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Abstract
COVID-19 is a global health burden. We propose to model the dynamics of COVID-19 in Senegal and in China by count 
time series following generalized linear models. One of the main properties of these models is that they can detect potentials 
trends on the contagion dynamics within a given country. In particular, we fit the daily new infections in both countries by a 
Poisson autoregressive model and a negative binomial autoregressive model. In the case of Senegal, we include covariates 
in the models contrary to the Chinese case where the fitted models are without covariates. The short-term predictions of the 
daily new cases in both countries from both models are graphically illustrated. The results show that the predictions given 
by the negative binomial autoregressive model are more accurate than those given by the Poisson autoregressive model.

Keywords  Poisson auto-regressive models · Count time series · Coronavirus · Negative binomial

Introduction

A cluster of pneumonia caused by the coronavirus (COVID-
19) emerged in Wuhan, China (WHO 2019; Paules et al. 
2020). Since its emergence in December 2019, COVID-19, 
a deadly respiratory diseases has been a global public health 
burden. With a high human transmission rate, COVID-19 
lead to a rapid global spread of the disease, and the World 
Health Organization (WHO) declared it a pandemic (WHO 
2019, 2021). Contingency measures to mitigate the spread 
of the virus included physical distancing, face masks, or the 
most stringent lock down (WHO 2019).

COVID-19 has spread throughout the world, intruding on 
almost every aspect of daily life and negatively affecting the 
world economy (Li et al. 2020). As many other countries, 
the Senegalese government adopted the recommendations 
of the WHO, namely the strict respect of non-therapeutic 
prevention measures. In addition to these hygienic meas-
ures, the Senegalese government also put in place a short 
lock-down period to reduce the rapid spread of the disease 
in the country.

Several mathematical models have been developed in the 
literature including but are not limited to epidemiological 
models (López and Rodó 2020; Saikia et al. 2021; Tripathi 
et al. 2021), statistical models (Chan et al. 2021; Aidoo et al. 
2022; Ganiny and Nisar 2021; Roy et al. 2020) and neu-
ral networks (Niazkar and Niazkar 2020; Shad et al. 2021). 
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Herein, we propose statistical models that could help our 
understanding of the disease contagion dynamics, as well 
as when the peak of contagion is reached, so that preven-
tive measures (such as mobility restrictions) can be applied 
and/or relaxed. Indeed, we use a Poisson auto-regressive 
model (Fokianos and Tjøstheim 2011, 2012; Fokianos 
et al. 2009; Agosto et al. 2016), and a negative binomial 
autoregressive model (Christou and Fokianos 2014; Lange 
2001; Liboschik et al. 2017) to fit and predict the daily new 
infections in China and Senegal. Both models used in this 
paper are special cases of the count times series following 
generalized linear models family, see, for example, Libos-
chik et al. (2017); Christou and Fokianos (2015). Note that 
our work extends some of the results obtained by (Agosto 
and Giudici (2020)). Indeed, they applied the Poisson auto-
regressive model (without covariates) to the available China, 
Iran, South Korea and Italy data to investigate whether the 
spread of the disease has a trend. We propose to model the 
COVID-19 data available in China and Senegal by the Pois-
son autoregressive model and the negative binomial autore-
gressive model, including covariates only in the Senegalese 
case. For each country, we fit the models on the data and 
provide short-term of sample predictions of the daily new 
cases for both models. The models’ fits and the predictions 
are compared for each country. Finally, note that for the case 
of China, we do not have the required data to incorporate 
covariates into the models.

The rest of the paper is organized as follows: Sect. 2 
describes the data used in our analysis. In Sect. 3, the the-
oretical tools (the models) employed to analyze the trend 
of daily positive cases of COVID-19 in both countries are 
described. In Sect. 4, we present a practical application using 
real data, outline the results of the modelling. Finally, we 
discuss the results obtained and present the limitations and 
perspectives for futures directions in Sect. 5.

