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Abstract

In this paper, we present numerical evidence that supports the notion of minimization in the sequence space of proteins for
a target conformation. We use the conformations of the real proteins in the Protein Data Bank (PDB) and present
computationally efficient methods to identify the sequences with minimum energy. We use edge-weighted connectivity
graph for ranking the residue sites with reduced amino acid alphabet and then use continuous optimization to obtain the
energy-minimizing sequences. Our methods enable the computation of a lower bound as well as a tight upper bound for
the energy of a given conformation. We validate our results by using three different inter-residue energy matrices for five
proteins from protein data bank (PDB), and by comparing our energy-minimizing sequences with 80 million diverse
sequences that are generated based on different considerations in each case. When we submitted some of our chosen
energy-minimizing sequences to Basic Local Alignment Search Tool (BLAST), we obtained some sequences from non-
redundant protein sequence database that are similar to ours with an E-value of the order of 10-7. In summary, we conclude
that proteins show a trend towards minimizing energy in the sequence space but do not seem to adopt the global energy-
minimizing sequence. The reason for this could be either that the existing energy matrices are not able to accurately
represent the inter-residue interactions in the context of the protein environment or that Nature does not push the
optimization in the sequence space, once it is able to perform the function.
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Introduction

Optimization is inherent to proteins, which are linear chains of

amino acid residues. Anfinsen’s hypothesis [1] is one example of

minimization of free energy in the conformation space, which is

the collection of three dimensional folded configurations of a

protein chain. This enables first principles approaches to protein

structure prediction [2,3]. Protein structure prediction involves

three steps. The first is to identify the segments of the protein chain

that form secondary structures, namely, alpha helices and beta

strands formed due to Hydrogen bonds between the backbone

carbonyl oxygen and the peptide nitrogen atoms. The second step

is to identify the pairs of beta strands which form hydrogen-

bonded beta sheets in parallel or anti-parallel form. The third step

involves the identification of inter-residue interactions which

optimally orients the secondary structures, linked by loops.

The complete set of possible sequences for a given conformation

is called the sequence space. For a N-residue chain, there will be

20N sequences in the sequence space. Protein design, therefore,

implies identifying the sequences that will fold to a target

conformation. The challenge however is to ensure that the

selected sequence indeed prefers the desired conformation. Thus,

the larger problem involves the search both in the sequence and in

the conformational space. In this paper we are limiting our search

for sequence space, which is not studied as extensively as the

search in the conformational space. There is no established

guiding principle or hypothesis for searching the protein sequence

space. However, it is a common practice to minimize the energy in

the sequence space [4–8]. These approaches assume that there is a

notion of minimization in the sequence space. Specifically, when a

conformation is chosen and we need to find sequences that are

likely to fold to that conformation, often energy-minimizing

sequences are searched for the chosen conformation. The

motivation for the present work is the development of a

computationally efficient method to generate sequences that

minimize the energy for a given conformation.

A search for new sequences by re-design of known proteins as well

as de novo protein design is beneficial. Proteins can be engineered to

have certain unusual and favorable properties. For example, Baker’s

group [9,10] found that computer-generated proteins folded much

faster than the wild types. Proteins are designed to have new metal

binding sites on a backbone template that is not known to have such

binding sites [11]. The stability of the engineered proteins can be

enhanced [12]. De novo protein design methods are useful for

generating sequences with better capabilities to fight diseases as

shown by the enhanced the antimicrobial property of hbD2, a 41-

residue peptide [13]. Improved specificity is also possible as

demonstrated [14] in the case of myoglobin family.

De novo protein design necessarily requires a search in the

sequence space. Although there is no guiding principle, many

experimental and computational approaches have been made.

