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Repurposing of promoters and enhancers during
mammalian evolution
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Promoters and enhancers—key controllers of gene expression—have long been distinguished

from each other based on their function. However, recent work suggested that common

architectural and functional features might have facilitated the conversion of one type

of element into the other during evolution. Here, based on cross-mammalian analyses

of epigenome and transcriptome data, we provide support for this hypothesis by detecting

445 regulatory elements with signatures of activity turnover (termed P/E elements). Most

events represent transformations of putative ancestral enhancers into promoters, leading

to the emergence of species-specific transcribed loci or 5′ exons. Distinct GC sequence

compositions and stabilizing 5′ splicing (U1) regulatory motif patterns may have predisposed

P/E elements to regulatory repurposing, and changes in the U1 and polyadenylation signal

densities and distributions likely drove the evolutionary activity switches. Our work suggests

that regulatory repurposing facilitated regulatory innovation and the origination of new genes

and exons during evolution.
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Gene transcription in mammals is controlled by the inter-
actions between proximal and distal gene regulatory
elements. Promoters—the proximal regulatory regions

associated with the transcription start site (TSS) of a gene—
mediate the recruitment of the RNA polymerase II (Pol II)
through their recognition by general transcription factors1. The
spatiotemporal activation of gene expression is further defined by
transcription factors bound to other regulatory loci, including
TSS-distal enhancers2,3. Several sequence and structural features
characterize promoters and enhancers. Most vertebrate pro-
moters are CpG-rich1, while most enhancers are CpG-poor4, a
difference that is also reflected in the respective regulatory motif
compositions5,6. While both types of elements are characterized
by accessible chromatin7, enhancers and promoters have different
chromatin modification profiles. Promoters are generally asso-
ciated with higher levels of trimethylation of lysine 4 at histone 3
(H3K4me3) compared to monomethylation of the same residue
(H3K4me1); whereas, the opposite pattern is found for enhancers
in a poised state8. However, both types of elements are enriched
for acetylation of lysine 27 at histone 3 (H3K27ac) when
active9,10.

Although the aforementioned features led to the distinction
of promoters and enhancers as different types of regulatory ele-
ments, recent work unveiled similarities in their architecture
and activity (reviewed in refs. 11–13). Transcriptome analyses
revealed that both promoters and enhancers are bidirectionally
transcribed4,14,15, and that this process involves the recruitment
of the same transcriptional machinery16. Moreover, some reg-
ulatory elements display similar chromatin modification profiles
despite different activities; for example, enrichment of H3K4me3
can also be detected at highly transcribed enhancers17. The two
classes of regulatory elements may also show bivalent function-
ality, with some enhancers acting as alternative promoters18 and
some promoters enhancing the expression of other genes19–21.
Although these observations blurred the boundary between the
two classes of regulatory regions, the association of promoters
to long transcripts that are 5′ capped and 3′ polyadenylated still
distinguishes these regulatory elements from enhancers, which
produce short, generally unstable transcripts4.

Transcript stability has been linked to the relative enrichment
of destabilizing polyadenylation signals (PAS) and stabilizing 5′
splicing (U1) motifs downstream of the TSS. U1 sites, apart from
their role in splicing, prevent premature transcript cleavage from
cryptic PAS through their binding with the U1 snRNP22. Poly-
adenylation signals proximal to the TSS have the opposite effect,
and direct nascent transcripts towards exosome degradation23.
Unidirectional promoters show an enrichment of U1 sites and
a depletion of PAS sites in their sense direction relative to their
upstream antisense direction, which supposedly limits pervasive
genome transcription24. The instability of enhancer-associated
transcripts is also due to an enrichment of PAS over U1 motifs17.

Given the structural and functional similarities between
enhancers and promoters, changes in the U1-PAS axis might in
principle alter the activity of these regulatory elements. Inheri-
table mutations at PAS and U1 sites might stabilize enhancer-
associated transcripts, thus facilitating their evolution into pro-
moters25. Similarly, mutations might destabilize promoter tran-
scription, but not affect the ability of these loci to regulate the
expression of other genes. Thus, one might expect to observe
orthologous regulatory elements that function as enhancers in
one species but as promoters in another. Interestingly, recent
work reported the frequent evolutionary emergence and decay
of enhancers26 and, at a lower rate, promoters27 in mammals.
Although, the gain- and loss-of-regulatory elements is largely
driven by the insertion and deletion of genomic sequences, such
as repetitive elements26,28, many regions align to orthologous loci

in other species not showing the same functionality26,27. This
raises the possibility that some regulatory elements might
experience changes in their activity during evolution—a process
we refer to as regulatory repurposing.

Suggestive evidence for the existence of regulatory repurposing
events has been reported in mammals. We recently described
an enrichment of enhancer-associated chromatin marks at
mouse loci orthologous to the promoters of new rat-specific
mRNA-derived gene duplicates (retrocopies)29. Moreover, two
separate studies reported evidence of 11 mouse long-non-coding
RNAs whose promoter sequences were orthologous to putative
human enhancers30,31. Nonetheless, a thorough investigation of
the prevalence of regulatory repurposing during mammalian
evolution and its underlying molecular mechanisms has been
lacking.

Here we report a detailed survey of regulatory repurposing in
mammals. Based on integrated evolutionary analyses of mam-
malian chromatin profiles and transcriptional data, we detect 445
repurposed elements in sister species from the primate and
rodent lineages. In most cases, putative ancestral enhancers were
converted to promoters during evolution. This observation sug-
gests that enhancers might have a higher repurposing potential
than promoters. Enhancer-to-promoter transformations led to
the origination of species-specific transcribed loci or 5′ exons.
We also find that distinct GC sequence compositions and stabi-
lizing 5′ splicing (U1) regulatory motif patterns may have pre-
disposed P/E elements to regulatory repurposing, and that
changes in the U1 and polyadenylation signal densities and dis-
tributions likely underlie the evolutionary activity alterations.
Overall, our work highlights regulatory repurposing as a notable
mechanism that likely facilitated regulatory innovation and the
origination of new genes and exons during mammalian evolution.