 Data

The data we shall analyse consist of the confirmed daily 
new cases of COVID-19 in Senegal and in China. The 
data source is the daily World Health Organization reports, 
available at https://​ourwo​rldin​data.​org/​coron​avirus. The 
time range of these observations begins on 2nd of March 
2020 for Senegal ( 5th of March 2020 for China) and ends 
on 10th of October 2021 for both countries. The choices of 
the two countries are based on the fact that China was the 
first country where the disease emerged, and Senegal is 
among the top twenty most affected countries on the Afri-
can continent. The daily new cases used to fit the models 
are plotted in Figs. 1 and 2. Because we wish to make 
short-term forecast from September to October 2021, we 
use 95% of the data for the parameters estimation and the 
subsequent 5% of the data for the models’ assessment. It 
is important to note that 5% of the data represent roughly 
one month for both countries. The reason for not consid-
ering long-term predictions of COVID-19 is because the 
influence of external factors that have not been taken into 
account in the models could be large, for example, a politi-
cal decision, a vaccine, a drug, the temperature, new vari-
ants of the virus and other uncontrolled factors that make 
medium- and long-term forecasts uncertain. However, the 
more data one has for the estimation, the better the preci-
sion of the estimated parameters, even if we lose accuracy 
on the forecast error since we have less test data.

Furthermore, for Senegal, we have additional vari-
ables that will be used as covariates. These variables are 
described below.

Fig. 1   Daily reported COVID-19 cases in Senegal

https://ourworldindata.org/coronavirus
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–	 x1 ∶ the number of daily COVID-19 community cases 
(i.e., cases in which infected do not know where the 
acquire the infection).

–	 x2 ∶ the number of daily COVID-19 imported cases (i.e., 
cases from infective immigrants).

–	 x3 ∶ the number of daily COVID-19 contact cases (i.e., 
infected have an idea of where/from whom s/he acquired 
the infection.

Finally, we summarize COVID-19 data from both countries, 
respectively, in Tables 1 and 2.

Methodology

The models

In what follows, Yt denotes the number of newly confirmed 
cases on day t, t = 1,… , n . We consider the time series of 
counts {Yt} , and we denote by xt = (xt,1,… , xt,r)

T the time-
varying vector of the r covariates. Let Ft−1 be the �-field 

generated by {y0,… , yt−1, xt} i.e., the process from time 
t = 0 to time t − 1 , and the potential covariates at time t, and 
�t the conditional mean �(Yt ∣ Ft−1) . Further details on this 
point can be found in Douc et al. (2013); Jung et al. (2006); 
Kedem and Fokianos (2002); Woodard et al. (2011). We are 
interested in the models of the form:

where:

This last condition on the parameters �1, �1 guarantees the 
existence of a stationary and ergodic solution of the process 
{Yt} for the fitted model, see (Fokianos and Tjøstheim 2011; 
Liboschik et al. 2017) for more details.

The model parameters are interpreted as follow: �0 is 
the intercept, whereas �1 and �1 represent respectively the 
short-term dependence on the previous time, and the long-
term dependence on all past values of the observed process. 
Finally, the parameter �i , i = 1,… , r, represents the effect of 

(1)log(�t) = �0 + �1 log(1 + yt−1) + �1 log(�t−1) + �Txt,

(2)max

(
∣ 𝛽1 ∣, ∣ 𝛼1 ∣, ∣ 𝛽1 + 𝛼1 ∣

)
< 1.

Fig. 2   Daily reported COVID-19 cases in China

Table 1   Descriptive Statistics of 
COVID-19 data in Senegal

Variable Observations Total Mean Std.Dev. Min. Max.

Confirmed cases 588 73837 125.57 182.77 0 1722
Contact cases 588 27902 47.45 54.37 0 744
Community cases 588 47845 81.37 145.97 0 978
Imported cases 588 413 0.70 2.09 0 27

Table 2   Descriptive Statistics of 
COVID-19 data in China

Variable Observations Total Mean Std.Dev. Min. Max.