Experimental approaches such as mutagenesis, rational design,

and directed evolution sample up to a few million sequences

[2,15], which is far too small compared to the possible number of

sequences. Computational approaches can consider much larger

number of sequences but the problem is overwhelming even for

modern computing power. Self-consistent mean field theory [16–

18] and dead-end elimination [19,20] approaches have been
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attempted to search the sequence space. These approaches

consider the side chain rotamer configurations, which is an added

dimension to the search in the sequence space. Such approaches

aim to achieve optimal packing that avoids steric hindrances and

have had some success. Genetic algorithms [21] and Monte Carlo

simulations [22] have been attempted to sample a large space of

sequences. Assigning probabilities for each amino acid to occupy

every residue site is another approach that has been followed for

optimization in the sequence space [23,24]. Levitt and co-workers

[14,25] emphasize that the both the sequence and conformation

spaces must be searched sequentially or simultaneously to retain

the specificity of proteins. Another interesting observation made

by Levitt’s group is that it is imperative to fix the composition of

the twenty amino acid residues in a protein in the sequence space

search to retain the specificity [26,27]. As one can expect, in the

absence of such a constraint, there will be a tendency towards

lowest-energy amino acid occupying all the residue sites. Similar

feature was also noted by Dill’s group [28] in the context of HP

models. Some recent work has considered flexible target backbone

conformations [29,30] in order to achieve the specificity.

The goal of present work is to explore efficient methods of

energy-minimized sequences for a target protein. Our earlier work

used graph theory [31] and continuous modeling of the sequence

space to generate energy-minimizing sequences [32,33] in the HP

model. In this work, we present an improved method that

combines these approaches to find the lower bound on the energy

for a target conformation. Furthermore, sequences are searched in

the reduced (five) alphabets model [34] of amino acids. While HP

model is too simplistic, considering all 20 amino acids is

computationally intractable. Hence, several efforts have been

made to group amino acids into a number between 2 and 20. For

this, a number of criteria can be used. For example, Venkatarajan

and Braun [35] used 237 properties to group amino acids.

Recently, our group used metric multi-dimensional scaling

(MMDS) to develop a technique to group 20 amino acids into

any number of required groups [36]. In that work, we showed that

group with five alphabets is optimal. Hence, in this work, we are

using five-grouping as a first step in our procedure. Later on, we

do consider all 20 amino acids so that no generality is lost.

This new method, unlike others presented in the literature, takes

only a few minutes of computations on a single-processor P4 desktop

computer. By using this technique, we have shown that a large

number of sequences with energies better than the native sequence

can be generated. Additionally we also show that the energy of the

native sequence is much lower, in comparison to the energies of the

random sequences threaded on the target conformation. This lends

support to the notion of minimization of the energy in the sequence

space. We further demonstrate that designing sequences by

constraining a fraction of the amino acids to their position in the

native sequence will yield sequences which are similar to the native

one, at the same time shifts the mean energy towards the native

sequence. Our results hold well for three different inter-residue pair-

wise energy models and for five proteins of different folds. Thus, our

results not only present concrete evidence to minimization in the

sequence space (but not to the global minimum) but also show promise

for a computationally efficient method for de novo protein design.

Results

We considered five proteins from the Protein Data Bank [37]:

Ribonuclease A (7RSA), T4-Lysozyme (1LYD), Bacillus Stear-

othermophilus Adenylate Kinase (1ZIP), Triosephosphate Isom-

erase (5TIM), and Tryptophanyl-trna Synthetase (1I6M), whose

Ca backbone conformations are shown in Figure 1.

We have generated eight different sets of sequences (each of

them containing 10 million sequences) by applying different

criteria (given in Table 1 and explained in Methods) for

Ribonuclease A (7RSA) and T4-Lysozyme (1LYD). Since the

trends were the same in these two, we generated only the 1st and

5th sets of sequences for the remaining three proteins. The energy

distributions for all the cases are calculated for three different

inter-residue energy matrices [38–40] but the results are presented

only for MJ matrix [38] as discussed next.