Results
Regulatory element repurposing in primates and rodents. As
only limited evidence of putative regulatory repurposing was
available from previous studies, we first sought to confirm its
occurrence and study its prevalence in mammals. Toward this
aim, we defined genome-wide sets of putative enhancers in a
mammalian reference species and investigated whether any of
these loci were orthologous to putative promoter regions from
a closely related species (Fig. 1a) and hence represented candidate
repurposed elements—here referred to as P/E elements. We
focused our work on four species from two mammalian orders:
human and rhesus macaque, as representatives of the primate
lineage, and mouse and rat from the rodent lineage. We chose
these two species pairs for several reasons: first, a large amount
of gene expression and chromatin modification data is publicly
available for human and mouse, allowing for the annotation of
comprehensive sets of regulatory elements based on various tis-
sues and developmental stages. Second, the relatively short evo-
lutionary divergence times (25–29 millions of years) between
human/mouse and macaque/rat, respectively, facilitates the defi-
nition of high confidence orthologous regions for each species
pair, thus enabling the comparison of regulatory activities for
large numbers of genomic loci. Third, suitable outgroup
species (marmoset for the two primates and rabbit for the
rodents) with relevant data are available for evolutionary infer-
ences. Finally, both species sets have respective advantages and
disadvantages, and therefore the analyses of both datasets allow
for overall optimal analyses. For example, while the low mutation
rate and resulting high sequence similarity in the primates
may allow for higher confidence inferences of early regulatory
element evolution, the larger rodent sequence divergence and
more efficient natural selection during rodent evolution may
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allow for easier and/or more powerful detection of regulatory
repurposing events.

We defined sets of putative promoters as the upstream regions
of stably transcribed loci, assembled using both our newly
generated as well as recently published32 strand-specific RNA-seq
data from four organs (brain, heart, kidney, and liver; see
Methods) (Supplementary Data 1–2), which yielded between
27,042 and 33,520 promoters for each species (Supplementary
Data 3). We then identified putative enhancers in human and
mouse (i.e., our reference species for which extensive relevant
data are available—see above) by combining transcription, DNase
hypersensitivity and histone modification data from the same
set of organs. Specifically, we extracted all DNase hypersensitive
sites enriched for H3K4me1 and/or H3K27ac in any of the four
organs, and filtered out those regions which showed signatures
of promoter activity in any sample from a broad set of tissues
and cell types (see Methods). This was done to limit the inclusion
of potential bivalent elements (i.e., elements characterized by
both enhancer and promoter activity in different tissues of the
same organism), which would hamper our search for bona fide
repurposed elements. Nonetheless, we cannot exclude that some
putative enhancers might have promoter activity in other tissues
or developmental stages. Additionally, we included a second set of
putative enhancers, defined using CAGE data from a number
of organs and cell lines in human and mouse4, which was
further filtered for bivalent elements. Overall, we obtained a high-
confidence set of 110,611 putative enhancers (hereafter simply
termed enhancers) in human and 127,145 in mouse (Supple-
mentary Data 4).

Functional remodeling facilitated regulatory innovation. After
the annotation of putative regulatory regions in our set of species,
we assessed the evolutionary conservation of their activity to
detect P/E elements. Specifically, we extracted 97,451 human and
105,700 mouse enhancers that could be aligned to orthologous
sequences in their sister species. We then investigated whether the
orthologous loci in the macaque or rat genome, respectively,
overlapped the promoter region of a stable transcript (Fig. 1a,
Supplementary Data 5). After removal of putative false positives
associated to short transcript isoforms (46 in primates, 60 in
rodents, see Methods), we thus identified 184 P/E elements in
primates and 261 elements in rodents (i.e., 445 in total). We
subdivided the P/E elements into two distinct categories based on
their association to a species-specific (i.e., macaque- or rat-spe-
cific) transcribed locus (novel P/E) or to a new species-specific 5′
exon of a locus transcribed in both species of the respective
lineage pair (extended P/E) (Fig. 1b, c, Supplementary Data 6). To
further confirm the promoter activity of P/E elements in macaque
and rat, we inspected their chromatin state using publicly avail-
able H3K4me3 ChIP-seq data from adult liver samples26. Con-
sistent with the notion of regulatory repurposing, P/E elements
associated with stable liver transcripts in macaque and rat display
higher H3K4me3 coverage compared to sequences orthologous to
non-repurposed liver enhancers in human or mouse, respectively
(Fig. 1d). H3K4me3 levels at novel and extended P/E elements in
macaque and rat are significantly lower compared to those
measured at stable liver promoters conserved in their sister spe-
cies (Fig. 1d), likely reflecting the lower expression level of
P/E-associated transcripts (Supplementary Fig. 1). Our analysis
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Fig. 1 Repurposing of regulatory elements in mammals. a Schematic representation of a P/E element in primates and rodents. b Types of P/E elements.
c Total number of novel and extended P/E elements detected in primates and rodents. d Macaque and rat H3K4me3 ChIP-seq reads density from liver
(log2 read count normalized by input read count) measured at novel and extended liver P/E elements, loci orthologous to the sister species liver enhancers
and not associated to any stable TSS, and stable liver promoters conserved in the sister species. Whiskers up to 1.5 times the interquartile range; outliers
removed for graphical purposes. Significant differences (Mann–Whitney U-test with Benjamini-Hochberg correction): ∗∗∗P < 0.001. e Fold- difference
between P/E elements ratio (fraction of human or mouse enhancers corresponding to promoters in sister species) and P/inactive ratio (fraction of human
or mouse inactive regions corresponding to promoters). The red line indicates no difference between the two ratios. Numbers indicate the number of P/E
elements for each group. Significant differences (Fisher’s exact test with Benjamini-Hochberg correction): ∗∗∗P < 0.001
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thus uncovered the presence of hundreds of P/E elements
showing divergent regulatory activities in two major mammalian
lineages. Notably, a sequence conservation analysis reveals that
the sets of P/E elements overall show signatures of selective
preservation (Supplementary Fig. 2), which suggests that at least
subsets of them have acted as functional regulators at least during
some time of their evolutionary history.