Confirmed cases 625 95956 153.53 806.82 0 15133
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the covariate xi on the logarithm of the expected number of 
new infections at date t.

The models of the form (1) are log-linear models and allow 
negative dependence contrary to the INGARCH model (Foki-
anos and Tjøstheim 2011; Liboschik et al. 2017).

Poisson autoregressive model

The Poisson autoregressive (PAR) model is specified by add-
ing to the model (1) the following distributional assumption 
for Yt given Ft−1:

This implies that:

and:

Hence, because the conditional mean is identical to the 
conditional variance, this is a major drawback related to its 
application. An alternative count time series model resolving 
this particular issue is presented in the following subsection.

Negative binomial autoregressive model

For the negative binomial autoregressive (NBAR) model, we 
assume in addition to (1) that:

This implies that:

where Γ  is  the gamma funct ion def ined by 
Γ(x) = ∫ ∞

0
ux−1 exp(−x) dx , for x > 0.

In this case, Var(Yt ∣ Ft−1) = �t + �2
t
∕� , � is referred to as 

dispersion parameter. Note that when � → +∞ , the Negative 
Binomial distribution converges to the Poisson distribution.

Both models presented in this work fall within the purview 
of count time series following generalized linear models family 
(Liboschik et al. 2017; Box and Jenkins 1970; Fuller 1976).

(3)Yt ∣ Ft−1 ∼ Poisson(�t).

(4)ℙ(Yt = y ∣ Ft−1) =
�
y

t exp(−�t)

y!
, y = 0, 1,… ,

(5)Var(Yt ∣ Ft−1) = E(Yt ∣ Ft−1) = �t.

(6)Yt ∣ Ft−1 ∼ NegativeBinomial(�t,�), � ∈]0,+∞[.

(7)
ℙ(Yt = y ∣ t−1) =

Γ(� + y)
Γ(y + 1)Γ(�)

(

�
� + �t

)�

(

�t
� + �t

)y

, y = 0, 1,…

Maximum likelihood estimation

Both models considered in this work were fitted by using 
the maximum likelihood method, see, for example, Akaike 
(1998) for more details. That is, by maximizing:

for the Poisson autoregressive model and:

f o r  t h e  n e g a t i v e  b i n o m i a l  a u t o r e g r e s -
sive model,  with respect to �  and � ,  where 
� = (�0, �1,… , �p, �1,… , �q, �1,… , �r)

T ∈ ℝ
p+q+r+1 and 

satisfying both conditions (1) and (2).
The calculation of the parameter estimates of both mod-

els is then a non-linear optimization problem with lin-
ear inequality constraints. Many algorithms solving this 
kind of problems are developed in the literature (see for 
example Lange 2001). The R package tscount developed 
by Liboschik et al. (2017) fitted models of the form (1) 
using a quasi-conditional maximum likelihood estimation 
(more details on this method can be found in Martin et al. 
(2012)). Using this package in the case of the Poisson 
auto-regressive model, we obtain an ordinary maximum 
likelihood estimator, whereas in the case of the nega-
tive binomial auto-regressive model, we obtain a quasi-
maximum likelihood estimator. Then, for the PAR model, 
we calculate the maximum likelihood estimator param-
eters using the R package tscount, while for the NBAR 
model these maximum likelihood estimator parameters 
are calculated by direct constrained optimization of the 
log-likelihood function (the source codes are available 
on this github repository https://​github.​com/​LUGNI2/​
Count-​Times-​Series-​for-​COVID-​19). The constraints on 
the parameters are defined by equation (2), and the initial 
values are obtained by fitting a generalized linear model 
as in Fokianos and Tjøstheim (2011). It should be noted 
that the calculation of the models parameter estimators 
is based on the non-linear minimization with linear ine-
quality constraints using an adaptive barrier algorithm. 
For more details on this, see the R package constrOptim 
(https://​search.​r-​proje​ct.​org/​CRAN/​refma​ns/​alaba​ma/​html/​
const​rOptim.​nl.​html). Finally, note that the source code of 
the tscount package is available on the Comprehensive R 
Archive Network (CRAN) repository (https://​cran.r-​proje​
ct.​org/​packa​ge=​tscou​nt).

