifying 
the most consequential variables within this signaling pathway. In 
doing so, this model not only interrogates the cross-talk between 
two of the most widely studied eukaryotic signaling hubs (RTKs and 
G proteins), but also reveals surprising insights into the workings of 
GIV-GEM and provides a mechanistic and predictive framework for 
experimental design and clinical outcomes.

RESULTS
Phenomenological model reveals that GIV-associated 
timescales modulate cyclic AMP dynamics
The emerging paradigm of noncanonical modulation of Gαi/Gαs 
proteins by growth factor RTKs comprises several temporally and 
spatially separated components (Figure 1A). We first developed a 
phenomenological model to identify the network topology of RTK–
G protein–cAMP signaling (Figure 1B). This network captures the 
key events of the steps shown in Figure 1A. Briefly, receptor (R) stim-
ulation is modeled using a time-dependent function S(t) to result in 
active receptor R*. R* then acts on GIV on two time scales—τ1 for 
GIV-GEF activation and τ2, for GIV-GDI activation. cAMP synthesis is 
directly proportional to the level of internalized endosomal receptor 
R* with a time scale of τ3. GIV-GDI inhibits the internalized receptor 
and GIV-GEF inhibits cAMP production. Even though none of the 
components in this model reflects actual biochemical species, the 
simplified model has the advantage of capturing the key time scales 
of the events leading up to cAMP production from RTKs. Varying 
these time scales alters the dynamics of GIV-GEF, GIV-GDI, and 
cAMP (Figure 1, C and D, and Supplemental Figure S1E). Addition-
ally, this model has the advantage of being parameterized by a small 
number of variables and parameters (see the Supplemental Material 
for details). Simulations from this model predict that GIV-GEF activa-
tion is rapid, whereas GIV-GDI activation is slow (Figure 1C). This 
temporal response is observed for a wide range of parameters with 
the internalization and degradation rates, k4, k5, as leading-order 
contributors across most time points (Supplemental Figure S1). τ 
delays are shown to make smaller contributions to cAMP response 
then the major rates, k4, k5 (Supplemental Figure S1). cAMP dynam-
ics predicted from this simple model shows a delayed increase in 
cAMP corresponding to the time scale of GIV-GDI in Figure 1D. Fur-
thermore, changing the receptor density shows that the presence of 
GIV suppresses the cAMP production; the role played by GIV in 
modulating cAMP is stronger at higher RTK concentrations because 
of the competing effects of Gαs and Gαi. This leads us to two con-
clusions: First, the network topology in the toy model, with GIV as 
the central regulator, is able to capture cAMP dynamics. Second, 
RTK copy number alone is an incomplete determinant of cAMP; RTK 
and GIV together determine cAMP concentrations.

Construction and experimental validation of a 
compartmental model for noncanonical G-protein 
signaling triggered by growth factors
Although the phenomenological model in Figure 1 allowed us to 
identify key features of RTK–G protein–cAMP signaling, it does not 
contain enough information to compare simulation output against 
experimental measurements. Therefore, the topology model was ex-
panded to a larger biochemical reaction network so that the modules 
reflected the timescales τ1, τ2, and τ3 within a larger network model 
(Figure 2A). The model consists of four modules—Module 1 focuses 
on the well-established dynamics of EGFR (Berkers et  al., 1991; 
French et al., 1995; Schoeberl et al., 2002; Supplemental Table S4); 
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Module 2 represents the dynamics of the formation of the EGFR·GIV 
Gαi complex, representing τ1 (Supplemental Table S5; within this 
complex GIV-GEM serves as a GEF for Gαi); Module 3 represents the 
dynamics of the formation of the Gαs·GIV-GDI complex, represent-
ing τ2 for GEF-to-GDI conversion (Supplemental Table S6; within this 
complex GIV-GEM serves as a GDI for Gαs); and Module 4 repre-
sents the dynamics of cAMP formation and represents τ3 for Gαs ac-
tivation by internalized receptors (Supplemental Tables S7 and S8).

Within each module, the biochemical reaction network includes 
several known interactions curated from the literature along with 
kinetic parameters (see Supplemental Tables S2–S6 for references). 
However, to our knowledge, no mathematical models of GIV-GEM 
interactions within the RTK→G protein→cAMP pathway exist. 
Therefore, we had to estimate kinetic parameters for certain reac-

tions in each module. Of the 76 kinetic parameters in the model, 57 
parameters were from the literature while 19 were fitted to experi-
mental data. We fitted the model to the experimentally measured 
dynamics of the EGFR·GIV Gαi complex (Figure 2B) and the 
Gαs·GIV-GDI complex (Figure 2C). Because the actual concentra-
tion of this complex in cells is not known, and is likely to vary from 
cell to cell, we analyzed peak times and fold change of these com-
plexes. The temporal dynamics of the normalized densities of 
both these complexes generated from simulations were in good 
agreement with experimental measurements, as determined by PLA 
and GST pull-down assays (Bhandari et al., 2015; Gupta et al., 2016) 
carried out in HeLa cells responding to EGF. We provide a detailed 
discussion of parameter estimation, goodness of fit, and uncertainty 
quantification in later sections. Our choice of experimental assays 

FIGURE 1:  An emerging paradigm for modulation of cellular cAMP by growth factors. (A) Schematic showing the 
compartmental features of Gαi and Gαs modulation downstream of EGFR, based on previously published work (Beas 
et al., 2012; Gupta et al., 2016; Ghosh et al., 2017). (B) Circuit diagram of the phenomenological model for the 
noncanonical G protein→cAMP axis that is initiated by EGFR through GIV-GEM’s action on Gαi (inhibits AC) and Gαs 
(activates AC). Red lines indicate inhibition and black lines indicate activation. (C, D) Simulations for a set of 5000 random 
parameters for the network shown in B. (C) Dynamics of GIV-GEF and GIV-GDI activity from the model presented in B. 
Lognormal standard deviations for GEF and GDI are shown in gray, with the black line showing the mean. (D) Dynamics 
of cAMP concentration from the model presented in B. Lognormal standard deviations for GEF and GDI are shown for 
different receptor densities (R = 0.1, 1, 10) in the presence (yellow line) and absence (green line) of GIV. Sensitivities of 
the model across all simulation time are shown in Supplemental Figure S1 for both GIV (A), and no GIV cases (B).
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for validating the model and fitting param-
eters were carefully chosen in consideration 
of the strengths and weaknesses of each as-
say (see Materials and Methods). We used 
this modular network to investigate the role 
played by GIV in regulating the dynamics of 
EGFR, EGFR·GIV Gαi complex, Gαs·GIV-
GDI complex, and cAMP.