The detection of P/E elements in two closely related species
could in principle result from the independent de novo evolution
of distinct activities from an ancestral inactive region, rather than
from a species-specific repurposing of an ancestral regulatory
region. We therefore investigated whether the enhancer signature
detected at a specific locus would significantly increase the chance
of observing promoter activity at the orthologous locus in the
closely related species, which would support the repurposing
scenario. We defined control regions showing no signature of
regulatory activity and no overlap with any exonic sequence in
human and mouse (Methods section) and then evaluated whether
their orthologous regions in the sister species were associated to
the TSS of a stable transcript. Only 0.04% (79/181,688) of the
control regions tested in primates and 0.02% (23/83,288) of those
in rodents show this behavior. These percentages are significantly
lower compared to the fraction of P/E elements retrieved in
primates (0.18%, 184/97,405 elements; >4.03-fold enrichment for
novel or extended P/E loci, Fisher’s exact test, P < 10−9) and
rodents (0.24%, 261/105,640 elements; >7.81-fold enrichment,
Fisher’s exact test, P < 10−8) (Fig. 1e). Although there is a
difference in GC content between the inactive regions and the
putative enhancers tested in both species (Supplementary Fig. 3),
rat- and macaque-specific promoters are nonetheless more
often orthologous to enhancers than to inactive loci with matched
sequence composition in their sister species (Supplementary
Fig. 4). These data corroborate the hypothesis that P/E elements
likely correspond to ancestral regulatory regions that experienced
evolutionary changes in their regulatory activity in the last 25–29
millions of years. Ancestral regulatory capacities of genomic
sequences therefore facilitated regulatory innovation in mam-
mals, while our analyses also suggest that a sizeable number of
lineage-specific regulatory elements may have emerged de novo
from the large inactive portion of the genome.

Enhancers are the main source of regulatory repurposing. The
retrieval of hundreds of lineage-specific P/E elements allowed us
to investigate at a broad scale the directionality of regulatory
activity changes; that is, to define whether an ancestral enhancer
evolved into a promoter, or vice versa. We thus investigated the
presence of regulatory activity associated to regions orthologous
to P/E elements in an outgroup species, in order to infer their
ancestral state. Using ChIP-seq and transcription data to annotate
putative regulatory elements in adult marmoset liver26, we find
that 40.9% (27 of 66) primate P/E elements with activity in liver
and aligned to the marmoset genome correspond to orthologous
putative enhancers in this outgroup species, whereas only 1.5%
overlap a promoter (Table 1). Similarly, 34.7% of rodent P/E
elements correspond to putative enhancers in rabbit, while only
2% overlap a promoter (Fig. 2a, Table 1). The higher fraction of
ancestral P/E elements with enhancer activity suggests that most

repurposed elements correspond to ancestral enhancers that
recently evolved species-specific promoter activities.

Our analysis also revealed that 38 (57.6%) and 31 (63.3%) P/E
elements active in liver in primates and rodents, respectively,
do not bear any signature of liver activity in the outgroup species.
We therefore reasoned that some P/E elements might be active
in a different organ in the outgroup. To evaluate this possibility,
we determined the fraction of primate and rodent P/E elements
orthologous to a promoter in any of the adult organs investigated
in marmoset and rabbit. This analysis shows that only 8 of
the 174 marmoset regions orthologous to a primate P/E element
(4.5%) overlap the TSS of a transcript and therefore likely
correspond to an ancestral promoter. A similarly low fraction
(5/134, 3.7%) of rodent P/E elements correspond to promoters
in rabbit. These results further confirm that only a limited
number of detected repurposing events involved ancestral
promoter elements.

Recent work reported a higher evolutionary turnover of
enhancers compared to promoters in mammals26. To evaluate
whether this bias could explain the observed higher enhancer-to-
promoter repurposing rate, we compared the rates of repurposing
and loss of activity for ancestral liver enhancers and promoters in
both lineages (Fig. 2b; Supplementary Table 1; Methods). The rate
of enhancer loss (≈50.5%, 2655 of 5260 ancestral enhancers) is
~1.92 times higher than that of promoter loss (≈26.3%, 1342 of
5110 ancestral promoters), in agreement with previous observa-
tions26. Notably, however, the rate of ancestral enhancer
repurposing (≈0.51%, 27/5260) was ~26 times higher than that
of ancestral promoter repurposing (≈0.02%, 1/5110). This pattern
corresponds to an ~13-fold enrichment of enhancer repurposing
relative to promoter repurposing (Fisher’s exact test, P < 10−3;
Table 2), taking the increased enhancer loss rate into account.
The lack of a statistically significant similar pattern in rodents
(≈6-fold enrichment, Fisher’s exact test, P= 0.056; Table 2) is
likely due to lack of power and explained by evolutionary
differences between the primate and glires (the clade including
rodents and lagomorphs) species investigated. That is, the
considerably larger divergence time of the glires species
(divergence time: ≈80 million years between mouse/rat and
rabbit) compared to that in primates (≈42 million years between
human/macaque and marmoset), their higher mutation rates, and
the more efficient natural selection in glires may obscure actual
rates of activity turnover in this lineage. In any event, our primate
analyses suggest that the higher rate of enhancer repurposing
cannot be explained by the higher turnover rate of enhancers
compared to promoters, although future work on additional
closely related sets of species and organs will be needed to
confirm this pattern.

