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Primulina and two novel strategies for
development of high polymorphic loci for
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studies
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Abstract

Background: Primulina Hance is an emerging model for studying evolutionary divergence, adaptation and speciation of
the karst flora. However, phylogenetic relationships within the genus have not been resolved due to low variation detected
in the cpDNA regions. Chloroplast genomes can provide important information for phylogenetic and population genetic
studies. Recent advances in next-generation sequencing (NGS) techniques greatly facilitate sequencing whole chloroplast
genomes for multiple individuals. Consequently, novel strategies for development of highly polymorphic loci for population
genetic and phylogenetic studies based on NGS data are needed.

Methods: For development of high polymorphic loci for population genetic and phylogenetic studies, two novel
strategies are proposed here. The first protocol develops lineage-specific highly variable markers from the true high
variation regions (Con_Seas) across whole cp genomes, instead of traditional noncoding regions. The pipeline has been
integrated into a single perl script, and named "Con_Sea_Identification_and_PIC_Calculation". The second method
assembles chloroplast fragments (poTs) and sub-super-marker (CpContigs) through our "SACRing" pipeline. This approach
can fundamentally alter the strategies used in phylogenetic and population genetic studies based on cp markers,
facilitating a transition from traditional Sanger sequencing to RAD-Seq. Both of these scripts are available at https://github.
com/scbgfengchao/.

Results: Three complete Primulina chloroplast genomes were assembled from genome survey data, and then two novel
strategies were developed to yield highly polymorphic markers. For experimental evaluation of the first protocol, a set of
Primulina species were used for PCR amplification. The results showed that these newly developed markers are more
variable than traditional ones, and seem to be a better choice for phylogenetic and population studies in Primulina. The
second method was also successfully applied in population genetic studies of 21 individuals from three natural populations
of Primulina.

Conclusions: These two novel strategies may provide a pathway for similar research in other non-model species. The
newly developed high polymorphic loci in this study will promote further the phylogenetic and population genetic studies
in Primulina and other genera of the family Gesneriaceae.
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Background
Chloroplast sequences are important molecular tools for
studies of plant phylogeny, phylogeography and popula-
tion genetics [1–4]. Traditionally, selected cpDNA re-
gions have been chosen for analysis, mostly based on
their conservation and efficacy in related taxa. By com-
paring chloroplast genomes of 13 angiosperm lineages,
Shaw et al., [5, 6] identified a set of 34 non-coding re-
gions that ranked highest in their potentially informative
characters (PIC), an index which is counted by the sum
of nucleotide substitutions, indel and inversions between
each of two ingroup species and between an ingroup
species and an outgroup species. This set of most vari-
able non-coding regions is consequently widely used in
plant evolutionary biology and systematics studies. How-
ever, recent comparative plastid genomic studies reveal
considerable variation and surprisingly little (c. 12–25%)
overlap in the most variable non-coding regions among
different lineages [3, 7–10]. Furthermore, around one
third of universal barcoding primers were unlikely to work
across all the angiosperms [11]. These findings imply that
lineage-specific screening is needed for the identification
of the most highly variable markers in different clades.
On the other hand, recent advances in next-generation

sequencing (NGS) techniques greatly facilitate the sequen-
cing of whole cp genomes for multiple individuals at rela-
tively low cost [12–14]. However, molecular phylogenetic
studies of whole chloroplast genome sequences are yet
not practical for large clades with hundreds of species,
due in part to insufficient capacity to assemble and
analyze such large amounts of NGS data. Although sev-
eral technical innovations have been proposed for
cpDNA assembly based on NGS data [15–17], novel
strategies aimed at more time-saving, labor-saving and
cost-saving are desirable. Paired-end RAD-Seq (restric-
tion-site associated DNA sequencing) [18] could prove
to be an efficient tools for obtaining large numbers of
partial chloroplast genomes. Owing to the partial cpDNA
sequences that RAD-Seq may provide, it can facilitate
chloroplast-based phylogenetic reconstruction with high
resolution [19–21]. However, to date, methods specific for
chloroplast sub-assembly from paired-end RAD-Seq have
not been developed.
Primulina Hance is a large genus of the Old World Ges-

neriaceae with c. 170 species that are widely distributed
throughout the limestone karst regions of southern China
and Southeast Asia, one of the world’s biodiversity hotspots
[22]. This genus is uniquely suited for studying evolutionary
divergence, adaptation and speciation of the karst flora, due
to its high species richness and endemism and high degree
of habitat specialization [23, 24]. To date, the nuclear ribo-
somal internal transcribed spacer (ITS) and the plastid
non-coding regions trnL-trnF, rpl32-trnL and atpB-rpl32
have been used to reconstruct the relationships of

Primulina [25–27]. These studies provide a phylogenetic
framework for the genus. Kang et al., [27] sampled 104
taxa to reconstruct the largest phylogeny of Primulina so
far, in which four major clades were resolved. However,
phylogenetic relationships among many taxa have not
been resolved due to low variation in these cpDNA re-
gions. Recently, genomic resources have been developed
for several species by using RNA-Seq [23]. Besides the
nuclear genome, the complete chloroplast genome of
Primulina can provide important insights into phylogen-
etic relationship and evolutionary history of this genus.
Here we present three complete chloroplast genomes of

Primulina, and two novel strategies to develop highly
polymorphic cp markers. The first strategy develops cp
primers from all the highly variable regions (called Con_-
Seas) across whole cp genome, instead of just traditional
noncoding regions. The pipeline has been integrated into
a single perl script, and named “Con_Sea_Identificatio-
n_and_PIC_Calculation”. The second strategy uses RAD-
Seq to directly assemble cp fragments (poTs) and sub-
super-marker (CpContigs). This second approach
represents a fundamental shift away from cp-primer
based Sanger sequencing because it creates a re-
duced cp genome, which could be used for popula-
tion genetic analysis as well as phylogenetics. The
core pipeline, SACRing, was written in bash, com-
bining several popular software tools and our in-
house perl scripts. Both of these scripts are available
at https://github.com/scbgfengchao/, and will be con-
tinual improved and updated. Here the performance of
these methods was evaluated in an experimental dataset.