(a) Energies of the designed and randomly generated
sequences

Ten million sequences were generated in each of the eight sets

(see Table 1) for ribonuclease-A and lysozyme. They were

threaded onto the native conformation and the energies of the

protein structure of these sequences were evaluated by using pair-

wise potentials as described in the Methods section. The results are

presented in Figures 2a and 2b. As expected, the energies of the

random sequences followed the Gaussian distribution indicated by

curve 1 in Figures 2a–b. Interestingly we see that the energy of the

native sequence (indicated by inverted triangle (.)) is at the tail

end of the randomly generated sequences. Indeed, the energy of

the native sequence is at least one standard deviation lower than

the mean energy of the random sequences in the Gaussian

distribution curve. Curves 2, 3 and 4 correspond respectively to

the randomly generated sequences by constraining some of the

residues to their position on the basis of conservation, top ranks in

the structure (ranking method described in the method section),

and residues belonging to the same group (described in the

Method section). The mean energies in these constrained cases are

lower than that of the completely random set.

This means that any bias towards the native sequence decreases

the energy and moves towards the energy of the native one. The

fact that the energy of the native sequence lies at the tail end of the

random sequences (40 million, as indicated by curves 1–4), clearly

shows that the energy of the native sequence is minimized in the

sequence space. This observation is consistent with what has been

reported in the literature [29].

Although we observe that the native sequences are optimized in

the sequence space, we find many more sequences with much lower

energies in a different part of the sequence space as shown by curves

5–8 in Figures 2a–b. Curve 5 in Figures 2a–b shows the energy

distribution of 10 million sequences generated by our edge-weight

ranking method that used five-alphabet amino acid grouping [34] (see

Methods section). Curves 6–8 show the energy distributions of 10

million sequences each in which some functionally or structurally

important sites were conserved in different ways (see Methods

section). As can be seen in the figure, the mean energies of these 40

million designed sequences are much lower than those of the random

sequences (curves 1–4) and interestingly also lower than the native

sequence. The triangle marker (D) in Figures 2a–b shows the lower

bound on the energy for the chosen conformation as obtained by our

optimization method. This indicates that the native sequence is not

going for the globally minimum energy in the sequence space. In fact

we find that the lower bound energy is 8–20 standard deviations

smaller than the mean energy of the designed sequences and the

energy of the native sequence. This indicates that the native sequence

does not adopt the global minimum in the sequence space. An equally

important factor to notice is that any bias by way of conservation of

selected sites (shown in curves 6–8) pushes the energy distribution

towards the native sequence. This is significant because it enables us

to study what criteria or biases would lead to sequences that resemble

the native sequence. In fact, the sequence with the lower bound

Search in Sequence Space
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energy has around 30% residue at the identical positions (in case for

7RSA) as in the native sequence as shown in Figure 3.

The same behavior that was explained above for Ribonuclease A

and Lysozyme was observed for the other three proteins. Figures 4a-c

show that the energy of the native sequence is always straddled

between the energies of the random sequences and the designed

sequences. The mean energy and the standard deviation for designed

and random sequences for all the chosen proteins have been

summarized in Table 2. It shows that the energy of the native

sequence is at least one standard deviation lower than the mean energy

of the generated random sequences whereas it is very high (in the range

of 7–22 standard deviations) than the mean energy of the designed

Table 1. Generation of the eight sets of sequences from the native sequence.

Set No. Method of generation*

Random sequences

1 Completely random set

2 The conserved residues in the protein family (,10%) are constrained in their structural position and others were randomly assigned

3 10% of the top rankeda residues are constrained in their structural position and others were randomly filled

4 Random sequences with the constraint of arbitrary selected group of five alphabet (four amino acids to each)

Designed sequences

5 Designed sequences based on rankinga and reduced amino acid (five) alphabetsb

6 Designed sequences with the conserved residues being constraint in their structural position

7 Designed sequences with the residues in the largest clusterc being constrained

8 Designed sequences with 10% of the rankeda residues are constrained in their structural position

*the residues composition all the generated sequences is the same as of the native sequence.
atopology based ranking scheme (Jha et al. 2007).
breduced amino acid group of five alphabet (Luthra et al. 2007).
clargest cluster of side-chain based interacting amino-acids at Imin = 8% (Brinda and Vishveshwara 2005).
doi:10.1371/journal.pone.0006684.t001