P/E elements have distinct sequence compositions. Large-scale
surveys have demonstrated that the motif and sequence compo-
sition of mammalian enhancers closely resembles that of pro-
moter regions that do not overlap with CpG islands (CGIs), but
differences between distinct types of enhancers have been
reported4. Due to the peculiar evolutionary change in activity of
P/E elements, we therefore investigated whether their sequence
would be distinct relative to other regulatory regions. P/E
enhancers in both human and mouse have an overall lower GC

Table 1 Directionality of mammalian repurposing events in liver

Outgroup species Converted liver P/E elements Ancestral liver P/E promoters Ancestral liver P/E enhancers

Primates Marmoset 66 1 (1.5%) 27 (40.9%)
Rodents Rabbit 49 1 (2%) 17 (34.6%)
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and CpG content when compared with CGI-associated promoters
(Fig. 3a–d), in agreement with known differences between CpG
islands and enhancers4. Surprisingly, P/E enhancers have a sig-
nificantly higher GC content compared to other enhancers and,
to a lower extent, non-CGI-associated promoters, indicating that
the sequence composition distinguishes P/E enhancers from
other regulatory sequences (Fig. 3a, b). Similarly, there is a higher
content of the CpG dinucleotide in P/E enhancers compared to
other enhancers but not to non-CGI promoters (Fig. 3c, d),
reinforcing the distinction of this class of regulatory elements
from other enhancer elements. We also find that P/E promoters

in macaque and rat have significantly higher GC and CpG con-
tent than macaque/rat sequences orthologous to enhancers in
human/mouse (Supplementary Fig. 5), although, we note that a
large number of these orthologous loci might be inactive in
macaque and rat. Small or no differences in GC and CpG content
were instead evident between P/E elements and non-CGI pro-
moters in macaque and rat (Supplementary Fig. 5). The overall
differences in sequence composition between P/E elements and
other regulatory regions are also reflected in their relative
enrichment for core promoter-associated motifs with different
GC contents (Supplementary Data 7). Taken together, these
results highlight how the sequence and motif composition of P/E
elements distinguishes them from other regulatory elements.

Sequence compositional changes associated with repurposing.
Next, we sought to trace whether compositional changes may
underlie functional shifts of P/E elements. Notably, the CpG
content of regulatory elements has been proposed to influence
their transcriptional output33,34. CpG islands are usually asso-
ciated to the promoter of broadly and highly expressed genes1,
where they favor gene expression by creating a nucleosome-free
environment33,34. We therefore asked whether P/E elements with
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Table 2 Turnover of regulatory elements activity in primates
and glires

Repurposing event Loss of activity

Primates Ancestral enhancer 27 2655
Ancestral promoter 1 1342

Glires Ancestral enhancer 17 1157
Ancestral promoter 1 417
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promoter activity were associated to higher GC and CpG contents
compared to their orthologous regions. Importantly, the genome-
wide sequence composition—and particularly the GC content—
can vary even between closely related species35. In this case, any
difference observed between orthologous P/E elements should be
compared to the global change in sequence composition experi-
enced by the two species, using regions not subject to natural
selection. To do so, we compared the difference in GC and CpG
frequencies between orthologous P/E elements with that observed
between orthologous inactive regions. We found that rat P/E
promoters showed somewhat higher GC content compared to
their orthologous mouse P/E enhancers but that this difference
was not significantly stronger than that of the control regions
(Supplementary Fig. 6), in agreement with the previously repor-
ted overall higher genome-wide GC-content in rat35. By contrast,
we noted that the total content of CpG dinucleotides in rat P/E
promoters is significantly increased compared to the control
regions (Fig. 3e, f), indicating that the activity turnover of P/E
loci is mirrored by a change of CpG frequency in this lineage.

In primates, the GC content did not differ significantly
between the orthologous P/E element sequences; whereas, the
frequency of CpG dinucleotides was significantly higher in
macaque P/E promoters compared to the human P/E enhancers
(Supplementary Fig. 7). Notably, the enrichment in both GC and
CpG content measured in macaque was statistically significant
when compared to the control regions (Supplementary Fig. 7).
The observed GC enrichment reflects the slightly lower GC
content of the macaque genome compared to the human one35.
Overall, the higher CpG content in P/E promoters together with
the reported effect of CpG content on transcription33,34 suggest
that specific changes in nucleotide composition contributed to
the regulatory repurposing of P/E elements both in rodents and
in primates.

Distinct U1 motif and PAS patterns at P/E elements. While
promoters and enhancers both have the inherent capacity to
promote transcription, only promoters generate stable tran-
scripts17. In mammals, this difference between the two types of
elements seems to be mainly directed by specific signals down-
stream of the TSS. U1 sites are commonly enriched downstream
of promoters and depleted in the antisense orientation as well as
around enhancers, whereas PAS generally follow the opposite
trend4,24. Owing to their potential role in transcription, we
compared the distribution of U1 signals and PAS around
orthologous novel P/E elements (Fig. 1b, lower panel). For each
element, we extracted U1 and PAS motifs up- and downstream of
the TSS of their associated transcript in macaque and rat, as well
as for the corresponding orthologous regions in the respective
sister species (Fig. 4a). In both macaque and rat, as expected given
the promoter activity of the P/E elements, the density of U1 sites
downstream of the TSS is higher compared to the antisense
orientation, whereas there is a weak but significant opposite trend
for PAS motifs (Fig. 4b, Supplementary Fig. 8). In human and
mouse, consistent with the lack of stable transcripts associated to
P/E elements, there are weak to no differences in U1 or PAS
distribution around each P/E element (Fig. 4c, Supplementary
Fig. 8). We further compared the U1/PAS density in human and
mouse at P/E enhancers to that measured around the TSS of
CAGE-defined non-P/E enhancers elements, similarly char-
acterized by the lack of stable transcription. Contrary to what is
observed for these non-P/E enhancers, PAS density is sig-
nificantly lower on either side of P/E enhancers, and U1 density is
higher downstream but not upstream of the projected TSS
(Supplementary Fig. 8). In light of the higher enhancer-to-
promoter repurposing rate (see above), these results suggest that
the unique sequence and motif composition distinguishing P/E
enhancers from other typical enhancers may predispose them to
repurposing into novel promoters during evolution.