Biological prediction: 
compartmentalized modulation of Gαi 
and Gαs by GIV-GEM governs EGF-
triggered cyclic AMP dynamics
Because EGF/EGFR triggers activation of 
Gαi at the PM first, followed by activation of 
Gαs on the endosomes later, production of 
cAMP must be a balance between the an-
tagonistic actions of these two G proteins 
on membrane-bound ACs (Supplemental 
Table S7). We assumed that the PM pool of 
Gαi inhibits the AC→cAMP pathway at the 
PM. Similarly, because Gαs is activated pre-
dominantly on endosomes and endosomal 
ACs (eACs) can be stimulated to synthesize 
cAMP locally (Vilardaga et al., 2014), we as-
sumed that the endosomal pool of Gαs 
likely stimulates the eAC→cAMP pathway 
(Supplemental Table S7). To capture the dy-
namics of cAMP in our model network, we 
included such compartmentalized G pro-
tein–AC interactions.

Our model predicted that the early inhibi-
tion of cAMP is due to the Gαi-mediated in-
hibition of AC (the green regime; Figure 2D); 
cAMP production is increased later due to 
the activation of Gαs on the endosome (the 
blue regime; Figure 2D). This dynamics is 
consistent with previously published GIV-de-
pendent cAMP dynamics, measured by FRET 
(Gupta et al., 2016). While activation of GIV-
GEF occurs earlier (within 5 min) at the PM, 
conversion of GIV-GEF to GIV-GDI occurs 
later (15–30 min) when EGFR is already com-
partmentalized in endosomes (Figure 1A); 
such temporally separated compartmental-
ized modulation of two Gα-proteins with op-
posing effects on AC ensures suppression of 

FIGURE 2:  Dynamics of growth factor–triggered cAMP signaling via GIV. (A) Reaction-network 
model showing the different signaling nodes and connections from EGFR to the cAMP→PKA 
signaling axis. Solid lines indicate a binding interaction; interrupted lines indicate enzymatic 
reaction. The color key (right, boxed) denotes the different cellular compartments. 
(B) Simulations of dynamics of the formation of the EGFR·GIV Gαi complex, shown as the 
normalized membrane density, based on the network module in A. Experimental data were 
obtained from Figure 1D and Supplemental Figure S1 of Gupta et al. (2016). (C) Dynamics of 
the formation of the Gαs·GIV-GDI complex, a prerequisite event for inhibition of Gαs by GIV, 
were simulated based on the network diagram shown in A. The membrane density of this 
complex was normalized to its initial value. Experimental data were obtained from Figure 1C 
of Gupta et al. (2016). (D) Simulations of cAMP dynamics in response to EGF stimulation 
showing a dip in cAMP during the early 0–5 min phase (green region) and a delayed increase 
at the ∼10–60 min phase (blue region). This dynamics is dependent on GIV concentration; 
yellow line (control GIV in the model), red line (high GIV), and green line (low GIV). Three other 
conditions are also shown: 1) GIV in the absence of its GEF effect on Gαi (the GIV-DD mutant), 
2) in the absence of both its GEF and GDI effects (GIV-FA mutant), and 3) in the absence of its 
GDI effect (in the presence of an in silico GDI-deficient mutant). (E) Control or GIV-depleted 

(shGIV) HeLA cells were serum starved (0.2% 
FBD, 16 h) prior to stimulation with 50 nM 
EGF for the indicated time points. Bar graphs 
compare the cAMP levels in shC vs. shGIV 
cells at each time point; data are shown as 
mean ± SD for three independent 
experiments. ns = not significant; **p = 0.01; 
****p = 0.0001. (F) The area under the curve 
(AUC) for cAMP dynamics was calculated for 
different time points after EGF stimulation. 
The magnified image shows the AUC at 5 
min. The model 95% confidence intervals and 
their related effects on the system dynamics 
can be found in Supplemental Figure S6.
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cAMP both early and later during EGF signaling (Gupta et al., 2016). 
Because GIV modulates both Gαi and Gαs in different compartments 
and on different time scales, the model predicts that increasing GIV 
concentration should dampen overall cAMP response to EGF and 
that decreasing GIV concentration should do the opposite (Figure 
2D; compare GIV = 0.01 μM with GIV = 10 μM). These predictions 
were validated experimentally by measuring cAMP in control (shCon-
trol) and GIV-depleted (shGIV; >95% depletion by band densitome-
try, see Supplemental Figure S2E) cells at various time points after 
EGF stimulation (Figure 2E) by a radioimmunoassay (RIA). We found 
that in comparison with control cells, cellular levels of cAMP were al-
ways higher after EGF stimulation, at both early and late time points. 
In fact, when superimposed, the model and experiment showed 
good agreement throughout 60 min (Supplemental Figures S3, S7, 
and S8). As expected, sensitivity analyses confirmed that cAMP is 
sensitive to the initial concentrations of PDE and AC, and the reaction 
rates are associated with AC, internalization, PKA, and PDE (Supple-
mental Tables S14 and S17).

To distinguish what might be the relative contributions of the two 
G protein–modulatory functions of GIV (GEF versus GDI) on cAMP 
production, we investigated cAMP dynamics under three conditions 
(Figure 2D)—1) GEF-deficient but GDI-proficient (mimicked experi-
mentally by the GIV-S1764D/S1689D mutant GIV-DD; Gupta et al., 
2016); 2) both GEF- and GDI-deficient (mimicked experimentally by 
the GIV-F1685A mutant GIV-FA; Garcia-Marcos et al., 2009; Gupta 
et al., 2016); and 3) GEF-proficient but GDI-deficient (an in silico 
mutant, because there is no known mutant yet that can mimic this 
situation in experiments). In the first scenario, where GIV’s GEF func-
tion is selectively lost, but GDI function is preserved, increase in 
cAMP concentration occurred early (Figure 2D, dashed cyan line), as 
observed previously in cells expressing the GIV-DD mutant (Gupta 
et al., 2016). In the second scenario, where both GEF and GDI func-
tions were lost, increase in cAMP concentration occurred early and 
such elevation was sustained (Figure 2D, dashed dark green line), as 
observed previously in cells expressing the GIV-FA mutant (Gupta 
et al., 2016); this mirrored the profile observed in GIV-depleted cells 
(Figure 2D, solid green line). Finally, in the third scenario, selective 
blocking of GIV’s GDI function using an in silico mutant resulted in 
an early decrease followed by a prolonged increase in cAMP con-
centration (Figure 2D, dot–dashed blue line).