Methods
Plant material and DNA extraction
Three individuals each from P. linearifolia (population
code, GXNN01), P. huaijiensis (GDHJ02), P. eburnea
(WHY01) were used for genome survey sequencing and
completed chloroplast genome assembly. Forty-nine in-
dividuals from 44 Primulina species (Additional file 1:
Table S1) were used to evaluate polymorphism of cp
markers developed in this study. In addition, restriction-
site associated DNA sequences (RAD-Seq) of 21 individ-
uals from three natural populations, seven each from P.
eburnea (CZYX01), P. yongxingensis (CZYX02) and P.
juliae (CZYX03), were used for partial cp genome as-
sembly. All leaf samples were frozen in liquid nitrogen
and stored at −80 °C. Total DNA was extracted from the
leaves using a modified CTAB method [28] and treated
with RNase (TransGen, China).

Library construction, Illumina sequencing and quality
control
For genome survey sequencing, DNA from 3 samples
(GXNN01, WHY01 and GDHJ02) was broken into the
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short fragments with the length of 180 bp, 230 bp and
230 bp, respectively, using focused-ultrasonicators (Covaris,
USA). Two libraries were built for each sample, and further
sequenced by paired-end sequencing technology of Illumina
HiSeq 2000™. For RAD-Seq of the three populations, DNA
was first treated with restriction enzyme EcoR I (Takara,
China), and then several standard steps were performed,
from the addition of sequencing adapters, interruption of
enzyme digestion products, to break into smaller ran-
dom pieces, and repairing the end based on existing
protocols [18]. Finally, fragments with lengths ranging
from 200 to 800 bp were separated on an agarose gel and
selected for PCR amplification as sequencing templates.
These libraries were sequenced by PE 100 model on Illu-
mina HiSeq 2000™. The programs of library construction
and Illumina sequencing was performed by staff of Novo-
gene Bioinformatics Institute (Beijing, China).
The raw reads were first filtered by removing the

adapter sequences and low quality sequences using
Software FASTX_Toolkit (http://hannonlab.cshl.edu/
fastx_toolkit/index.html) and our in-house perl scripts.
Only the reads with a Q20 percentage (i.e., the percentage
of sequences with sequencing error rate lower than 1%)
over 90% and N percentage (i.e., the percentage of nucleo-
tides in read which could not be sequenced) less than 5%,
were marked as clean data and used for further analysis.
The sub-routine above was integrate into the pipeline, and
named QC_pe (Additional file 2: File S1), which is avail-
able at https://github.com/scbgfengchao/.

Complete chloroplast assembly from genome survey data
P. linearifolia was used for the first pass of genome sur-
vey sequencing and complete chloroplast genome as-
sembly. Briefly, we used the software of Bowtie2 (version
2.2.5) [29] with the parameter "-I 150 -X 1000 –no-
mixed –no-discordant". The cp data of P. linearifolia
was isolated by mapping it to the cp genome of Boea
hygrometrica (GenBank accession id: NC_016468), a
closely related species belonging to the Gesneriaceae
family with a publically available cp genome sequences
[30]. Furthermore, the cp genome of P. linearifolia was
sub-assembled using the Velvet software (version 1.2.10)
[31], with parameter hash_length (kmer_length) setting
from 29 to 99. The sub-assembly with longest contig
N50 was selected and further scaffolding based on the
original cp data, using SSPACE software (version 3.0)
[32] with default parameter (−m 32 -o 20 -r 0.9). After
that, each scaffold was located against the cp genome of
Boea hygrometrica using blat software [33]. The gaps be-
tween scaffolds were closed by PCR amplifications and
Sanger sequencing. Meanwhile, Sanger sequences were
used for nucleotide confirmation, especially at LSC/IR/
SSC boundaries.

The complete cp genomes of P. eburnea and P. huai-
jiensis were obtained as described above in turn. The
difference is that the cp genome of P. linearifolia, in-
stead of B. hygrometrica, was used as reference genome
to isolate the cp data, and the upper limit of hash_-
length was set as 125 in Velvet software. Finally, in
order to verify the accuracy of the assembled cp ge-
nomes, the cp data of the three Primulina species was
mapped back to their respective cp genome by using
the program SAMtools (version 0.1.19) [34]. The map-
ping results were displayed with IGV software (version
2.3.57) [35].

Genome annotation and sequence alignment
The cp genomes of B. hygrometrica and the three Primu-
lina species were annotated using the online program
DOGMA (http://dogma.ccbb.utexas.edu/) [36], and modi-
fied by detailed manual corrections. The tRNA boundaries
and splice sites were modified by using tRNAscan-SE soft-
ware (version 1.3.1) [37]. The annotated cp genome maps
were drawn by using the online OrganellarGenome-
DRAW tool (OGDRAW) [38] and local software Circos
(version 0.67) [39].
A consensus sequence was obtained by clustalW align-

ment of the 4 cp genomes (B. hygrometrica and three
Primulina species) with manual corrections, especially
in the area of exon boundaries. Meanwhile, the correspond-
ence between each cp genome and consensus sequence
was built using our in-house perl script (Additional file 3:
File S2; also available at https://github.com/scbgfengchao/).
Furthermore, the orthologous coding exons (defined as syn-
tenic coding loci) and orthologous noncoding intergenic re-
gions/introns (defined as syntenic noncoding loci) among 4
cp genomes were classified and identified.