Figure 1. Proteins structures considered in the current study. PDB codes are: 7RSA, 1LYD, 5TIM, 1ZIP, and 1I6M.
doi:10.1371/journal.pone.0006684.g001

Search in Sequence Space
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sequences. Another interesting point is that the standard deviation for

the random sequences is much larger than of the designed sequences. It

shows that the energies of the designed sequences are not widely spread

like random sequences and the Gaussian distribution for them have a

sharp peak. The same behavior was seen in all the five proteins that we

considered here. The mean of the energy of the random sequences

gives a tight upper bound on the energy for a given target

conformation. Thus, we have been able to provide a lower and an

upper bound for the energy of the sequences for a given protein.

We note that the above observations hold good for three

different inter-residue energy matrices [38–40] that we used to test

the consistency of our observations. It is clear that the method of

evaluating energy has no significant influence on our observations.

(b) Similarity between generated and existing sequences
The similarity between the native (7RSA and 1LYD) and the

generated sequences were found by using NCBI BLAST program

[41] for all sets of corresponding sequences. The sequence with the

lowest E-value from each generated set was BLASTed against the

NCBI non-redundant protein sequences database. No hits were

obtained for the sequence obtained from the set, which was not

biased even though it had 30% residues at the same position. The

sequence from other three sets with 10% fixed residues (conserved

in the family of that protein, components of largest connected

cluster, or highly ranked; curves 6, 7, and 8 respectively in

Figures 2 (a) and (b)) gave hits with E-value close to e207. The top

ten hits obtained for 7RSA and 1LYD are given in Table 3 and

Table 4 respectively. These results indicate that retaining a small

fraction (in this case 10%) of the residues at their original position

gives rise to sequences closer to existing ones in the database.

(c) Contact performances in the designed sequences
To compare the distribution of different interacting amino acid

pairs in random sequences and the designed sequences, we took

about 10,000 sequences from each of the mid region of random,

mid of the designed ones, and from the tail region of random

sequences (close to native one). The selected sequences are

mapped on to the structure and the interacting amino acid residue

pairs are identified. This information is converted into a

normalized 20620 matrix by the following equation:

NL{F ~
CL{F

Ctotal

� �
Nffiffiffiffiffiffiffiffiffiffi
nLnF
p
� �

where CL2F = total number of contacts between amino acid (L)

and (F),

Ctotal = total number of contacts in dataset of selected

sequences,

nL = number of amino acid (L) in protein,

and N = toal number of residue in protein

Three matrices for 7RSA have been produced by this method

and are given in the supplementary material. Tables S1 and Table

Figure 2. Energy profile of random and designed sequences. Energy distribution of set of random (curves 1–4) and designed (curves 5–8)
sequences for 7RSA shown in Figure 2a and for 1LYd in Figure 2b. The triangle marker on the left indicates the lower bound energy while the inverted
triangle marker shows the energy of the real sequence.
doi:10.1371/journal.pone.0006684.g002

Figure 3. Sequence similarity between native and the designed sequence. The native (indicated with n) and one of the designed (indicated
with d) sequences of Ribonuclease A (7RSA). There are 30% residues at the same positions in two sequences as shown above with shaded blocks
around the single-letter codes of the amino acids.
doi:10.1371/journal.pone.0006684.g003

Search in Sequence Space
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S2 represent the normalized value of contacting amino acid pairs

in the middle part and tail region of random sequences; and Table

S3 is for contacts from mid-portion of designed sequences.