While the dynamics of cAMP production provides insight into 
how different conditions lead to changes in concentration, the area 
under the curve (AUC) for cAMP concentration provides information 
critical for decision making, buffers time-scale variations, and aver-
ages the effect of fluctuations in concentrations (Atay and Skotheim, 
2017). AUCs for cAMP at different time points were calculated to 
investigate how the cumulative cAMP signal varies under different 
GIV conditions (Figure 2F). For the control bars (in orange), we ob-
serve that at the 5-min time point, the AUC is negative. This repre-
sents the initial decrease in cAMP concentration. The AUC becomes 
positive and increases by 15 min, signifying a net accumulation of 
cAMP. The AUCs look similar in the GIV-FA mutant (defective in 
both GDI and GEF functions) as well as in the absence of GIV; that 
is, they increase progressively for 60 min (Figure 2F; compare the 
light green and dark green bars). If GIV levels are increased (10 μM, 
red bars), the AUCs remain negative throughout, showing the 
sustained nature of the dampening effect of GIV on cAMP. This 
dampening effect on cAMP is achieved primarily via activation of 
Gαi in the short term (GEF regime) and via inhibition of Gαs in the 
long term (GDI regime). These findings are in keeping with the pre-
viously suspected role of GIV in reducing cellular cAMP, but the 
model reveals that the relative contributions of GIV’s GEF and GDI 

functions are separated in time and space at a resolution that is ex-
perimentally unachievable.

Biological prediction: GIV dampens EGF/EGFR-triggered 
cyclic AMP production
Common wisdom from canonical signaling suggests that an increase 
in stimulus through receptor copy number leads to a proportional 
increase in cAMP concentration. Therefore, we would expect that an 
increase in EGFR density would lead to an increase in cAMP concen-
tration. But the phenomenological model indicated that cAMP con-
centration depends on both the receptor copy number and the GIV 
concentration (Figure 1D). We investigated how GIV concentration 
affects cAMP dynamics with various EGF/EGFR numbers. When GIV 
concentrations were set to 0.01 μM in the model (to simulate cells 
that do not have GIV), increased input signals triggered increased 
output signals (Figure 3A; Supplemental Figure S10); this effect was 
even more pronounced in the absence of PDE (Figure 3E). This pro-
portional response was lost when GIV concentrations were set to 
high levels (GIV = 10 μM; Figure 3B); that is, increased input signals 
failed to initiate proportional output signals. This effect was virtually 
unchanged and robustness was preserved despite the absence of 
PDE (Figure 3F). These effects are also evident from comparing the 
AUCs under the simulated conditions (Figure 3, C and G).

To test these predictions, we measured cAMP by RIA in control 
and GIV-depleted HeLa cells as in Figure 2E, except that in this in-
stance we measured only at 60 min, but with various doses of EGF 
(experimental equivalent of variable input in simulations). To reca-
pitulate simulations in the presence or absence of PDE, assays were 
carried out in parallel in the presence or absence of 3-isobutyl-
1-methylxanthine (IBMX), an inhibitor of PDE (Figure 3, D and H). In 
the presence of GIV, cAMP production is robustly suppressed in re-
sponse to increasing EGF ligand (Figure 3G). In the absence of GIV, 
cAMP production is sensitive to increased EGF, an effect that is fur-
ther accentuated when PDEs are inhibited with IBMX (Figure 3K). 
Taken together, these results indicate that GIV primarily serves as a 
dampener of cellular cAMP that is triggered downstream of EGF. 
Unlike PDE, which reduces cellular cAMP by degrading it, GIV does 
so by fine tuning its production by G proteins and membrane ACs. 
Thus, our model identified that GIV is a critical determinant of cAMP 
concentrations in response to EGFR signaling.

Model reveals that GIV-GEM may serve as a tunable valve 
for cAMP flux: high GIV implies low flux, whereas low GIV 
implies high flux
To quantify the extent of cross-talk between EGFR and GIV, we con-
ducted simulations for a wider range of EGFR [36–1800 molecules/
μm2] and GIV concentrations [0.01–10 μM] and calculated the AUC 
for the cAMP dynamics (Figure 4, A and B; Supplemental Figure 
S11). In a low-EGFR state, varying GIV concentrations resulted in 
cAMP changes only within a narrow range; however, in a high-EGFR 
state, varying GIV concentrations achieved a larger variance in 
cAMP (Figure 4A). To further dissect this space, we plotted the varia-
tions in AUC for EGFR and GIV variations (Figure 4B). The value of 
AUC corresponding to the control (GIV 1μM and EGFR 240 mole-
cules/μm2, Supplemental Table S11) is ∼0.45 μM min and is denoted 
by the yellow color and is marked as a black solid line for different 
EGFR and GIV concentrations in the heat map; elevated cAMP level 
is denoted by green and reduced cAMP by red. We observed that 
increasing EGFR increased cAMP AUC in the setting of low GIV con-
centrations. But when GIV concentrations are high, cAMP AUC re-
mained low regardless of increasing levels of EGFR, indicating that 
the impact of increasing GIV on cAMP AUC was higher than the 
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impact of increasing EGFR. Therefore, GIV levels, in conjunction 
with EGFR levels, can be thought of as key determinants, and high 
GIV in the setting of high EGFR may facilitate tonic suppression of 
cAMP levels regardless of pathway stimulation.

Another factor that plays an important role in regulating cAMP 
levels is PDE. We next conducted simulations for different GIV 
(0.01–1 μM) and PDE (0.04–2.5 μM) concentrations to identify how 
the cross-talk between these two variable components regulates 
cAMP levels. Within each category of PDE concentration (low vs. 
high PDE states; Figure 4C; Supplemental Figure S12), cAMP levels 
are highest when GIV levels are lowest, and vice versa. In the setting 
of low PDE activity, the impact of changing GIV was highest, that is, 
the range of cAMP response was widest. In contrast, in the setting 
of high PDE activity, the impact of changing GIV on the cAMP levels 
was minimal. These effects can be seen when the AUCs for the low 
and high PDE states, calculated over 1 h, are compared (Figure 4C). 
While there is no significant change in the AUC with increasing GIV 
in a high-PDE state (red bars), an increase in GIV leads to a decrease 
in cAMP in the low-PDE state (green bars). That is, for a given GIV 
concentration, the effect of PDE is always stronger. Furthermore, a 
heat map of cAMP AUCs (Figure 4D) shows the interplay between 
PDE and GIV concentrations over a wide range. For low PDE con-
centration, increasing GIV decreases cAMP AUC, but the cAMP 
AUC is well above the yellow value (marked as control). However, an 
increase in PDE concentration leads to a dramatic decline in cAMP 
AUC even when GIV levels are low; this condition is likely to result in 
futile cycling (high cAMP production due to low GIV and high cAMP 
clearance due to high PDE signaling). Together, these findings indi-
cate that the effect of GIV concentration on cAMP levels in cells is 

discernible only when PDE activity is low. Because the high-PDE 
state virtually abolishes all effects of GIV-dependent inhibition of 
cAMP production, we also conclude that in this GIV-PDE cross-talk, 
PDE is a dominant node and GIV is the subordinate node.