Determination of Con_Sea regions and calculation of
polymorphic index
Based on the alignment results, conserved sites among
the 4 cp genomes were labeled. “Con_Islands” (defined
as regions containing over 50 continuous conserved sites
in the cross-genus consensus genome sequences) were
first identified, while the regions between two adjacent
Con_Islands were named “Con_Seas”.
The potentially informative characters (PICs), an index

counted by the sum of SNP and Indel between two
chloroplast genomes, was used to evaluate the polymorph-
ism in each Con_Sea region. The pipeline above has
been integrated into a single perl script, and named
“Con_Sea_Identification_and_PIC_Calculation” (https://
github.com/scbgfengchao/, Additional file 4: File S3). The
parameter “minimum length of Con_Island” (50 in this
study) can be varied. There is no other software depend-
ency for this script, so it targeted toward researchers with-
out bioinformatics background. PIC at each Con_Sea was
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divided into intrageneric and intergeneric levels. Intra-
generic PIC was calculated from the average PIC values of
pairwise of 3 Primulina species, while intergeneric PIC
were equal to the mean of PIC value of 3 groups between
each Primulina species and B. hygrometrica.
In addition, the intra-population (CZYX01, CZYX02 and

CZYX03) PIC values were calculated based on the average
PIC of 21 pairs from 7 individuals of respective populations,
respectively, while the PIC information for the inter-
population pairs were counted by the mean of 49 pairs.
These calculations were performed with our in-house perl
script “PIC_calculation” (Additional file 5: File S4), and it’s
also available at https://github.com/scbgfengchao/.

Determination of high variation regions and development
of chloroplast markers
The intrageneric and intergeneric polymorphisms (PICs)
were analyzed using three different methods of dividing
genomic regions. The first method is a sliding window
analysis along the consensus sequence, setting the window
and step sizes as 100 and 25 bp, respectively, then PIC
in each window was plotted with the software Circos
(version 0.67) [39]. The second and third method is
based on gene regions (syntenic coding regions and syn-
tenic noncoding regions) and variable regions (Con_Seas),
respectively. The method based on noncoding regions is a
traditional strategy to choose highly polymorphic regions,
while the third one is a novel strategy first proposed here,
and it is a more effective and directed method to screen
lineage-specific high variation regions. The PIC in each re-
gion, including syntenic noncoding regions and Con_Seas,
was displayed with OriginLab Origin (version 8.0) (Micro-
cal Software INc., Northampton, MA, USA). It was worth
noting that the length of these regions varies greatly. In
general, Sanger sequencing has been widely used to obtain
more sequence data from more species or individuals
based on polymorphism chloroplast primers, which were
developed from high variation regions. Reserving around
100 bp for primer designing, 700 and 1500 bp are effective
lengths of single and two-directional Sanger sequencing
reactions, respectively. So in this study, these two lengths
are considered as key bounds to evaluate fairly the poly-
morphic degree of regions with different length.
In order to evaluate the efficiency of the identified

high polymorphism regions, eight new genus-specific cp
markers, developed from high variation regions based on
the Con_Seas method, were tested in the 49 individuals
from 44 Primulina species. For comparison, these individ-
uals were also amplified with four traditional cp markers
(atpB-rbcL, rpl32-trnL, trnL-trnF and trnS-trnG), which
were selected from 19 traditional universal cp primers that
have been used in our previous phylogenetic work [27]. It
is worth noting that some new cp primers were designed

from slighter lower variation regions, in order to provide a
more comprehensive comparison among markers.

Sub-assembly of chloroplast from PE RAD-Seq (SACRing)
A novel pipeline, SACRing, was performed for sub-
assembly of chloroplast sequences from PE RAD-Seq.
This pipeline (Additional file 6: File S5) was written in
Bash, combing several in-house perl scripts with main-
stream software, such as Bowtie (version 1.1.2) [40], Bow-
tie2 (version 2.2.5) [29], Stacks (version 1.40) [41], CAP3
[42] and blat [33]. The pipeline is publically available at
https://github.com/scbgfengchao/, together with the usage,
examples, notes and description of output files, with the
schematic shown in Fig. 1. In this study, for evaluating this
pipeline, RAD-Seq data of 21 individuals from three Pri-
mulina populations were used for sub-assembly of cp gen-
ome, and the cp genome of P. eburnea was set as the
reference.
First, paired-end RAD-Seq data was separated in dif-

ferent samples according to adapters (Fig. 1a). Following
quality control (Additional file 7: Table S5, https://
github.com/scbgfengchao/) and previous analysis (Step 1
in SACRing), the cp-related data was extracted from PE
RAD-Seq based on mapping results (Step 2 in SACRing).
And then, Step 3, the core step, was used for basic clus-
tering and assembly. Hundreds of thousands of Read1
were mapped back to the specific regions of Ref and
clustered into several Tag1s. While hundreds or thou-
sands of Read2, which belonged to the same Tag1, were
further assembled into a longer Tag2. This step is the
most rate-limiting one, so multi-core CPU scripts were
designed to linearly shorten the run time. Step 4 was
used to constantly and continually assemble for a better
result. Tag1s at the same position were mixed into one
sequence with the name of paired tags (pTs). Meanwhile,
Tag1 and its paired Tag2 were assembled in a contig,
and named overlap tags (oTs). If both Tag1s of pT has
an overlap with their paired Tag2s, a longer contig was
generated, and defined as poTs, i.e., short for paired &
overlap tags. In addition, several longer contigs (defined
as CpContigs) were assembled according to overlap in-
formation. And a scaffold (sub-super-marker) was fur-
ther generated according to the position information,
replacing the unknown bases with ‘-’ (Fig. 1b).