Evolutionary changes in the U1/PAS axis. Evolutionary changes
in the U1/PAS axis have been proposed as a mechanism under-
lying the emergence of new transcribed loci that may be selec-
tively preserved and thus form new genes25. However, so far,
evidence supporting this hypothesis has been limited. We there-
fore took advantage of our dataset of orthologous P/E element
pairs to test whether evolutionary changes in the U1 and PAS
motif distributions around these loci might underlie their reg-
ulatory activity transformation. A comparison of the distribution
of U1 sites surrounding orthologous P/E elements in rodents
reveals that their density is significantly higher over 1 kilobase
(kb) downstream of the TSS of rat P/E promoters than in the
orthologous non-transcribed regions of mouse P/E enhancers
(mean of 2.83 vs. 2.25 U1 sites per kb, Wilcoxon’s test,
Benjamini-Hochberg corrected P < 10−4, Fig. 4d), whereas there
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is no significant difference in the corresponding upstream
regions. Analyses of PAS distributions for the same regions only
reveal a weak decrease in PAS density downstream of the TSS of
rat P/E promoters (mean of 1.45 vs. 1.70 PAS sites per kb, Wil-
coxon’s test, Benjamini-Hochberg corrected P < 10−2, Supple-
mentary Fig. 9) and no difference in the antisense orientation. In
primates, we find a significant trend in U1 motif distribution
around orthologous P/E elements similar to that detected in
rodents (Fig. 4e) but no difference in PAS density (Supplementary
Fig. 9), probably due to the low sequence divergence between
human and macaque and the resulting lack of power36. Fur-
thermore, the distance separating the TSS from the closest
downstream U1 site in P/E promoters is significantly shorter than
that for orthologous P/E enhancers (one-tailed Wilcoxon’s test,
Benjamini-Hochberg corrected P < 10−2; Fig. 4f, Supplementary
Fig. 10). Finally, U1 sites preceded a PAS downstream of rat P/E
promoter TSSs in rat in 84.8% of the cases, compared to 66.8%
for the orthologous mouse P/E enhancers (Fisher’s exact test, P <
10−3), with no significant differences in primates. Altogether, our
analyses reveal evolutionary shifts in the distribution of U1 sites
and, to a lesser extent, PAS motifs, which mirror the presence or
absence of stable transcripts (i.e., promoter or enhancer activity)
at P/E loci. Thus, changes in the U1/PAS axis may contribute to
the origination of promoters from enhancers and, as a con-
sequence, the emergence of new transcribed loci and, ultimately,
functional new genes in mammals.

Discussion
Mammalian promoters and enhancers share many similarities in
their chromatin architecture, and—apart from a minor fraction of
bivalent elements20—these regulatory loci are best distinguished
based on the stability of their associated transcripts17. This sug-
gests that small changes in the DNA sequences underlying or
surrounding regulatory regions could redefine their activity. In
our work, we provide support for this hypothesis by identifying
hundreds of mammalian elements that experienced an evolu-
tionary turnover in their regulatory activity, and by tracing spe-
cific sequence changes that accompanied this process.

Previous attempts to identify evolutionarily repurposed reg-
ulatory sequences uncovered 11 mouse lncRNA promoters that
were orthologous to putative enhancer elements in human30,31.
The low number of identified candidate elements is likely due to
the long evolutionary distance separating the two species. Nota-
bly, the divergent activity in these cases might not necessarily
result from a repurposing event, but could rather be the result of
independent evolution. To overcome these issues, we focused on
the comparison of more closely related species in our study, and
we used inactive genomic regions as controls to assess whether
the divergent activity of P/E elements likely results from evolu-
tionary switches in their function. The hundreds of P/E elements
uncovered here indicate that the evolutionary turnover of reg-
ulatory element activity is much more extensive than could have
been estimated based on the human/mouse comparisons, but
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even so, we have likely underestimated the number of function-
ally repurposed elements. For example, we conservatively exclu-
ded a large number of putative bivalent regulatory elements
(characterized by enhancer and promoter activity in the same
species) in order to maximize the confidence in detecting true
turnover events, which may have led to the removal of many real
enhancers characterized by H3K4me3 enrichment17. Through the
integration of chromatin profiles and transcriptome data from
additional organs and from multiple species, future analyses will
allow to more precisely estimate the occurrence of regulatory
repurposing in mammals. In any event, our work indicates that
the repurposing of regulatory elements activity is a widespread
process shaping the mammalian regulatory landscape.

We note that our ability to detect cases of a functional
enhancer repurposed into a functional promoter (and vice versa)
is highly dependent on the definition of functional regulatory
regions. In this regard, it is important to remember that enhan-
cers defined through their enrichment for specific histone mod-
ifications tend to have relatively low in vitro validation rates
(~50%)37, although recent work showed that the number of
validated elements may be underestimated by episomal-based
essays38. It is possible, therefore, that the changes in transcrip-
tional stability produced by some repurposing events might not
involve functional enhancers in human and mouse. However, the
putative enhancer activity of around 32% and 17% of all P/E
elements in human and mouse, respectively, was predicted based
on their unstable bidirectional transcription, which has a higher
validation rate compared to other essays4 (67.4–73.9%). Notably,
when considering only CAGE-defined enhancers in our dataset,
we still observe a significantly higher fraction of repurposing
events compared to those detected in our control set of inactive
regions (0.18%/0.28% vs. 0.04%/0.02% in primates/rodents,
Fisher’s exact test P < 10−14), supporting the hypothesis that
repurposing events do involve bona fide enhancers that evolve
into promoters able to drive stable transcription in mammals.