Our network model has helped us identify key design principles 
of the action of GIV-GEM within the EGF/EGFR signaling circuit 
by enabling construction of a map to identify the relationship be-
tween the key components—input (EGFR)→valve (GIV)→output 
(cAMP)→sink (PDE; Figure 4E), validate the impact of this relation-
ship by experimental assessment of cellular cAMP (Figures 2 and 3), 
and interpret the role of each component in the context of network 
architecture. That there is complex, nonlinear, and nonintuitive 
cross-talk between EGFR, GIV, and PDE in regulating cAMP levels is 
evident from the fact that the isoplanes, which capture the same 
cAMP AUC, are not flat but are bent surfaces in this space. It ap-
pears that variation of cellular concentration of functionally active 
GIV-GEM molecules serves as the most tunable component that 
regulates the flow of signal from EGF/EGFR (input) to cAMP (output; 
Figure 4E). At low concentrations of GIV, such as those found in 
normal tissues, cAMP levels are sensitive to increased signal input 
via EGF/EGFR; that is, higher input elicits higher output. Such sensi-
tivity is virtually abolished and replaced by robustness at higher GIV 
concentrations found in a variety of cancers; that is, higher input fails 
to elicit higher output, and instead, cAMP levels stay low and rela-
tively constant. This three-way interplay between EGFR, GIV, and 
PDE is obvious also in experimental data derived from HeLa cells 
(Figure 3, D and H) suggesting that GIV acts a tunable valve for the 
input–output relationships that govern RTK–G protein–cAMP 
signaling.

FIGURE 3:  Effect of varying EGF/EGFR on growth factor triggered cAMP signaling. (A, B) Simulations comparing the 
impact of variable input signals (via EGF/EGFR) on cAMP dynamics in low-GIV (A) and high-GIV (B) states. (C) AUCs 
calculated from A and B are displayed. (D) Control (shC) or GIV-depleted (shGIV) HeLa cells or GIV-depleted cells 
rescued with shRNA-resistant GIV-WT (GIV+) were stimulated with EGF and assessed for cAMP levels at 60 min for 
three different concentrations of EGF. Bar graphs compare the cAMP levels in response to various EGF concentrations. 
Error bars indicate mean ± SD of three independent experiments. ns = not significant; *p = 0.05; **p = 0.01; 
***p = 0.001. (E, F) Same as A and B with reduced concentration of PDE to mimic inhibition of cAMP in low-GIV (E) and 
high-GIV (F) states. (G) AUC calculations for E and F. (H) Same as in G, with one additional step of pretreatment of cells 
with 200 μM IBMX (20 min) prior to EGF stimulation. Error bars indicate mean ± SD of three independent experiments. 
*p = 0.05; **p = 0.01; ***p = 0.001; ****p = 0.0001.
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Clinical predictions from the model—from math to man
The signaling network model built using dynamic protein–protein 
interactions and enzymatic reactions during signal transduction pre-
dicts that GIV dampens cAMP signaling in response to EGF/EGFR 
stimulation over a 60-min time course (Ghosh, 2015, 2016; Ghosh 
et al., 2017; Aznar et al., 2016). We chose to stick to 60 min because 
this is the time period in which almost all the tyr-phosphorylated 
EGFR pool disappears, which coincides with the entry of EGFR into 
late endosomes, where 60% total EGFR remains while the remaining 

FIGURE 4:  The impact of expression levels of EGFR, GIV, and PDE on cAMP dynamics. 
(A) AUCs for simulations comparing the impact of variable GIV expression on cAMP dynamics in 
low-EGFR (red) and high-EGFR states (green). (B) Heat map shows the area under the curve for 
cAMP concentration over 1 h for different concentrations of GIV (X-axis) and EGFR receptor 
(Y-axis). The black line, over the yellow region, corresponds to the control condition in the 
simulation. (C) AUCs for simulations comparing the impact of variable GIV expression on cAMP 
dynamics in high-PDE (red) and low-PDE states (green). (D) Heat map shows the area under the 
curve for cAMP concentration over 1 h for different concentrations of GIV (X-axis) and activity 
levels of PDE (Y-axis). The black line, over the yellow region, corresponds to the control 
condition in the simulation. (E) A 4D map showing the relationships between EGFR (input signal), 
GIV (control valve), and PDE (degradation sink) on cAMP dynamics (output signal). The different 
planes on this map correspond to the same value of cAMP AUC (see color key on right). The 
control value is shown in yellow (0.45 μM.min).

40% is degraded in the endosomes (Newton 
et al., 2016). In fact, modeling studies using 
a plethora of experimentally determined pa-
rameters (Sassone-Corsi, 2012) have con-
cluded that transient responses exhibit pro-
nounced maxima, reached within 15–30 s of 
EGF stimulation and followed by a decline 
to relatively low (quasi-steady-state) levels in 
all parameters tested at 60, 90, and 120 min. 
Findings emphasized that 60 min is the earli-
est time that is reflective of steady state, 
whether it is immediate postreceptor events 
or gene change response or cellular pheno-
types. We next asked whether we could re-
late this prediction to patient clinical data for 
survival that reflect a steady state that 
evolves over years, not just weeks or months. 
Numerous prior studies (Tagliaferri et  al., 
1988; Boucher et  al., 2001; Dumaz et  al., 
2006; Fajardo et al., 2014) have shown that 
low cAMP facilitates several ominous tumor 
cell traits, and hence is permissive to cancer 
progression and worse outcomes. Consis-
tently, numerous studies have confirmed 
that high GIV levels (which our model pre-
dicts will lead to a tonic suppressed cAMP 
state regardless of the degree of stimulus) 
are associated with aggressive tumor cell 
traits and poorer clinical outcomes.

We begin by redefining the input and 
output for our system. The inputs for these 
analyses are EGFR mRNA, GIV mRNA, and 
PDE mRNA, which we use as a surrogate 
measure of copy number of proteins be-
cause others have shown that mRNA can 
indeed predict protein copy numbers per 
cell (Edfors et  al., 2016) and that mRNA 
abundance positively correlates with protein 
levels in healthy and cancer tissues (Kosti 
et al., 2016). The output is patient survival 
probability over time, an outcome that re-
flects tumor aggressiveness, which we use 
as a surrogate measure of low or suppressed 
cAMP states. The prediction from the signal-
ing model can be recast as the following hy-
potheses—EGFR gene-expression levels or 
PDE gene-expression levels, which by them-
selves are yet to emerge as clinically useful 
prognosticators of survival, should become 
important determinants when analyzed 
within context of GIV. We formulate and test 
two hypotheses in the following sections.