Population genetic analysis of chloroplast fragments
Based on the SACRing pipeline, poTs and CpContigs
were obtained independently from RAD-Seq data from
21 individuals. For poTs, the most conserved ones,
appearing in all the individuals, were selected, and further
used for isolation of consistent sequences. Moreover,
using CAP3 [42], these sequences were assembled into cp
fragments (Fig. 1c) and shown with Circos (version 0.67)
[39]. These cp fragments were then concatenated for
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population genetic analysis. The best substitution model
was determined using software jModelTest (version 2.1.7)
[43], and then the Bayesian phylogenetic tree was gener-
ated with MrBayes (version 3.2.6) [44] under the model of
“GTR + I”, while Maximum Likelihood phylogenetic tree
was performed using RAxML (version 8.2.9) [45] with
1000 replicates under the model of “GTR + I + G”, for
model “GTR + I + G” is the second best model for cp frag-
ments (poTs), and model “GTR + I” is not supported in
RAxML software. The basic indexes of population genet-
ics, such as nucleotide diversity (π), theta (θ) and the aver-
age nucleotide diversity between populations (FST), were
calculated by DnaSP (version 5.10.1) [46].

Meanwhile, conserved CpContigs of these individuals
were also obtained and analyzed as a poTs dataset. In
this dataset, “GTR + I + G” was the best substitution
model for the construction of a Bayesian phylogenetic
tree and a Maximum Likelihood phylogenetic tree.

Results
Complete chloroplast genome assembly and genomic
organization
Using high-throughput genome survey sequencing, we
obtained very deep sequence coverage for P. eburnea
(population code, WHY01), P. huaijiensis (GDHJ02)
and P. linearifolia (GXNN01), ranging from 3.1 to

a

b

c

Fig. 1 Schematic of sub-assembly of chloroplast genome from PE RAD-seq. a Illustration of RAD-seq method. b Pipeline for sub-assembly of cpDNA from
PE RAD-seq. This pipeline, SACRing, was divided into 4 steps, and step 3 and 4 were highlighted in top and bottom boxes with a purple dashed line,
respectively. The detail of assembly was enlarged with the boxes with a grey dashed line. c Illustration of cluster analysis based on the result of SACRing
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4.6 G, with Q30 over 95% in all three species (Table 1).
Then, three complete Primulina cp genomes were as-
sembled, with the average coverage between 20,000 and
30,000 x, and the minimum of 2000 x (Table 1 and
Additional file 8: Fig. S1). No SNPs or Indels were iden-
tified when mapping the sequencing data back to their
respective cp genomes, respectively, indicating that the
assembled cp genomes are accurate and high-quality.
The full length cp genome of P. huaijiensis (153,401 bp) is
longest and has the longest SC regions (but shortest IR

regions), followed with P. linearifolia (153,244 bp) and
P. eburnea (152,373 bp, as well as shortest SC regions,
but longest IR regions) (Fig. 2).
The number and order of predicted functional genes

are perfectly consistent among cp genomes of Boea
hygrometrica and the three Primulina species (Fig. 2;
Additional file 9: File S7 and Additional file 10: Table S2).
The cp genome encodes 132 functional genes, with 18
duplicated in the IR regions. Meanwhile, 88 protein
coding, 36 tRNA and 8 rRNA genes were identified.

Table 1 The basic information of genome survey data of the three Primulina species related to chloroplast genomes

Species Population code Reads No. (M)a Throughput(G)b Quality Q30c Cp Size (bp) Coverage

P. eburnea WHY01 12.5 3.14 97.2; 96.9 152,373 20,585

P. huaijiensis GDHJ02 18.5 4.63 97.8; 97.5 153,401 30,191

P. linearifolia GXNN01 21.1 4.22 95.4; 95.4 153,493 27,517
aReads No. was counted based on the Reads which was used in assembly of cp genomes, instead of whole genome survey sequencing data
bThroughput = Read No. x read length
cQuality Q30 was counted by Read1 and Read2 respectively

a b

c d

Fig. 2 Circular map of chloroplast genomes of three Primulina species and Boea hygrometrica. Genes shown inside and outside of the outer circle
are transcribed clockwise and counterclockwise, respectively. Genes belonging to different groups are marked with different color. The distribution of
GC content was shown in the inner circle. Circular map of cp genomes of P. eburnea (a), P. huaijiensis (b), P. linearifolia (c) and Boea hygrometrica (d)
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Nearly 12.9% of function genes are intron-containing
ones, including 10 protein coding genes and 7 tRNA
ones, while clpP and ycf3 genes contain two introns
(Additional file 10: Table S2). Furthermore, 253 syntenic
loci were identified, including 129 syntenic coding loci
and 124 syntenic noncoding loci (Additional file 10:
Table S2 and Additional file 11: Table S3).

Sequence divergence and consistency analysis
After alignment and manual correction of the four cp
genomes, a cross-genus consensus cp genome sequence
with a length of 155,906 bp was obtained, containing a
LSC of 86,371 bp, a SSC of 18,455 bp and two IR copies
of 25,540 bp (Fig. 3a). Among 155,906 nucleotides, 144,202

(92.5%) are conserved among the four cp genomes, while
151,691 nucleotide (97.3%) are conserved among the three
Primulina cp genomes (Additional file 12: File S8). The
percentage of conserved sites is significantly higher in
IR regions (98.5% and 99.4% in the four cp genomes
and the three Primulina ones, respectively) than SC re-
gions (89.5% and 96.3%), which indicates that intergen-
eric variation between Primulina and Boea is mainly
ascribed to SC regions.
Furthermore, a total of 622 Con_Islands (the regions

containing over 50 continuous conserved sites in a cross-
genus consensus cp genome sequence) were identified.
The longest one is encoding for partial rrn23 gene in IR
regions, with the length of 1145 bp (Fig. 3b). Meanwhile,