(8)�1(�) =

n∑
t=1

(yt log(�t) − �t − log(yt!)),

(9)
�2(�,�) =

n∑
t=1

(
yt log(�t) − (� + yt) log(� + �t)

+ � log(�) + log

(
Γ(� + yt)

yt!Γ(�)

))
,

https://github.com/LUGNI2/Count-Times-Series-for-COVID-19
https://github.com/LUGNI2/Count-Times-Series-for-COVID-19
https://search.r-project.org/CRAN/refmans/alabama/html/constrOptim.nl.html
https://search.r-project.org/CRAN/refmans/alabama/html/constrOptim.nl.html
https://cran.r-project.org/package=tscount
https://cran.r-project.org/package=tscount
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Model goodness of fit

Many tools to evaluate the goodness of fit developed for 
generalized linear models as well as for times series can be 
utilized to evaluate our proposed models’ fits and its predic-
tive performance. Some of them are recalled below (and for 
further details on this approach, see Liboschik et al. 2017).

Akaike Information Criterion
The Akaike Information Criterion (AIC) introduced in 

Akaike (1998) is defined as:

where �̂  is the maximized value of the log-likelihood func-
tion of the model and K is the number of model parameters. 
The idea is to select the model that have the lowest AIC.

Bayesian Information Criterion 
Formally, the Bayesian Information Criterion (BIC) is 

defined as:

where K represents the number parameters, n the sample 
size, and �̂  the maximized value of the log-likelihood func-
tion. The model with the lower BIC is preferred in a model 
selection procedure.

Residuals
Various types of residuals are defined in the literature, see 

for example (Hilbe 2011). Response residuals are given by:

while Pearson residuals are given by:

for t = 1,… , T , where 𝜆̂t denotes the fitted value of the 
conditional mean �t , and 𝜙̂ the estimate of the dispersion 
parameter �.

The empirical auto-correlation function (Liboschik et al. 
2017) of these residuals is used as a tool for detecting a 
potential serial dependence unexplained by the fitted model. 
Furthermore, a graph of squared residuals r2

t
 against the cor-

responding fitted values 𝜆̂t shows the relation between the 
conditional mean and the conditional variance. Indeed, if 
the Poisson assumption on the conditional distribution is 
appropriate, the points scatter around the identity function, 
while if the Negative binomial assumption is appropriate, 
the points scatter around a quadratic function (Ver Hoef and 
Boveng 2007).

Probability integral transform
Gneiting et al. (2007) proposed the probability integral 

transform (PIT) as a tool for assessing the probabilistic 

(10)AIC = 2K − 2�̂,

(11)BIC = 2K log(n) − 2�̂,

(12)rt = yt − 𝜆̂t,

(13)rP
t
=

(yt − 𝜆̂t)√
𝜆̂t + 𝜆̂2t ∕𝜙̂

,

calibration of the predictive distribution of a model. We 
will use a non-randomized version of the PIT for count data 
proposed by Czado et al. (2009). They show that if the pre-
dictive distribution is correct, the PIT will have a standard 
uniform distribution. According to Czado et al. (2009), the 
PIT is defined by:

where Pt(y) = ℙ(Yt ≤ y ∣ Ft−1) is the predictive distribution 
of the model. For the observed values yt, (t = 1,… , n) , they 
proposed to compare the mean PIT defined by:

to the cumulative distribution function of the standard uni-
form distribution, that is, the identity function. This compar-
ison is performed by plotting an histogram for the PIT which 
is interpreted as follows: a U-shape indicates underdisper-
sion of the predictive distribution, while an upside-down U 
shape points to overdispersion.

Marginal Calibration
The marginal calibration is the difference of the average 

predictive cumulative distribution function and the empirical 
cumulative distribution function of the observations:

Practically, we will plot the marginal calibration diagram for 
the data. The more equation (16) is close to zero, the more 
the predictions from the model are appropriate.