Our investigation of P/E element activity in outgroup species
suggests that most turnover events seem to involve the repur-
posing of ancestral enhancer elements into species-specific pro-
moters, and that this observation cannot be solely explained by
the higher evolutionary turnover of enhancers compared to
promoters in mammals26. It should be noted that more than half
of the alignable P/E elements in each lineage had no detectable
activity in the outgroup species. This is likely due to the relatively
large evolutionary distance that separates our core set of species
from their evolutionary outgroups. Consequently, the regulatory
activity of these loci might either have emerged after the split of
the outgroup lineages or might have been lost during the evolu-
tion of the outgroup species lineages. Although we cannot exclude
that the inferred directionality of the repurposing process is
influenced by the lack of definition of the ancestral state for part
of the P/E loci, such a scenario is unlikely to fully explain the
biased enhancer-to-promoter conversion pattern. On the con-
trary, the higher rate of enhancer turnover should in principle
disfavor the detection of enhancer-to-promoter turnover events,
given that it reduces the likelihood of detecting enhancers con-
served in more distantly related species. Our results therefore
suggest the existence of differences in repurposing potential
between enhancers and promoters, which could involve their
underlying DNA sequence and/or aspects of their chromatin
composition. Future work, involving more closely related species,
or different populations of the same species, will be necessary to
further explore the biased directionality of the repurposing pro-
cess and uncover its mechanistic bases.

The sequence analysis of P/E elements revealed features that
distinguish these loci from other regulatory loci, and it provided
initial evidence for the potential mechanisms behind the

repurposing process. Notably, the high GC and CpG content
could make P/E loci particularly prone to drive the expression of
neighboring sequences, for example through the recruitment of
CpG-binding proteins, such as Cfp139. This protein is known
to deposit H3K4me3 marks over the bound sequence40, which
in turn seems to favor transcription through different
mechanisms41,42. Moreover, recent work showed how CpG sites
favor promoter over enhancer activity in a massively parallel
regulatory element assay in mouse43. The significantly higher
CpG content of P/E elements with promoter activity strongly
suggests that the fixation of nucleotide substitutions contributed
to the turnover events by increasing (or decreasing) the density of
this dinucleotide, leading to the creation or disruption of specific
motifs that altered transcriptional capacities.

Moreover, U1 site density shifts also seem to be involved in the
repurposing process. A higher number and a higher proximity of
U1 sites characterize the region downstream of the TSS of P/E-
associated transcripts, compared to their transcriptionally inactive
orthologous regions. U1 sites are thought to promote transcript
stability in mammals, suggesting that changes in the distribution
of these motifs might be responsible for the stabilization or
destabilization of P/E-associated RNAs. On the other hand, it is
unclear whether the redistribution of polyadenylation signals
(PASs) has had a significant influence on the turnover processes.
Although PASs are slightly depleted downstream of the TSS
compared to the upstream region, we found little to no differ-
ences in PAS distribution between orthologous P/E elements.
Therefore, at least in this context, variation in U1 site distribution
could be sufficient to drive the repurposing process.

The finding of numerous P/E elements raises the question of
what impact repurposing events have on mammalian phenotypic
evolution. We believe the influence of this process regarding the
(ancestral) enhancer function of P/E elements is likely limited.
The enhancer activity exerted by many mammalian promoters
suggests that the emergence of stable transcripts associated to P/E
elements might not abolish their distal regulatory activity20.
Additionally, the potential loss of enhancer activity of a P/E
element upon its regulatory repurposing might not affect the
expression of its target gene(s), as it could be compensated for by
the presence of other enhancers44,45. On the other hand, repur-
posing events might be phenotypically relevant through their
contribution to the process of the birth and death of genes and
transcripts. Our results provide solid evidence for the emergence
of lineage-specific, stable transcripts from former enhancer ele-
ments. These transcripts may, potentially, represent new genes,
which would support the hypothesis put forward by Wu and
Sharp25. Overall, our analysis highlights regulatory repurposing
as a mechanism underlying molecular innovation in mammals
and calls for future work to unveil the impact of the repurposing
process on mammalian phenotypic evolution.

Methods
RNA-seq data production and processing. We generated 78 single-end strand-
specific RNA-seq libraries from brain, heart, kidney, and liver samples for six
mammals (human, macaque, marmoset, mouse, rat, and rabbit; Supplementary
Table 2). Human samples derive from both adult and postnatal developmental
stages, while all other mammalian samples stem from adult individuals (Supple-
mentary Table 2). RNA was extracted from each sample using the RNeasy protocol
from QIAGEN. RNeasy Micro columns were used to extract RNA from small
(<5 mg) or fibrous samples and RNeasy Mini columns were used to extract RNA
from larger samples. The tissues were homogenized in RLT buffer supplemented
with 40 mM dithiothreitol (DTT) or QIAzol. RNA quality was assessed using the
Fragment Analyzer (Advanced Analytical). The RNA-seq libraries were created
using the TruSeq Stranded mRNA LT Sample Prep Kit (Illumina). Libraries were
sequenced using the Illumina HiSeq 2500 to produce 100 nucleotide (nt) reads. The
resulting transcriptome data were combined with a set of recently published
transcriptome data32. Our study complies with all relevant ethical regulations with
respect to both human samples and samples for the other mammals. Human
samples were obtained from official scientific tissue banks or dedicated companies;
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informed consent was obtained by these sources from donors prior to death or
from next-of-kin. The use of all human samples for the type of work described in
this study was approved by an Ethics Screening panel from the European Research
Council (ERC) (associated with H.K.‘s ERC Consolidator Grant 615253, Onto-
TransEvol) and local ethics committees; that is, from the Cantonal Ethics Com-
mission Lausanne (authorization 504/12) and Ethics Commission from the
Medical Faculty of Heidelberg University (authorization S-220/2017). The use of all
other mammalian samples was approved by an ERC Ethics Screening panel (ERC
Consolidator Grant 615253, OntoTransEvol).