Fig. 3 Circular map of cross-genus consensus chloroplast genome sequences of three Primulina species and Boea hygrometrica. The outermost
circle is positions (in Kb) of consensus cp genome sequences. a Annotation of consensus cp genome sequences. Genes shown inside and outside
of the circle are transcribed clockwise and counterclockwise, respectively, and their gene names are marked as black and red, respectively. Genes
belonging to different groups are marked with different color, with the bar shown in the center. b Distribution of conserved regions of the four
cp genomes. The grey columns represent the Con_Islands, which were defined as the regions containing over 50 continuous conserved sites in
cross-genus consensus cp genome sequences. c Distribution of intrageneric and intergeneric polymorphism. The red and blue lines represent
average intrageneric and intergeneric PICs in a 100 bp windows with a step of 25 bp, respectively. The PICs were counted by the sum of SNP
and Indel between two cp genomes. d Distribution of restriction enzyme site of EcoRI. The outer to inner circles represent the distribution of EcoR
I in P. eburnea, P. huaijiensis, P. linearifolia and B. hygrometrica in turns

Feng et al. BMC Evolutionary Biology  (2017) 17:224 Page 7 of 16



622 Con_Seas (the regions between two adjacent Con_
Islands) were generated, with the longest one of
1409 bp, located at LSC: 62,228–63,636 bp. 181 Con_
Seas have a length of just 1 bp (Fig. 3b and Additional file 13:
Table S4). In general, coding regions tend to have longer
Con_Islands. Nevertheless, several large Con_Islands were
detected in intergenic regions/introns, and partial exons
were variant (Fig. 3b).

Determination of high variation regions
The sliding window analysis revealed that the average
intrageneric and intergeneric PICs of all the 6234 win-
dows is 0.82 and 3.51 per 100 bp, respectively. The
intrageneric and intergeneric PICs of all the windows
have a weak positive correlation (r = 0.58; p < 0.0001;
Additional file 14: Table S5). A total of 18 sliding win-
dows from five regions have intrageneric PIC higher
than 9. All of these five regions are located in LSC re-
gions, and the windows with highest PIC (PIC = 19) is
around 29 kb in LSC (Fig. 3c and Additional file 14:
Table S5). For intergeneric polymorphism, 24 sliding
windows from 8 regions have a PIC over 24, with the
top PIC of 34.33, located at the position of 15 kb of
LSC. Three high intergeneric regions overlap with high
intrageneric regions, appearing at the regions near 0, 9 and
44 kb of LSC, respectively (Fig. 3c and Additional file 14:
Table S5).
The PICs of 129 syntenic coding loci were summarized

in Additional file 11: Table S3. Almost all the genes have
relatively low intrageneric and intergeneric PIC, with
average value of 0.46 and 2.11 per 100 bp, respectively,
therefore they are significantly and strongly correlated
(r = 0.99, p < 0.0001). Nevertheless, an exception was
discovered in the longest ycf1 gene (5.5 kb), which has
an intrageneric and intrageneric PIC value of 76.33 and
402.67, respectively. This region has the highest poly-
morphism per 100 bp. While for the 124 syntenic non-
coding loci, the average intrageneric and intergeneric
polymorphism are 1.30 and 5.52 per 100 bp, respectively,
and they are also highly correlated (r = 0.88, p < 0.0001)
(Additional file 11: Table S3). In detail, trnS-trnR has
both the highest intrageneric and intergeneric PICs,
however, its length is much longer than two-directional
Sanger sequencing. TrnH-psbA has the second highest
intrageneric PIC, but relative lower intergeneric PIC. An-
other seven regions (trnT-trnL, trnF-ndhJ, trnT-psbD, trnC-
petN, ndhF-rpl32, psaA-ycf3 and rpl32-trnL) also have rela-
tive high intrageneric PICs (Fig. 4a and Additional file 11:
Table S3). For intergeneric PICs, rps16-trnQ, atpH-atpI and
rpoB-trnC are listed as the top 2–4 highest; however, their
intrageneric ones are relative lower. Similar loci were widely
observed, such as trnK-rps16, petA-psbJ, rps15-ycf1 and
ccsA-ndhD (Fig. 4b and Additional file 11: Table S3).

The high variation regions identified based on continu-
ous conserved sites (the third region division method)
were summarized in Additional file 13: Table S4. The
average intrageneric and intergeneric PICs of 622 Con_
Seas are 1.75 and 7.51 per 100 bp, which are significantly
higher than the polymorphism of noncoding regions (1.30
and 5.52), respectively. And the correlation coefficient
(r = 0.90, p < 0.0001) is also slightly higher than that of
noncoding regions (r = 0.88) (Additional file 13: Table S4).
The highest intrageneric polymorphism region is
Con_Sea_1, overlapping with trnH-psbA. It is a slightly
higher PIC (30) than trnH-psbA (28.67), because par-
tial psbA mutational sites was added into Con_Sea_1.
Among the 601 Con_Seas with length less than 700 bp,
Con_Sea_192, overlapping with psaA-ycf3, is the second
highest intrageneric polymorphism region (PIC = 21.33).
This region excludes the front section of psaA-ycf3 (about
230 bp), which has low variation (PIC = 0.67), making it
possible to be sequenced in a single Sanger reaction. In
addition, trnS-trnR was divided into Con_Sea_26 and
Con_Sea_27, both of which have relatively high intragene-
ric polymorphism, with PIC over 20 (Fig. 4c and Add-
itional file 13: Table S4). In addition, several partial ycf1
were identified as high intergeneric polymorphism regions
(Fig. 4d and Additional file 13: Table S4).