Concurrent up-regulation of both GIV and EGFR maximally 
reduces cAMP and carries poor prognosis in colorectal 
tumors
To determine the impact of cross-talk between EGFR and GIV 
on clinical outcome, we compared the mRNA expression levels to 
disease-free survival (DFS) in a data set of 466 patients with colorec-
tal cancers (see Materials and Methods). Patients were stratified into 
negative (low) and positive (high) subgroups with regard to GIV 
(CCDC88A) and EGFR gene-expression levels with the use of the 
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StepMiner algorithm, implemented within the Hegemon software 
(hierarchical exploration of gene-expression microarrays online; 
Dalerba et al., 2011; Figure 5A). Kaplan–Meier analyses of DFS over 
time showed that among patients with high EGFR, expression of GIV 
at high levels carried a significantly poorer prognosis than among 
those with low GIV (Figure 5B; Supplemental Figure S13). Among 
patients with low EGFR, expression of GIV at high or low levels did 
not impact survival (Figure 5C; Supplemental Figure S13). Among 
patients with low EGFR, expression of GIV at high or low levels did 
not impact survival (Figure 5C). That the impact of EGFR-GIV inter-
play on patient survival is significant in a rigorous Kaplan–Meier 
analysis of a sufficiently large cohort of patients, despite numerous 
independent variables, indicates that the interplay between EGFR 
and the G protein modulator GIV is an important determinant of 
cancer progression. More importantly, patients with tumors express-
ing high EGFR did as well as those expressing low EGFR provided 
the levels of GIV in those tumors were low. These findings reveal that 
1) high levels of EGFR signaling do not, by themselves, fuel aggres-
sive traits or carry a poor prognosis, but do so when GIV levels are 
concurrently elevated; 2) in tumors with low GIV, the high EGFR sig-
naling state may be critical for maintaining high cAMP levels and 
therefore for dampening several aggressive tumor traits.

Concurrent down-regulation of both GIV and PDE activity 
maximally increases cAMP and carries a good prognosis in 
colorectal tumors
Next, to determine the impact of cross-talk between various PDE 
isoforms and GIV on clinical outcome, we used the StepMiner algo-
rithm, implemented within the Hegemon software on the same set 
of 466 patients with colorectal cancers as before, except that pa-
tients were now stratified into low and high subgroups with regard 
to GIV (CCDC88A) and PDE gene expression (Figure 5, D–F). 
Among the 11 known PDE isoforms, we evaluated those that have 
previously been linked to colon cancer progression (PDE5A, Figures 
5, D–F, 4A, and 10A and Supplemental Figure S13). Kaplan–Meier 
analyses of DFS over time showed that although expression of GIV 
at high levels was associated with disease progression and poorer 
survival in both low- and high-PDE groups, the risk of progression 
was not statistically significant in the high-PDE state (Figure 5E) but 
was highly significant in the low-PDE state (Figure 5F). Thus, the low 
GIV/low PDE signature carried a better prognosis than for all other 
patients. Consistent with the fact that cAMP is a potent anti-tumor 
second messenger, these findings reveal that 1) high levels of PDE 
signaling may not be a bad thing, especially when GIV levels are 
low; 2) in tumors with low PDE signaling, the low GIV signaling state 

FIGURE 5:  The impact of levels of expression of EGFR, GIV, and PDE on cAMP dynamics; clinical outcome (disease-free 
survival) in patients with colorectal cancers. (A–C) Hegemon software was used to graph individual arrays according to the 
expression levels of EGFR and GIV (CCDC88A) in a data set containing 466 patients with colon cancer (see Materials and 
Methods). (A) Survival analysis using Kaplan–Meier curves showed that among patients with high EGFR, concurrent 
expression of GIV at high levels carried a significantly worse prognosis than those with low GIV. (B) Survival analysis 
among patients with low EGFR showed that levels of expression of GIV did not have a significant impact on DFS (C). 
(D–F) Hegemon software was used to graph individual arrays according to the expression levels of PDE5A and GIV 
(CCDC88A) in a data set containing 466 patients with colon cancer (see Materials and Methods). (D) Survival analysis using 
Kaplan–Meier curves showed that among patients with high PDE5A, high vs. low GIV expression did not carry any statisti
cally significant difference in DFS (E). Survival analysis among patients with low PDE5A showed that patients whose tumors 
had high levels of expression of GIV had a significantly shorter DFS than those with tumors expressing low levels of GIV (F).
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may serve as a key synergy for driving up cAMP levels and therefore 
be critical for dampening several aggressive tumor traits.

DISCUSSION
Systems biology aims to understand and control the properties of 
biological networks; experimental data collected using top-down 
approaches are used to construct in silico bottom-up models, with 
the ultimate goal of generating experimentally testable predictions. 
In this work, we used a systems biology approach to construct the 
first-ever compartmental-network model of growth factor–triggered 
cAMP signaling and identified two key features of noncanonical G-
protein signaling via GIV-GEM.

First, we identified that compartmentalized RTK signaling at the 
PM and on the endosomes directly imparts a delayed and pro-
longed cAMP dynamics lasting more than 1 h, which is distinct from 
the canonical GPCR/G protein pathway; GPCRs initiate more rapid 
and finite cAMP dynamics on the order of ms to min (Supplemental 
Figure S5; Violin et al., 2008). In the case of GPCRs, the PM-based 
signals are believed to be the dominant component of the overall 
cAMP dynamics with signal attenuation during endocytosis (Supple-
mental Figure S5; Irannejad et al., 2013). In contrast, in the case of 
RTK-mediated cAMP dynamics via GIV-GEM, the postendocytic 
(i.e., endosomal signaling) component constitutes a dominant com-
ponent of the overall cAMP dynamics that is triggered by RTKs 
(Supplemental Figure S5). What may be the impact of these distinct 
temporal features on RTK signaling? It is noteworthy that RTK-trig-
gered cAMP dynamics that is modulated by GIV-GEM spans 5 to 
>60 min, which coincides with other RTK signaling, trafficking 
events, and transcriptional response, that is, the major temporal do-
main of RTK activity, the so-called “window of activity” (Amit et al., 
2007b). The 5 min-to-1 h time scale encompasses the time of peak 
mRNA expression of many immediate-early genes (which peak at 
20 min) and delayed-early genes (which peak between 40 min and 
2 h); these transcriptional targets not only generate feedback within 
the RTK-signaling cascade, but also set up cross-talk with other 
signaling pathways (Amit et al., 2007a,b). In fact, GIV-GEM has been 
found to modulate myriad downstream signaling pathways from the 
activity of small GTPases, kinases, and phosphatases to transcription 
factors (reviewed in Aznar et al., 2016); how GIV-GEM has such a 
widespread and broad impact had remained a mystery. It is possible 
that this broad impact could stem from GIV’s ability to modulate the 
cellular levels of the versatile second messenger cAMP in a sus-
tained manner throughout the window of RTK activity, although 
other mechanisms might also be in play.

Second, our model identifies that GIV-GEM acts a tunable valve 
for cAMP by operating at the knot of a bow-tie architecture. Be-
cause layering of control of (information) flow is believed to conform 
to an hourglass architecture (Doyle and Csete, 2011), in which di-
verse functions and diverse components are intertwined via univer-
sal carriers, GIV’s ability to control the universal carrier, cAMP, could 
explain why GIV has been found to be important for diverse cellular 
functions and impact diverse components (Aznar et al., 2016).