RNA-seq reads were aligned to the assembled genomes of their corresponding
species (all genomes obtained from the UCSC website; human: hg38; macaque:
rheMac8; marmoset: calJac3; mouse: mm10; rat: rn6; rabbit: oryCun2) using
STAR46 (version 2.2.1) using the 2-pass mapping mode and standard settings.
Aligned reads from all replicates of each organ, totaling on average >100 million
mapped reads, were used to reconstruct transcripts through a genome-guided de
novo transcriptome assembly using StringTie47 (version 1.3.4d) with the following
parameters: -j 5 –g 50. Assembled transcripts from each organ were then merged
using Cuffmerge48 to define a unique set of transcripts. Expression levels
(measured in FPKM) of the assembled transcripts were calculated with Cuffnorm48

(version 2.2.1); we considered as stable all transcripts with a mean FPKM > 1 across
replicates from the same organ and length (introns included) >1000 nt.

ChIP-seq and DNase-seq data processing. The chromatin data used in our
studies derive from different sources. DNase, H3K4me3, H3K4me1, and H3K27ac
data for mouse brain, heart, kidney, and liver (core dataset) were obtained from the
Mouse ENCODE database49 (Supplementary Data 8). DNase, H3K4me3,
H3K4me1, and H3K27ac data from human brain, heart, kidney, and liver were
obtained from the ENCODE database50 or from the human Epigenome Roadmap
database51 (Supplementary Data 8). For both species, we also downloaded
H3K4me3 data from additional adult and developmental samples from the same
databases (extended dataset) (Supplementary Data 8). All processed data corre-
sponding to an older genome assembly version were converted to the newest
assembly version using LiftOver52. As data were processed in different ways, we
applied a common approach to have comparable datasets. Specifically, we down-
loaded processed peaks (in narrowPeak format) from multiple replicates of all
samples, and subsampled the top 20′000 (for H3K4me3 data) or top 80′000 peaks
(for H3K4me1 and H3K27ac), ranked based on their peak score; all DNase
hypersensitive site (DHS) peaks from each sample were retained as their numbers
did not differ significantly across samples. We created organ/tissue-specific sets of
H3K4me3, H3K4me1, and H3K27ac peaks by considering loci shared by at least
three replicates from each organ (or by both replicates if only two samples were
available), except when peaks were already derived from merged samples, as for the
adult mouse organs. We finally resized the peaks to 1000 nt centered on the
summit of the peak (or on the middle of the peak when the summit was not
available).

Definition of regulatory and inactive regions. In each species, we defined as
promoters the 1000 nt located upstream of a stable transcript. Putative enhancers
in human and mouse were initially defined as DHSs overlapping an H3K27ac and/
or an H3K4me1 peak. The resulting set of enhancers was further filtered to exclude
loci located closer than 1000 nt from any H3K4me3 peak from any organs/tissues
(including the extended dataset) or that overlap the 1000 nt region upstream of the
TSS or the exons of any (stable or unstable) transcript. We further downloaded
enhancer sets defined using CAGE from human and mouse4 (permissive enhancers
phase 1 and 2). These loci were subjected to the same filtering process described
above, and then included in the final list of putative enhancers.

To define the set of inactive regions, we sampled from the human and mouse
genome up to 1.5 million non-overlapping 1000 nt loci, and then removed from
this list all loci mapping closer than 1000 nt from: (a) any DHS or any H3K4me1,
H3K4me3 or H3K27ac peak from all organs from the core and extended dataset.
Regions marked by active chromatin modifications but not DNase hypersensitive
were excluded as they could potentially represent elements active in untested
tissues or developmental stages; (b) any exon from all assembled (stable or
unstable) or annotated transcripts53,54 (GENCODE versions 27 for human and
version vM16 for mouse); (c) any high identity (95%) segmental duplication or
high identity (95%) repeat element annotated in the UCSC database55.

Definition and comparisons of P/E elements. Coordinates of all regulatory and
inactive regions from human and mouse were converted on the macaque and rat
genome, respectively, using LiftOver52 (with -minMatch= 0.6) to define their
orthologous loci. A two-way liftOver conversion (species A—>species B—>species
A) was adopted to avoid ambiguous orthology definitions that may result from
genomic duplication events. We defined as P/E elements all human and mouse
enhancers whose orthologous loci in macaque and rat, respectively, overlapped the
500 nt upstream of the TSS of a stable transcript. To avoid the inclusion of false
positives due to potential 5′-truncated isoforms, we excluded from our final P/E
elements dataset those associated to shorter isoforms of transcribed loci with an
alternative, upstream promoter in macaque or rat. As a control, we identified all
inactive regions in human and mouse whose orthologous sites in their sister species

overlapped the 500 nt upstream of the TSS of a stable transcript, and then com-
pared the frequency of these loci with the frequency of P/E elements in each core
sample with a Fisher’s exact test. P/E elements were analysed separately to assess
whether the associated transcript in macaque or rat corresponded to a new isoform
of a transcribed locus present in the sister species (extended P/E element) or to a
newly transcribed locus (novel P/E element). Shared transcribed loci between
orthologous species were defined by the overlap of the orthologous sequences
of macaque/rat transcripts (determined using liftOver) with reconstructed or
GENCODE annotated transcripts in human/mouse.

We observed a significant difference in GC-content between the sets of
enhancers and inactive regions (with an ortholog in the sister species). To control
for the GC-content effect, we resampled sets of enhancers and inactive regions with
a similar GC distribution. To this aim, we considered only enhancers with a
GC-content lower than 46% (for human) or 41% (for mouse). These thresholds,
roughly corresponding to the mode of the GC distribution of the enhancers set in
the two species, were chosen as they represented the maximum value below which
the GC distribution of inactive regions overlapped completely the GC distribution
of the enhancers. Then, we subsampled up to 30,000 enhancers from each species
(in order to have similar numbers of regions tested in both lineages), and for each
locus we selected an inactive region with the most similar GC content. With this
approach, we obtained sets of enhancers and inactive regions with statistically
similar GC distributions and used these data to compare the frequency of P/E
enhancers to that of inactive regions orthologous to promoters.