Evaluation of high variation regions
The PCR results showed that all the eight newly devel-
oped cp primers (Fig. 4c and d) were perfectly amplified
in all 49 samples from 44 Primulina species. The levels
of polymorphism of the eight markers developed from
Con_Seas, compared with the four traditional loci devel-
oped from noncoding regions, were summarized in
Additional file 15: Table S6. The regions amplified from
cp primers of Con_Sea_1 (overlapping with trnH-psbA)
had the highest PIC, which is consistent with the pre-
diction by bioinformatics. The PIC ranking of 8 newly
developed markers calculated by experimental evaluation
are almost the same as that obtained from bioinformatic
analysis, with the only difference in the exchange of the
ranking of rpoB-trnC (listed as 3rd and 4th based on ex-
periment and bioinformatic methods, respectively) and
rpl21-trnL (listed as 4th and 3rd, respectively). Further-
more, the PIC values of 8 novel markers calculated by
these two methods are highly correlated (r = 0.85,
p = 0.0075) (Additional file 16: Fig. S2). In addition, con-
sistent with our expectation, all the new markers were ob-
served to have higher polymorphism than traditional ones
with the exception for rpl32-trnL, which ranked in the 7th
among the 12 loci tested. Interestingly, we found that the
rpl32-trnL developed from Con_Seas method ranked
higher in polymorphism than the locus developed
from traditional noncoding regions (Additional file 15:
Table S6). This result indicated that the new primer
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pairs seem to be a better choice for phylogenetic and
population studies in Primulina.

Sub-assembly of chloroplast genome from PE RAD-Seq
(SACRing)
Compared to several popular restriction enzyme sites
(REs), EcoR I was considered to be suitable for Primu-
lina cp assembly from PE RAD-Seq, for its relative uni-
form distribution and modest number, which is between
107 and 117 in the 4 complete cp genomes obtained in
this study (Fig. 3d). Therefore EcoR I was used in the li-
brary construction of 21 individuals, with the number of
reads ranging from 145,876 and 797,450. These reads
were isolated and used for further sub-assembly.
The average number of RAD tags in CZYX01 (P.

eburnea) is 154, slightly higher than that in CZYX02 (P.
yongxingensis) (142) and CZYX03 (P. juliae) (144)
(Table 2). The percentage of pTs (paired tags, mixtures

of two Tag1s at forward and reverse directions of the
same restriction enzyme site), oTs (overlap tags, mixtures
of Tag1 and its paired Tag2, which was sub-assembled
from read2, according to the overlap) and poTs (paired &
overlap tags, mixtures of two paired RAD Tag1s and both
of their paired Tag2s) among the three populations is 80–
84%, 80–81%, and 59–61%, respectively (Table 2). The
length of poT ranged from 734 to 1692 bp, with the mean
value of 1257 bp. Over 93.2% of poTs have a length over
1000 bp (Fig. 5). The comparative analysis showed that
the 20 most conserved poTs were obtained in all the indi-
viduals, and they have relative consistent and longer
length, 90% of which have an average length over 1240 bp
(Fig. 5). And the consistent sequences of 20 poTs were
further assembled into 14 cp fragments, with the total
length of 19,536 bp, taking over 15% of the cp genomes
(Fig. 6a and b). The Maximum Likelihood and Bayesian
phylogenetic tree showed that these 21 individuals could

a

b d

c

Fig. 4 Intrageneric and intergeneric polymorphism of chloroplast variation regions of three Primulina species and Boea hygrometrica. Intrageneric
(a) and intergeneric (b) polymorphism (PICs) of noncoding regions of cp genomes. Intrageneric (c) and intergeneric (d) polymorphism (PICs) of
Con_Sea regions of cp genomes. PICs were counted by the sum of SNP and Indel between two cp genomes. Con_Sea is a region between two
adjacent Con_Islands, which is defined as the regions containing over 50 continuous conserved sites in cross-genus consensus genome sequences.
Eight regions used for experimental evaluation were signed as filled circles, while others were empty circles. The name of the regions with
high variation or used for experimental evaluation was marked along the circles. It was noting that the name of these regions in part C and D
was shown as the name of noncoding regions overlapped with corresponding Con_Seas, instead of original ID of Con_Seas. The yellow lines
link the same regions, while the red lines link the corresponding regions between noncoding regions and Con_Seas
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be divided into four groups, with CZYX03 split into two
groups (Fig. 6c). Meanwhile, 84 SNP sites were identified
from 14 cp fragments among 21 individuals. CZYX03
showed the highest intra-population variation, followed by
CZYX02 and CZYX01. The inter-population genetic dif-
ferentiation between CZYX02 and CZYX03 is significantly
lower than that of others (Fig. 6c).
The average number of CpContigs in CZYX01,

CZYX02 and CZYX03 is 70, 71 and 65, occupying
around 52%, 49% and 51% of the entire cp genome, re-
spectively (Table 2). Furthermore, 62 consistent CpCon-
tigs, which were distributed equably across whole cp
genome, were isolated, with the total length of
42,797 bp, accounting for over one third of the cp gen-
ome (Fig. 6a and b). A total of 355 SNP were identified
from the CpContig, over four folds of that from the poT
dataset (84 SNPs). Nevertheless, the results of popula-
tion genetic analysis of the cp concatenated sequences
from consistent CpContigs are similar to that from con-
sistent poTs (Fig. 6c and d). These results indicated that
around half of Primulina cp genome could be directly
assembled from RAD-Seq data through our SACRing
pipeline. Both poTs and CpContigs could provide
enough cp information and variant SNP sites for phylo-
genetic and population genetic studies.

