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Directed cell movement is instrumental for organismal devel-
opment, immune responses, and the progression of diseases, 
such as cancer (Gardel et al., 2010). To achieve directed move-
ment, an individual cell must establish front-to-back polarity, 
where there is coordinated protrusion of its front and retraction 
of its back (Fig. 1 A; Vicente-Manzanares et al., 2007). How 
polymerizing actin filaments drive protrusion of the front is un-
derstood in exquisite detail (Pollard and Borisy, 2003; Pollard, 
2007). The mechanisms defining how actin filament contraction 
defines the back of the cell (Yam et al., 2007) have been more 
difficult to elucidate. Contraction of actin filaments in crawl-
ing cells is driven by nonmuscle myosin II (NMII; Vicente-
Manzanares et al., 2009). NMII has three isoforms, NMII-A, 
NMII-B, and NMII-C, all of which can bind and contract actin 
filaments to generate force. Importantly, NMII-A and NMII-
B have different cellular localizations, which could drive their 
functions (Kolega, 1998; Vicente-Manzanares et al., 2007). 
NMII-A localizes primarily to the front, protrusive edge and 
is required for adhesion maturation. In contrast, NMII-B local-
izes behind NMII-A, primarily to large and stable actin stress 
fibers in the middle and back of the cell (Kolega, 1998; Vicente- 
Manzanares et al., 2007). NMII-B is required for front-to-back 
polarity, as cells lacking NMII-B lose large stress fibers and fail 
to define their rear (Vicente-Manzanares et al., 2007). The major 
question of what drives the polarized localization of NMII-B is 
unknown. In this issue, Juanes-Garcia et al. report that a short 
serine-rich motif in NMII-B is responsible for both its localiza-
tion and the establishment of front-to-back cellular polarity.

Though NMII-A and NMII-B are genetically and struc-
turally very similar, Juanes-Garcia et al. (2015) identified a 
serine-rich sequence (SFSSSRS) in the C terminus of NMII-B  
(Fig. 1 B). The authors effectively used cells depleted of NMII-B 
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(Vicente-Manzanares et al., 2007) to test the role of this serine 
motif in front-to-back polarity. Although expression of wild-
type NMII-B rescued front-to-back polarity, expressing NMII-B 
lacking the serine motif did not. Interestingly, simply inserting 
the serine-rich motif from NMII-B into NMII-A (NMII-A5S) 
conferred the ability to rescue front-to-back polarity. In ad-
dition, NMII-A5S did not localize to the front of the cell or 
play a role in adhesion maturation like wild-type NMII-A.  
Mass spectrometry analysis revealed three of the residues in the 
serine motif of NMII-B were phosphorylated in cells, and one 
of these, serine 1935, was found to be crucial for the wild-type 
kinetics and localization of NMII-B. A phosphomimetic point 
mutation, S1935D, failed to rescue front-to-back polarity in 
NMII-B–depleted cells. In contrast, expression of the nonphos-
phorylatable mutant, S1935A, localized normally to large actin 
stress fibers and did rescue front-to-back polarity.

To provide further evidence that serine 1935 is a regu-
latory element of front-to-back polarity, Juanes-Garcia et al. 
(2015) investigated the role of PKC, which acts upstream of 
NMII in cell polarization (Gomes et al., 2005; Even-Faitelson 
and Ravid, 2006), in NMII-B–generated stable actin bundles. 
Cells expressing constitutively active PKC produced isotro-
pic protrusions at the perimeter of the cell, while also failing 
to produce large, stable NMII-B decorated actin bundles. This 
isotropic protrusive phenotype was blocked when nonphos-
phorylatable NMII-B S1935A was expressed in cells but not 
with wild type or S1935D. Thus, PKC was implicated as the 
likely upstream regulator of NMII-B activity, which negatively 
regulates stable actin stress fiber formation by phosphorylat-
ing NMII-B at serine 1935. Taken together, the data presented 
strongly suggest that a small regulatory motif on NMII-B con-
trols cellular front-to-back polarity in migrating cells.

The findings presented in this issue by Juanes-Garcia  
et al. (2015) shine a bright spotlight on a family of motors that 
has already taken “center stage” in cellular research (Vicente-
Manzanares et al., 2009). Some exciting new questions as to 
how NMII-B functions in the establishment of asymmetric cel-
lular shape and function can now be addressed, including but 
clearly not limited to: How does the unique enzymatic activity 
of NMII-B’s motor domain synergize with the serine motif to  
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drive front-to-back polarity (Billington et al., 2013)? What are 
the structural and dynamic implications for homo- and/or hetero-
NMII filament formation (Ricketson et al., 2010; Beach et al., 
2014; Shutova et al., 2014)? Does the NMII-B serine motif play a 
role in the establishment of more complex 3D cellular shapes? Is 
the serine motif required for directional cell migration through 
physiological environments?
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Figure 1. Nonmuscle myosins in cell migra-
tion. (A) Schematic showing a top view of a 
crawling cell. The front of the cell is protruding 
(top arrow), and the back of the cell is retract-
ing (bottom arrow). The protrusion of the edge 
is driven by polymerization of actin filament 
networks in the lamellipodium (gray hash 
marks). NMII-containing stress fibers (SF, dark 
blue lines) are assembled behind the lamelli-
podium. SFs are connected to focal adhesions 
(gray ovals) either directly or indirectly through 
non-NMII–containing actin bundles (Dorsal 
SF, light blue lines; Naumanen et al., 2008). 
Moving away from the cell’s front, there is a 
decreasing and increasing gradient of NMII-A  
(red wedge) and NMII-B (green wedge), re-
spectively (Kolega, 1998). (B) Schematic of 
NMII-A and NMII-B isoforms. A single NMII 
molecule is a hexamer of two heavy chains 
(i.e., NMII-A, NMII-B, or NMIIC), two regula-
tory light chains, and two essential light chains (Vicente-Manzanares et al., 2009). The overall structure of NMII-A and NMII-B molecules is similar, with 
two motor domains, a coiled-coil rod domain, and a short nonhelical tail domain. The serine-rich motif is unique to NMII-B, and the role for this motif in SF 
contraction and the ability of the cell to apply forces to its environment are yet to be determined.
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