Third, our work also provides valuable clues into the impact of 
increased robustness in high-GIV states in cancers. Robustness in 
signaling is an organizing principle in biology, not only for the main-
tenance of homeostasis but also in the development and progres-
sion of chronic debilitating diseases such as cancers; it is widely ac-
cepted that tumor cells hijack such robustness to gain growth and 
survival advantages during the development of cancer (Kitano, 
2004; Amit et  al., 2007b; Iadevaia et  al., 2014). Consistently, we 
found that GIV mRNA levels and DNA copy numbers are higher 
across multiple cancers than in their respective normal tissue of 

origin (Supplemental Figures S14 and S15). Because GIV has been 
found to regulate several harmful properties of tumor cells across a 
variety of cancers (multiple studies, reviewed in Ghosh, 2015), it is 
possible that the high GIV–driven robustness maintains cAMP at low 
constant levels despite increasing input signals as a tumor evolves 
when targeted by biologicals or chemotherapy agents. This phe-
nomenon could be part of a higher-order organizing principle in 
most aggressive cancers, and therefore justify GIV as a potential 
target for network-based anti-cancer therapy.

Furthermore, the cross-talk between EGFR and GIV that we de-
fine here and its impact on clinical outcomes provide a plausible 
explanation for some longstanding conundrums in the field of on-
cology. Deregulated growth factor signaling (e.g., copy number 
variations or activating mutations in EGFR, increased growth factor 
production/concentration) is often encountered and targeted for 
therapy in advanced cancers (Lowery and Yu, 2012). Although acti-
vating EGFR mutations, copy number variations, and levels of EGFR 
protein expression seem to be closely related to each other (Liang 
et al., 2010), the prognostic impact of EGFR expression in cancers 
has been ambiguous (Nicholson et al., 2001). In some cancers, high 
EGFR copy numbers are associated with poor outcomes (Selvaggi 
et al., 2004; Park et al., 2014); in others, high EGFR expression un-
expectedly favors better overall and progression-free survival (Jiang 
et al., 2013; Llovet et al., 2015; Park et al., 2016). Thus, for reasons 
that are unclear, not all tumors with high EGF/EGFR signaling have 
an aggressive clinical course. Dysregulated GIV expression, on the 
other hand, is consistently associated with poorer outcome across a 
variety of cancers (Ghosh, 2016). Our finding that GIV levels in tu-
mors with high EGFR are a key determinant of the levels of the anti-
tumor second messenger cAMP has provided a potential molecular 
basis for why elevated EGFR signaling can be beneficial in some 
tumors, but a driver of metastatic progression in others. Because 
cAMP levels in tumor cells and GIV levels have been previously im-
plicated in anti-apoptotic signaling (McEwan et al., 2007) and the 
development of chemoresistance (Waugh, 2012), it is possible that 
the GIV-EGFR cross-talk we define here also determines how well 
patients may respond to anti-EGFR therapies, and who may be at 
highest risk for developing drug resistance. Whether this is the case 
remains to be evaluated. Similarly, in the context of PDE, it has been 
demonstrated that overexpression of PDE isoforms in various can-
cers leads to impaired cAMP and/or cGMP generation (Bender and 
Beavo, 2006). PDE inhibitors in tumor models in vitro and in vivo 
have been shown to induce apoptosis and cell cycle arrest in a 
broad spectrum of tumor cells (Savai et al., 2010). Despite the vast 
amount of preclinical evidence, there have been no PDE inhibitors 
that have successfully translated to cancer clinics. For example, 
based on the role of cAMP in apoptosis and drug resistance, our 
model predicts that those with low GIV/high EGFR (high cAMP 
state) are likely to respond well to anti-EGFR therapy inducing tumor 
cell apoptosis, whereas those with high GIV/high EGFR (low cAMP 
state) may be at highest risk for developing drug resistance. Simi-
larly, our finding that low PDE levels in the setting of high GIV carry 
a poor prognosis predicts that the benefits of PDE inhibitors may be 
limited to patients who have low GIV expression in their tumors. 
Whether such predictions hold true remains to be investigated.

Model limitations
Although our model captures experimentally observed time 
courses and generates testable hypotheses, it has a few major 
limitations. From a model development standpoint, the compart-
mental well-mixed model we used does not account for the spa-
tial location and geometries of the different compartments and 



1630  |  M. Getz et al.	 Molecular Biology of the Cell

cell shape, many of which can affect the dynamics of cell signaling 
(Rangamani and Iyengar, 2007; Rangamani et al., 2013). Further-
more, a major concern is the estimation of kinetic parameters for 
the different reactions. Of the 76 kinetic parameters in our model, 
a large majority (57) were from models published before. Nine-
teen parameters, all of which are related to GIV interactions with 
internalization, Gαs, and Gαi, were estimated from experimental 
data. The uncertainty in some of these parameters was quite 
large (Supplemental Figure S6). While sloppy parameter space is 
a problem common to many signaling networks (Gutenkunst 
et al., 2007), in this case, it is exacerbated by the fact that the 
model we have constructed is the first of its kind for this pathway. 
The issue with kinetic parameters also reflects the fact that the 
field of RTK-G protein regulation is relatively young and makes 
the case for more quantitative investigations of GIV-GEM modu-
lated signaling. By themselves, these facts can lower confidence 
in the exact temporal dynamics predicted by the model. How-
ever, our confidence in the model is bolstered by the time scales 
predicted by the phenomenological model and implications for 
patient survival data.

Additionally, our model focuses exclusively on cAMP as output 
signal and does not account for other EGF/EGFR-driven signaling 
pathways that are known to regulate cellular responses such as the 
Ras-Raf-MEK-ERK pathway. This pathway is known to modulate 
cAMP and be modulated by GIV via the ability of the latter to affect 
adaptor protein recruitment to the cytosolic tail of EGFR (Ghosh 
et al., 2010). However, the vast parameter space associated with 
model building indicates that this pathway would require its own 
study. In addition, the dynamics of ERK1/2 activation on the endo-
somal structure would have to be explored due to GIV-GEM’s inter-
action with endosomal maturation through Gαs. The model expan-
sion would lead to an even larger parameter space, with less 
available data.

Moreover, our model focuses exclusively on EGFR and does not 
account for the diverse classes of receptors (multiple RTKs, GPCRs, 
integrins, etc.) that also use GIV to access and modulate G proteins. 
Model validations used HeLa cells not only because this is the most 
common model cell line, which has been used exhaustively by us 
and others to study both GIV and EGFR biology, but also because it 
has a modest level of expression for both EGFR and GIV. Despite 
these restrictions, we can identify some fundamental features of 
growth factor–triggered cAMP signaling for the first time using sys-
tems biology, including the roles of compartmentalization, cross-talk 
between EGFR and GIV, GIV-dependent robustness within the RTK-
cAMP signaling axis, and cross-talk between PDE and GIV in con-
trolling cAMP concentration. Although there exist many different 
signaling pathways downstream of EGFR, GIV-GEM is the only 
direct link between EGFR and G proteins to date. Owing to the high 
congruency between the model and validation this leads to two 
possibilities: either GIV–GEM interaction operates on a standalone 
basis, or there exist additional feedback loops where GIV–GEM acts 
as a leading-order contributor (Supplemental Figure S9).