Discussion
Lineage-specific high variable regions
With the rapid development and wide application of
NGS technology, it has become much easier to obtain
complete chloroplast genomes, as evidenced by the
dramatic increase in the number that are publically
available (http://www.ncbi.nlm.nih.gov/genome/browse/).
Recent comparative plastid genomic studies reveal a pat-
tern of lineage-specific high variable regions in different
lineages [3, 7–9]. For example, the most variable regions
identified in the genus Pyrus are ndhC-trnV, trnR-atpA,
ndhF-rpl32, psbM-trnD, and trnQ-rps16, while only two
(ndhF-rpl32 and trnK-rps16) were consistently found
among the Shaw et al., [6] top-ranked 30 cpDNA regions
[9]. In this study, the top-9 ranked high variable regions in
Primulina overlap with trnH-psbA, ndhF-rpl32, trnC-petN,
psaA-ycf3, rpl32-trnL, trnS-trnR, psbI-trnS-trnR, rpoB-trnC
and ndhH-rps15-ycf1 (Fig. 4c). Of them, only five are listed
among the top-ranked 34 cpDNA regions by Shaw et al.,
[6]. In contrast, the most variable regions identified be-
tween the genera Primulina and Boea overlap with rps16-
trnQ, atpH-atpI, ndhF-rpl32, rpoB-trnC and trnK-rps16
(Fig. 4d), all of which are listed top 14th highest variable re-
gions by Shaw et al., [6]. Our experimental tests confirmed
that the new markers developed from Primulina cp

Fig. 5 The heatmap of poTs among 21 individuals from three Primulina populations. poTs, short for paired & overlap tags, is a contig assembled
from Tag1s (clustered from read1 of RAD-Seq) at forward and reverse directions of the same restriction enzyme site (RE) and their paired Tag2s
(assembled from read2 of RAD-Seq). CpContigs are longer contigs further assembled from all kinds of RAD tags, including poTs. X axis of the
heatmap showed the name of poTs, composed by “poT-” and a digit, while the digit represents the position of RE, around the middle position of
this poT. The grids filled with different color represent the length of poTs at specific site and specific individual, with the bar shown in the bottom
right corner. While black grids mean these poTs were not be assembled. The length distribution of 65 poTs and 21 individuals were shown at the
top and the right of heat map, respectively, with the same bar shown at the top right corner
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genomes can provide higher polymorphism than the
traditional cp primers developed from noncoding re-
gions of distantly related angiosperms. Although listed
in top-ranked variable regions, these traditional
markers show only moderate variation in Primulina cp
genomes (Additional file 15: Table S6). These results
imply that the cp markers developed from the three
Primulina cp genomes are more suitable in phylogen-
etic and population studies of Primulina than the trad-
itional and universal cp markers. On the other hand,
the makers developed from high variable regions be-
tween Primulina and Boea can be used in the higher
level phylogeny analysis in the Gesneriaceae family.

A novel strategy for determination of high variation
regions: From noncoding regions to Con_Seas regions
Chloroplast DNA markers are usually developed from
noncoding regions with high variation [5, 6]. Here we
proposed an improved method to develop cp primers
from truly high variation regions (i.e., Con_Seas, the re-
gions between two adjacent conserved regions) across
whole cp genomes, instead of noncoding regions. These

two methods were further compared systematically and
globally. Our newly proposed method has several advan-
tages. First, continuous conserved regions and synthetic
coding regions are not matched perfectly, and partial
Con_Islands (the conserved regions in cross-genus con-
sensus genome sequences) exist in noncoding regions
(Fig. 3a and b). For example, the length of trnS-trnR is
too long to be sequenced entirely with two sequencing
reactions although this region has both the highest intra-
generic and intergeneric PIC (Fig. 4a and b). The trnS-
trnR region cannot be used for developing markers with
the traditional strategy. Since there is a 76 bp Con_Is-
land in the middle of this region (Fig. 3a and b), the
trnS-trnR region was divided into two high variation re-
gions according to our Con_Seas method, both of which
are suitable for development of cp primers. Second, long
functional genes usually have many mutation hotspot re-
gions. For example, the 5.5-kb long ycf1 gene has nine
Con_Seas but no introns, and several Con_Seas have
high mutational hotspots, especially in intergeneric poly-
morphism (Fig. 3a, b and c). These regions were ignored
in previous marker development; however, several highly

ab
d

c

Fig. 6 The distribution, polymorphic indexes of poTs and CpContigs in 21 individuals from three Primulina populations. poTs, short for paired & overlap
tags, is a contig assembled from Tag1s (clustered from read1 of RAD-Seq) at forward and reverse directions of the same restriction enzyme site (RE) and
their paired Tag2s (assembled from read2 of RAD-Seq). CpContigs are longer contigs further assembled from all kinds of RAD tags, including poTs. a, b The
distribution of cp fragments (poTs) and CpContigs. The circle (a) showed the gene annotation of WHY01 (Primulina eburnea). Genes shown inside and
outside of the circle are transcribed clockwise and counterclockwise, respectively, and their gene names are marked as black and red, respectively. Genes
belonging to different groups are marked with different color, with the bar shown in the center. The outside and inside of circle (b) showed the distribution
of cp fragments (poTs) and CpContigs, respectively. And brown line in the outside of this circle represented the position of REs. c, d The Bayesian / Maximum
Likelihood phylogenetic tree and population genetic indexes based on concatenate sequences of poTs (c) and CpContigs (d). Posterior probabilities >0.5 in BI
analysis and bootstrap values >50% in ML analysis are indicated on the left and right of slash respectively
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variable regions were identified in our method (Fig. 4c
and d), and the polymorphism of one locus has been
verified experimentally (Additional file 15: Table S6).
Third and similarly, the boundaries of coding regions of
functional genes (or even the entire coding regions) are
not always conserved enough to develop perfect cp
primers, especially in SSC region (Fig. 3a and b). There-
fore, it is difficult for developing suitable markers using
traditional methods, while our method could avoid this
problem to a remarkable extent.
In this study, 18 Con_Seas have both intrageneric and

intergeneric PICs higher than that of Con_Sea_124
(trnE-trnT), which is 9th most variable in our experi-
mental evaluation (Additional file 13: Table S4 and
Additional file 15: Table S6). The highly variable nature
of these loci will greatly assist phylogenetic studies in
Primulina. We believe that this strategy for determin-
ation of high variation regions based on Con_Seas
would provide a reference for development of high
polymorphic cp markers of other plants with whole cp
genomes. Alignment of two plastomes could be supported
by our software “Con_Sea_Identification_and_PIC_
Calculation”, but the result may have a poor positive
correlation with the true variability across the taxon of
interest if only two taxa are used. We recommended
that at least three cp genomes be available when using
it. It was noteworthy that this strategy and software
needs to be continually optimized by any user, to de-
termine setting how to select the best parameter of
minimum length of Con_Island. The adjacent Con_Seas
with relative short length could be joined up as a new re-
gion, in order to provide the most variable characters in
one or two Sanger sequencing reactions.