Practical Application

We applied the models presented in the previous sections 
and fit them to data on the number of new daily cases of 
individuals infected with of COVID-19 infection in Senegal 
and China.

Note that, for Senegal, we applied the models including 
covariates which satisfy

(14)Ft(u ∣ y) =

⎧
⎪⎪⎨⎪⎪⎩

0, u ≤ Pt(y − 1)

u−Pt(y−1)

Pt(y)−Pt(y−1)
, Pt(y − 1) ≤ u ≤ Pt(y),

1, u ≥ Pt(y).

(15)F̄(u) =
1

n

n∑
t=1

Ft(u ∣ yt), 0 ≤ u ≤ 1,

(16)
1

n

n∑
t=1

Pt(y) −
1

n

n∑
t=1

1(yt ≤ y), y ∈ ℝ.

(17)
log(�t) = �0 + �1 log(1 + yt−1) + �1 log(�t−1)

+ �1x1,t + �2x2,t + �3x3,t,
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where x1, x2 and x3 are the covariates defined in Sect. 2. In 
contrast, for China, we apply the models without covariates, 
satisfying

Results and discussion

The maximum likelihood estimates of the parameters, their 
standard errors and their p-values for statistical significance 
tests for the fitted models are provided in Tables 3, 4, 5, 6.

Tables  3 and 4 show that, for Senegal, both models 
include all covariates at 5% significance level except the 
daily imported COVID-19 cases from the NAR model. 
For China, we observe the presence of short-term depend-
ence and long-term trend. Indeed using the Chinese data, 
the estimated parameters of the auto-regressive coefficients 
( �1 and �1 ) for both models are all significant. For Senegal, 
we have the same conclusions excepted for the NAR model 
that does not include the parameter representing long-term 
dependence ( �1 ) as significant. Note that, for Senegal and 
for the NAR model, although all covariates are statistically 
significant, their influence on the daily new cases are very 
weak because their regression coefficients are very small. 
For example, according to the estimated value of �1 , if the 
expectation of new cases for yesterday, the number of con-
tact cases for today and the number of imported cases for 
today are all close to 0, 100 new cases observed yesterday 
and 1 community case observed today generate about 5 new 
expected cases today.

The numerical calculations are carried out using the 
open source software R ( R Development Core Team 2021). 
To investigate the models goodness of fit, we summarized 
the value of AIC, BIC and their Root Mean Square Error 
(RMSE) in Table 7. Note that with all considered criteria, 
the NAR model fits better the data than the PAR model for 
both countries. In Figs. 3, 4, 5, 6, 7, 8, 9, 10, we plot the 
marginal calibration and the PIT histogram of the models for 
both countries. Thus, for the data from both countries, the 
PIT histogram corresponding to the PAR model is approxi-
mately U-shaped, an indication that the PAR is not adequate 
to fit the data. As opposed to this, the PIT histogram cor-
responding to NAR model appears to approach better the 
standard uniform distribution for both countries. It follows 
that the NAR model is more satisfactory than the PAR model 
to fit the COVID-19 data in Senegal and China.

(18)log(�t) = �0 + �1 log(1 + yt−1) + �1 log(�t−1).
Table 3   PAR model estimates for Senegal