Conclusions
We conclude that GIV utilizes compartmental segregation to modu-
late the dynamics of RTK→G protein→cAMP signaling and confers 
robustness on this dynamics by functioning as a tunable control 
valve. Future systems efforts will build upon this model to unravel 
further exciting features of GIV as a critical hub for signaling regula-
tion at the knot of a bowtie (Friedlander et al., 2015) and elucidate 
the hidden complexity that arises from network architecture in non-
canonical G-protein signaling.

MATERIALS AND METHODS
Modular construction of the reaction network
A biochemical network model was constructed to capture the main 
events in the signal transduction cascade from EGF to cAMP through 
GIV (Figure 2A). We constructed the compartmental computational 
model in a modular manner, where each module represented key 
events within the network. The model was trained using key data 
sets published over the past decade on GIV-GEM, most notably 
those that defined the spatiotemporal kinetics of EGFR·GIV, 
EGFR·GIV Gαi interactions (Ghosh et  al., 2010; Ma et  al., 2015; 
Midde et  al., 2015), dynamics of phosphoregulation of GIV-GEM 
(López-Sánchez et al., 2013; Bhandari et al., 2015), and most impor-
tantly, the dual modulation of Gαi/s by GIV-GEM that is brought 
about by temporally and spatially separated phosphorylation events 
(Gupta et al., 2016). Last, but not least, we also used the published 
role of Gαs in the feedback regulation of endocytic down-regulation 
of EGF/EGFR signaling (Beas et al., 2012).

The model contains 76 kinetic parameters. Nineteen parameters 
were fitted with various confidence values (Supplemental Figure S6). 
Each kinetic parameter used in this model originated from peer-
reviewed publications of computational models or from experimen-
tal measurement. The EGF/EGFR and trimeric GTPase–related 
kinetic parameters were taken from work done by multiple indepen-
dent groups, often cross-validated across groups engaged in 
studying each of these paradigms/pathways. For the GIV-related 
parameters that originate at the interface between the two path-
ways (EGFR and G proteins), we have used Gupta et al. (2016).

We note here that while there are many more biochemical com-
ponents involved in signaling from EGF to cAMP, our choice of com-
ponents was based on experimentally measured temporal dynamics 
of GIV-GEF and GIV-GDI functions. The modules are as follows.

Module 1 consists of EGFR activation through EGF and internal-
ization dynamics leading to degradation due to the Gαs·GIV-GDI 
complex. This module includes the phenomenon that endosomal 
maturation and EGFR degradation in lysosomes requires the pres-
ence of inactive Gαs [GDP-bound state] (Beas et al., 2012). The pres-
ence of Gαs in the inactive state promotes maturation of endo-
somes, shuts down the mitogenic MAPK-ERK1/2 signals from 
endosomes, and suppresses cell proliferation (Beas et al., 2012). In 
the absence of Gαs or in cells expressing a constitutively active mu-
tant Gαs, EGFR stays longer in endosomes, MAPK-ERK1/2 signals 
are enhanced, and cells proliferate (Beas et al., 2012; Supplemental 
Figure S5).

Module 2 contains EGFR-mediated activation of p35 and down-
stream activation of Gαi though GIV-GEM; the former activated 
CDK5, which phosphorylates GIV at S1764, allowing the ability to 
activate Gαi (López-Sánchez et al., 2013). This phosphoevent does 
not impact GIV’s ability to inhibit Gαs (Gupta et al., 2016; Supple-
mental Figure S2B).

Module 3 contains EGFR-mediated activation of PLC-γ and 
downstream activation of PKC-θ; the latter phosphorylates GIV at 
S1689 and terminates its ability to activate Gαi (López-Sánchez 
et  al., 2013). This phosphoevent does not impact GIV’s ability to 
inhibit Gαs (Gupta et al., 2016). Consequently, when it comes to G-
protein modulatory functions of GIV, phosphorylation by PKC-θ con-
verts GIV-GEF into GIV-GDI (Supplemental Figure S2D).

Module 4 contains the dynamics of the AC and how it synthe-
sizes cAMP, leading to downstream effectors and controllers 
(Supplemental Figure S2C). We currently only consider PDE feed-
back for cAMP reduction. Overall, the model contains 56 reactions. 
The complete set of reactions for each of the modules, their para
meters and interactions, and the list of assumptions underlying 
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network construction are provided as online supplemental materials 
(Supplemental Tables S4–S8; Supplemental Figure S8).

We assumed that the signaling components were present in 
large enough quantities, and different concentrations of each com-
ponent were computed to explore how varying expression levels in 
different tissues/cell types impact the signaling pathway. These as-
sumptions allowed us to generate a deterministic dynamical model. 
The model contains five different compartments: 1) PM, 2) extracel-
lular space, 3) cytosol, 4) endosomes, and 5) endosomal mem-
branes. It was assumed that each compartment is well mixed, and 
fluxes were used to depict transport across the different compart-
ments so that the dynamic changes in the concentrations of the 
different components could be tracked. Each interaction was mod-
eled as a chemical reaction using mass-action kinetics for binding–
unbinding reactions and Michaelis–Menten kinetics for enzyme-
catalyzed reactions, as is standard for models such as this (Bhalla 
and Iyengar, 1999; Rangamani and Iyengar, 2008).

The network of interactions was constructed using the Virtual 
Cell modeling platform and was later transferred to COPASI (version 
4.24, build 197; available at www.nrcam.uchc.edu, http://copasi 
.org/). We chose this platform because it is a user-friendly computa-
tional cell biology program, which allows us to generate the system 
of differential equations based on the input reactions and has been 
used successfully to model signaling networks of various sizes with a 
high degree of numerical accuracy (Loew and Schaff, 2001; 
Slepchenko et al., 2003; Ditlev et al., 2012; Falkenberg et al., 2013). 
The model was later exported into COPASI to leverage the built-in 
fitting techniques. Also, the Virtual Cell and COPASI platform has 
built-in capabilities to conduct dynamic sensitivity analysis, which is 
an important aspect of dynamic systems modeling. As we discuss in 
later sections, we use this capability to identify sources of system 
robustness and sloppiness.

Characteristics of the signaling cascade
To characterize the dynamics of the different protein activities, we 
use the area under the concentration vs. time curve (Atay and 
Skotheim, 2017). The area under the curve gives the total signal 
activated over the time of observation and for the ith species:

X t dtAUCi i
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This gives a measure of the total signal for different conditions.