A novel strategy to generate cp sequences for phylogenetic
studies: From sanger sequencing to PE RAD-Seq
RAD-Seq is increasingly used in population genetic and
phylogenetic studies, due to the rapidly decreasing cost of
sequencing [47]. However, only nuclear genetic information
is typically extracted and analyzed. In this study, we have
developed a novel strategy to obtain large amount of cp
variable characters directly from RAD-Seq. Using our pipe-
line SACRing, around 44 cp sequences with the average
length of 1260 bp, and 64-kb-long CpContigs (sub-super-
marker, half of whole cp genome) were obtained from
RAD-Seq of the 21 Primulina individuals, which we used
for population genetic analyses (Table 2 and Fig. 5). We be-
lieve that having publically available tools to handle cp data
in RAD-Seq datasets could allow those working with nu-
clear RAD-Seq datasets to enrich them with cp genome
data at no further cost, greatly increasing their value.
Complete cp genome sequences were recently pro-

posed as super marker for DNA barcoding of plants,
which could greatly improve resolution [20, 48].

However, recent studies revealed that such a super-
marker may not substantially improve discrimination of
clades that recently diverged or that have complex pat-
terns of hybridization [49–51]. Furthermore, it is still
not easy for researchers without programming back-
ground to isolate and assemble cp genomes from NGS
data. In addition, many experimental aids or manual cor-
rections are required in the steps of gap closing and an-
notation. Therefore, complete cp genomes for dozens or
hundreds of individuals is still impractical in most stud-
ies. Using the pipeline SACRing, a sub-super-marker
(CpContigs), comprising c. 50% of entire cp genomes,
could be easily obtained for hundreds of individuals in a
fully automated approach and in a relative short
amount of time. Compared with super-markers (i.e., en-
tire cp genomes, which was assembled from genome
survey sequencing), our sub-super-marker (CpContigs)
or even poTs could provide sufficient variable charac-
ters but with lower cost. RAD-Seq with specific restric-
tion enzyme site could obtain enough raw NGS data
for cp genome assembly at a much lower sequencing
throughput, c. 5–10% of that of genome survey
sequencing.
On the other hand, some previous studies have used

resequencing (mapping the NGS reads to the reference
cp genomes directly) to call the SNPs of cp DNA [52].
However, such direct mapping approaches lead to errors
of intra-individual polymorphism because of DNA trans-
fer of cp sequences into the nuclear or mitochondrial ge-
nomes or the both [53]. In our strategy, the assembly of
poTs or CpContigs seem to be accurate due to the high
abundance of chloroplast genomes, which are 1–2 or-
ders of magnitude of mitochondrial genome, and 2–4
orders of magnitude of nuclear genome in a single leaf
cell [52]. Because variable characters were identified based
on cluster results of poTs or CpContigs, candidate assem-
bly errors could be identified. Therefore, our strategy
could minimize spurious intra-individual polymorphism.
To the best of our knowledge, this study is the first to

develop the sub-assembly of poTs and CpContigs (sub-
super-marker, c. 50% of entire cp genomes) from PE
RAD-Seq, and the SACRing was the first pipeline to
bridge the relationship between RAD-Seq and cp ge-
nomes. The pipeline can be download from https://
github.com/scbgfengchao/, where it will be subjected to
continual improved and updated. This strategy expands
the application of RAD-Seq, and would be practice for
large-scale application of poTs or sub-super-marker in
phylogenetic and population genetic studies.
We recommend that in the cases where only dozens

of variable sites are required and where at least 3 cp ge-
nomes of related species are available, the first strategy
"from noncoding regions to Con_Seas regions" will be
more effective. Otherwise, our second strategy is
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recommended, particularly when only a single cp gen-
ome of closely related species is available. We also rec-
ommend the second method when the aim is to
supplement a population genetics study using RAD-seq
at nuclear loci with cp loci.

Conclusions
In this study, three complete Primulina chloroplast ge-
nomes were assembled from genome survey data. Com-
bined with the cp genome of Boea hygrometrica, several
lineage-specific highly variable cp markers were developed
from the true high variation regions (Con_Seas) across
whole cp genomes using the software “Con_Sea_Identifi-
cation_and_PIC_Calculation”. This approach provided
higher polymorphism than traditional cp primers, which
was confirmed by experimental evaluation results. The
newly developed markers will promote phylogenetic and
population genetic studies in Primulina and other genera
of the family Gesneriaceae.
We also wrote a novel Bash script, SACRing, which

uses RAD-Seq data to directly assemble cp fragments
(poTs) and sub-super-marker (CpContigs), represent-
ing around half of the completed cp genome (in the
case of 21 individuals from three Primulina popula-
tions). The conserved poTs or CpContigs could be
further applied in the studies of population genetic
analysis and phylogenetics. Our method fundamentally
alters traditional approaches, which have been deeply
dependent on large amounts of Sanger sequencing
based on cp primers. These two novel strategies pro-
posed in our study may provide a reference to similar
research in other non-model species fascinated by
next generation sequencing.
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