Parameter Estimate Std. Error p-Value

�
0

0.9664 0.0323 < 2 10
−16

�
1

0.5058 0.0116 < 2 10
−16

�
1

0.2710 0.0162 < 2 10
−16

�
1

0.0004 0.00002 < 2 10
−16

�
2

0.0218 0.0024 < 2 10
−16

�
3

0.0012 0.00003 < 2 10
−16

Table 4   NAR model estimates for Senegal

Parameter Estimate Std. Error p-Value

�
0

1.0342 0.1426 4.13 10
−13

�
1

0.7152 0.0470 < 2 10
−16

�
1

0.0050 0.0664 0.9400
�
1

0.0008 0.0002 0.0002
�
2

−0.0026 0.0093 0.7814
�
3

0.0035 0.0006 7.4 10
−10

� 4.7488 0.4091 < 2 10
−16

Table 5   PAR model estimates for China

Parameter Estimate Std. Error p-Value

�
0

0.1783 0.0055 < 2 10
−16

�
1

0.3978 0.0021 < 2 10
−16

�
1

0.5888 0.0021 < 2 10
−16

Table 6   NAR model estimates for China

Parameter Estimate Std. Error p-Value

�
0

0.15963 0.0421 0.0002
�
1

0.48811 0.0221 < 2 10
−16

�
1

0.49261 0.0232 < 2 10
−16

� 1.95641 0.1228 < 2 10
−16

Table 7   Goodness of fits Model AIC Senegal China

BIC RMSE AIC BIC RMSE

PAR 13523.11 13587.03 13.55788 85897.5 85929.8 25.4619
NAR 5499.788 5574.354 11.08462 5208.864 5251.96 20.3465



Modeling Earth Systems and Environment	

1 3

Finally, the predictions of the daily new cases using the 
models for both countries are plotted in Figs. 11 and 12. As 
excepted, the predictions given by the NAR model appear 
more accurate than those given by the PAR model.

For both countries, it appears that the predicted values and 
the real values of the daily reported cases are relatively closed, 
although the models slightly overestimate the number of new 
cases. A possible explanation of this fact is that there exists 
many factors that can influence the outbreak, such as the indi-
viduals behaviour, political decisions, among others that are 
not accounted for in the models. Therefore, the obtained results 
should be analyzed and interpreted with caution.

Conclusion

The COVID-19 pandemic has major socio-economic chal-
lenges globally. With multiple strains of the virus co-circu-
lating, mitigation strategies to curb the spreads of the various 
strains is a daunting task for health authorities.

Fig. 3   Marginal calibration for the models fitting data from Senegal

Fig. 4   Marginal calibration for the models fitting data from Senegal

Fig. 5   PIT for the PAR model fitting data from Senegal

Fig. 6   PIT for the NAR model fitting data from Senegal

Fig. 7   Marginal calibration for the models fitting data from China

Fig. 8   Marginal calibration for the models fitting data from China

Fig. 9   PIT for the PAR model fitting data from China

Fig. 10   PIT for the NAR model fitting data from China
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We fitted the daily reported new COVID-19 cases in 
China and Senegal using two types of count time series 
following generalized linear models with covariates in 
the case of Senegal: the negative binomial auto-regres-
sive model (NAR) and the Poisson auto-regressive model 
(PAR). Results obtained from our analysis reveal that the 
NAR model fits better the daily new COVID-19 cases than 
the PAR model for both countries. Furthermore, we find a 
short-term trend and a long-term trend for China, whereas 
for Senegal, only a short-term trend is founded. In conclu-
sion, the NAR model could be useful to health policy deci-
sion-makers in China and Senegal as the estimated values 
of the trend parameters can be monitored in any time period 
during the outbreak. They reveal the contagion dynamics in 
a country during a given period.

However, our proposed study has some limitations. For 
example, in the case of Senegal, one needs covariates that 
influence the number of daily new infections more than the 
covariates used herein to better understand the dynamics 
of the outbreak. Also, it could be interesting to incorporate 
significant covariates in the case of China, but as of the time 
of writing this paper, such data were not available to us. The 
models we investigated use a time series process that can-
not capture potentials seasonality on the data. Finally, the 
conditional distribution used does not capture the disease 
multiple waves.

This study, which is not exhaustive, could be extended 
in various ways, by considering a count time series with 
the conditional distribution following a univariate general-
ized Waring distribution to understand better the COVID-19 
dynamics, and to capture the disease multiple waves, or by 
accounting for the virus incubation period in the models. 
One could also use a more general time series such as Auto-
Regressive Integrated Moving Average (ARIMA). Another 
direction that extends this study is to use more general time 
series such as Auto-Regressive Integrated Moving Average 
(ARIMA) in the models.
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