Comparison with experimental data
Raw data corresponding to Figure 1, C and D, of Gupta et al. (2016) 
were used for model fitting. The data were normalized so that the 
initial value was 1. Parameter fitting using COPASI (Mendes et al., 
2009) was used to match the normalized experimental data against 
the model output, with corresponding expected initial values based 
on the experimental method. Goodness of fit between experimen-
tal values and model output was determined using root-mean-
squared error (RMSE).

Choice of assays for model validation
We chose to validate our temporal–spatial model for the dynamic 
assembly of the EGFR·GIV Gαi and Gαs·GIV-GDI complexes using 
previously published protein–protein interaction assays carried out 
in cells responding to EGF (Gupta et al., 2016). For EGFR·GIV Gαi 
complexes that are formed within 5 min after ligand stimulation at 
the plasma membrane, we modeled the GST pull-down assays car-
ried out using GST-GIV-CT that is expressed in cells (and hence 

phosphomodified in response to EGF stimulation) and endogenous 
Gαi. The findings of these pull-down assays mirrored observations 
by FRET-based (Midde et al., 2015) and co-IP assays (Ghosh et al., 
2010; Lin et al., 2014). For Gαs·GIV-GDI complexes that are formed 
later and on endosomes, we modeled the proximity-ligation assays 
(PLA) on endogenous GIV and Gαs proteins, which provide a crude 
estimate of complexes on endomembranes.

Dynamic parametric sensitivity analysis
Because a continuing challenge in building computational models 
of signaling networks is the choice of kinetic parameters, we con-
ducted a dynamic parametric sensitivity analysis. This sensitivity 
analysis of the model was performed with the goal of identifying the 
set of parameters and initial concentrations that the model response 
is most sensitive to. The log sensitivity coefficient of the concentra-
tion of the ith species, Ci, with respect to parameter kj is given (In-
galls and Sauro, 2003; Varma et al., 2005) by
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Because we are studying a dynamical system and not steady 
state behavior, we used COPASI to calculate the local log sensitivity 
at the 5-, 15-, 30-, and 60-min points (Supplemental Figure S4). The 
resulting values give information about the time dependence of 
parametric sensitivity coefficients for the system at those points. The 
variable of interest, Ci, is said to be robust with respect to a param-
eter kj if the log sensitivity is of order 1 (Varma et al., 2005). We refer 
the reader to (Ingalls and Sauro, 2003; Varma et al., 2005) for a com-
plete introduction to dynamic sensitivity analysis. We conducted 
dynamic sensitivity analyses for all the kinetic parameters, initial con-
centrations of the different species, and compartment sizes in the 
model (Supplemental Figure S4). The variation (delta factor) used 
was 0.001 with a delta minimum of 1 × 10–1; for a value X, S∈ 
[0.999X, 1.001X]. Sensitive parameters or corresponding outputs of 
interest (cAMP,vGαs·GIV-GDI, EGFR·GIVGαi) are reported in Sup-
plemental Tables S12–S18.

Measurement of cAMP
HeLa cells were serum-starved (0.2% fetal bovine serum, 16 h) and 
incubated with isobutylmethylxanthine (IBMX, 200 μM, 20 min) fol-
lowed by EGF. Stimulation was carried out using either fixed EGF 
concentrations followed by assessment of cAMP at various time 
points (as in Figure 3B) or various EGF concentrations followed by 
an assessment of cAMP at 60 min (as in Figure 3, F–J). Reactions 
were terminated by aspiration of media and addition of 150 μl of 
ice-cold TCA 7.5% (wt/vol). cAMP content in TCA extracts was 
determined by RIA and normalized to protein (determined using a 
dye-binding protein assay [Bio-Rad]; Lopez-Sanchez et  al., 2014; 
Aznar et  al., 2016). Data are expressed as fmol cAMP/μg total 
protein.

Stratification of colon cancer patients in distinct 
gene-expression subgroups and comparative analysis 
of their survival outcomes
The association between the levels of GIV (CCDC88A) and either 
EGFR or PDE mRNA expression and patient survival was tested in a 
cohort of 466 patients where each tumor had been annotated with 
the DFS information of the corresponding patient. This cohort in-
cluded gene expression data from four publicly available National 
Center for Biotechnology Information (NCBI)-Gene Expression Om-
nibus (GEO) data series (GSE14333, GSE17538, GSE31595, 

http://www.nrcam.uchc.edu
http://copasi.org/
http://copasi.org/
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GSE37892; Jorissen et  al., 2009; Smith et  al., 2010; Laibe et  al., 
2012; Thorsteinsson et al., 2012) and contained information on 466 
unique primary colon carcinoma samples, collected from patients at 
various clinical stages (AJCC Stage I–IV/Duke’s Stage A–D) by five 
independent institutions: 1) the H. Lee Moffit Cancer Center in 
Tampa, FL (n = 164); 2) the Vanderbilt Medical Center in Nashville, 
TN (n = 55); 3) the Royal Melbourne Hospital in Melbourne, Australia 
(n = 80); 4) the Institut PaoliCalmette in Marseille, France (n = 130); 
5) the Roskilde Hospital in Copenhagen, Denmark (n = 37). To avoid 
redundancies (i.e., identical samples replicated two or more times 
across multiple NCBI-GEO data sets) all 466 samples contained in 
this subset were cross-checked to exclude the presence of dupli-
cates. A complete list of all GSMIDs of the experiments contained 
within the NCBI-GEO discovery data set has been published previ-
ously (Dalerba et al., 2011). To investigate the relationship between 
the mRNA expression levels of selected genes (i.e., CCDCDDC, 
Wnt5a, EGFR, and FZD7) and the clinical outcomes of the 466 colon 
cancer patients represented within the NCBI-GEO discovery data 
set, we applied the Hegemon software tool (Dalerba et al., 2011). 
The Hegemon software is an upgrade of the BooleanNet software 
(Sahoo et al., 2008), where individual gene-expression arrays, after 
having been plotted on a two-axis chart based on the expression 
levels of any two given genes, can be stratified using the StepMiner 
algorithm and automatically compared for survival outcomes using 
Kaplan–Meier curves and log-rank tests. Because all 466 samples 
contained in the data set had been analyzed using the Affymetrix 
HG-U133 Plus 2.0 platform (GPL570), the threshold gene-expres-
sion levels for GIV/CCDC88A, PDE, and EGFR were calculated us-
ing the StepMiner algorithm based on the expression distribution of 
the 25,955 experiments performed on the Affymetrix HG-U133 Plus 
2.0 platform. We stratified the patient population of the NCBI-GEO 
discovery data set into different gene-expression subgroups, based 
on either the mRNA expression levels of GIV/CCDC88A alone (i.e., 
CCDC88A neg vs. pos), PDE alone (i.e., PDE neg vs. pos), or EGFR 
alone (i.e., EGFR neg vs. pos) or a combination of GIV and either 
EGFR or PDE. Once grouped based on their gene-expression lev-
els, patient subsets were compared for survival outcomes using 
both Kaplan–Meier survival curves and multivariate analysis based 
on the Cox proportional-hazards method.
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