ChIP-seq analysis of P/E elements. To further support the promoter function-
ality of P/E promoters in rat and macaque, we compared their H3K4me3 profiles to
those of other regulatory elements using liver ChIP-seq data obtained from Villar
et al.26 and aligned on the respective genomes using bwa aln56. In both species, the
enhancer set corresponded to the orthologous putative enhancers projected (using
liftOver) from their sister species. The promoters corresponded to putative con-
served promoters, i.e. to macaque/rat promoters orthologous to human/mouse
promoters, respectively (based on liftOver conversion). Only enhancers and pro-
moter active in liver were used. Finally, we compared the average H3K4me3
coverage, normalized using the average input coverage, between all classes of
regulatory elements with a Mann–Whitney U-test.

PhastCons analysis. We extracted the phastCons scores from P/E enhancers and
other enhancers in human and mouse and plotted them over the whole regulatory
region (pseudoscaled to 1000 nt) and over the neighboring 1000 nt regions using
SeqPlots57. Heatmap clusters were defined using k-mean clustering. The phastCons
data used corresponded to the “hg38.phastCons20way” for human (multiple
alignments of 17 primates and three mammals) and the “mm10.60way.phast-
Cons60wayGlire” for mouse (multiple alignment of 8 glires).

Polarization of turnover events. To define the directionality of the turnover
events, we evaluated the presence of putative promoters or enhancers in regions
syntenic to P/E elements active in liver in marmoset and rabbit. In marmoset and
rabbit, enhancers corresponded to H3K27ac peaks not overlapping any H3K4me3
peak, the 1000 nt upstream of any (stable or unstable) assembled transcript, or any
exon of these transcripts; promoters were defined as the 1000 nt upstream of the
TSS of a stable transcript. Macaque and rat liver P/E element coordinates were
converted in their outgroup species genome using LiftOver (with -minMatch=
0.4), and we then evaluated the overlap between the converted coordinates and the
annotated regulatory regions.

To estimate the rate of regulatory element loss, we identified the orthologous
loci of liver promoters and enhancers from human and mouse in the other species
from the same clade (macaque/marmoset and rat/rabbit, respectively), and kept
only those loci that aligned to all species of the same clade. We then identified
human/mouse promoters associated (i.e. overlapping the 500 nt upstream of the
TSS) to a stable liver transcript in marmoset/rabbit (ancestral promoters).
Similarly, we defined as ancestral enhancers the human/mouse enhancers which
overlapped an H3K27ac peak and that were not associated to a promoter or an
H3K4me3 peak in marmoset/rabbit. The same approach was used to define
human/mouse promoters and enhancers conserved in macaque/rat. Ancestral
promoters and enhancers, which were not conserved in macaque/rat were defined
as lost.

To estimate the fraction of ancestral promoters corresponding to P/E elements,
we further calculated the overlap of primate and rodent P/E elements coordinates
converted in marmoset and rabbit, respectively, with the putative promoter of any
stable transcript (from any organ).

Sequence composition of regulatory elements. We extracted and compared the
GC content (using the nuc tool from BEDTools57) and CpG dinucleotides fre-
quency of different classes of regulatory elements in human and mouse using a
Mann–Whitney U-test. The same features were compared between orthologous P/
E elements in both lineages with a Wilcoxon signed-rank test. Finally, we estimated
whether the magnitude of the evolutionary change in GC content or CpG fre-
quency at P/E regions was higher than that measured at inactive regions (defined
above) to control for global skews in sequence composition. This was done by
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resampling 10,000 times from the set of inactive regions the same number of P/E
elements, and then comparing the mean GC and CpG difference in P/E elements
with the distribution of differences from the resampled set.

Core promoter motifs on regulatory elements. Core promoter motifs (POLII
collection) were obtained from the JASPAR 2018 database58. We compared the
relative enrichment of core promoter motifs between P/E elements and other
promoters and enhancers using AME58 with parameters --method ranksum and
--scoring max to evaluate differences in the maximum strength of the motifs.

U1/PAS motif composition of regulatory elements. We defined the U1
nucleotide motif with the de novo tool from HOMER59 (version 4.8.3) using as
input the FASTA sequences of the 50 bp around each splicing donor site (−25/
+25 nt) from 50,000 randomly selected human GENCODE transcripts. A similar
approach was adopted to define the PAS motif using a set of experimentally defined
PASs from human60. We determined the genome-wide location of U1 and PAS
sites with the scanMotifGenomeWide tool from HOMER59. To compare the dis-
tribution of the U1 and PAS motifs around P/E elements, we considered the most
upstream TSS of all P/E-associated transcripts in macaque and rat and projected
their location in the corresponding sister species using BLAT61. We considered
only novel P/E elements, given that U1/PAS motifs from downstream transcripts in
extended P/E loci might have conflated the U1/PAS signal in mouse and human.
We compared the density of U1 and PAS motifs over 1 kb up- and downstream of
the P/E-associated TSS in each species using a Wilcoxon signed-rank test. The
same approach was used to compare the density of these motifs between sister
species. The proximity of the closest U1 or PAS site up- or downstream of the P/E-
associated TSSs was calculated using closestBed from BEDTools57. To compare the
distribution of U1/PAS sites at enhancer elements, we considered only CAGE-
defined enhancers in human and mouse, and used their annotated CAGE peak as
the TSS of each element. We used liftOver to define the orthologous loci of human
and mouse enhancers in macaque and rat, respectively. We then averaged the
number of U1 and PAS motifs located 1000 bp up- and downstream of each
enhancer TSS and compared their density to that of P/E elements in all species.

Code availability. All processing of genomic coordinates was performed using
tools from BEDTools suite57 (version 2.25.0), samtools56 (version 0.1.19) and in-
house scripts. All statistical analysis was performed in R62 using two-tailed tests
(except when otherwise stated). The code used to perform all analyses presented in
this paper is available as Supplementary Data 9.

Data availability
Raw and processed datasets from this study have been submitted to the NCBI Gene
Expression Omnibus under the accession [GSE114191].
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