The total number of interactions made by each of the 20 amino

acid residues was extracted from the matrices. The fraction of

contacts made by each of the amino acid type in different sets of

sequences is plotted in Figure 5. (Similar pattern was obtained for

other four proteins.) When we compare the contacts made by the

sequences that are close the native one with completely random

sequences (mid-region of the random curve), we find that the

contacts made by hydrophobic residues are enhanced and the

contacts of hydrophilic and polar residues have slightly decreased

in the sequences close to the native. Such a behavior is enhanced

in the designed sequences, with greater change than those of the

random sequences close to the native one. This clearly shows that

the native and the native-like (energy-wise) sequences stabilize

their structure by increasing the hydrophobic interactions. By the

same token, more stable sequences can be designed, as done in this

case by increasing the hydrophobic contacts.

Discussion

In the present study we have designed sequences for chosen

protein conformations (Ribonuclease A (7RSA), T4-Lysozyme

(1LYD), Bacillus Stearothermophilus Adenylate Kinase (1ZIP),

Triosephosphate Isomerase (5TIM), and Tryptophanyl-trna

Synthetase (1I6M)) on the basis of the topology based ranking

[31], reduced amino acid alphabet [34] and a continuous

optimization [32,33] procedure. The results indicate that it is

possible to design sequences with better energy than the native

sequence in a simple and elegant manner. The fitness of these

sequences in terms of their internal stability has been confirmed by

comparing with a large number (80 million) of randomly

generated and the designed sequences. In fact the energy

distribution of the designed and randomly generated sequences

has clearly been delineated. In addition, this study has provided

lower and upper bounds for the energies in the sequence space.

The results have interesting biological inferences that the energy

of the native sequence is at the tail end of the random distribution. It

indicates that the native sequences have been minimized in the

sequence space. However the optimization has not been pushed

towards a global minimum, since our designed sequences perform

much better than the native sequence. We can rationalize this result

as follows: (i) the available energy functions mainly consider the

interactions between the amino acids within the protein and the

effect of environment of the protein is not adequately represented.

(ii) The sequences might have evolved to attain a certain degree of

stability to perform the required function. Further evolution to

increase the stability may not add any advantage. This is a likely

scenario since most biological systems are optimized only up to a

point so that it efficiently performs the desired function.

A careful analysis of the residue-wise interaction in the designed

and randomly generated sequences has shown that the native and

the native-like sequences have achieved moderate stability by

Figure 4. Energy profile of random and designed sequences. Energy distributions of random (curve 1) and designed (curves 2) sequences
obtained for three proteins (a) 1ZIP, (b) 5TIM, and (c) 1I6M. The triangle marker (D) on the left indicates the lower bound energy while the inverted
triangle marker on the right shows the energy of the native sequence. Notice that the energy of the native sequence is in between the mean energies
of the random and designed sequences’ energy distributions. The lower bound energy found by our method is much lower than the energy of the
native sequence in all cases.
doi:10.1371/journal.pone.0006684.g004

Table 2. Standard deviation for the random and the designed sequences.

S.
No.

PDB
code

No. of
residues

Native
energy
(En)

Mean (mrand)
of random
sequences

Std. dev. (srand)
of random
sequences

En{mrand

srand

of

random

sequences

Mean (mem) of
designed
sequences

Std. dev. (sem)
of designed
sequences

En{mem

sem

of

designed

sequences

1 7RSA 124 2816.02 2730 58.17 21.48 2917.5 13.42 7.56

2 1LYD 164 21331.5 21285 78.38 20.59 21578 16.31 15.11

3 1ZIP 217 21824.61 21715 87.04 21.26 22102 19.2 14.45

4 5TIM 249 22017.69 21878 102.9 21.36 22378 16.31 22.09

5 1I6M 326 22752.46 22602 114.5 21.31 23232 24.97 19.20

doi:10.1371/journal.pone.0006684.t002
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increasing the number of interactions between hydrophobic

residues. Further increase of hydrophobic interactions has lead

to high stability of designed sequences.

One can ask the question is that how relevant are these

generated sequences? We have shown that the designed sequences

give hits with the existing sequences in the NCBI database [41],

when we constrain the position in the native sequence of some of

the structurally or functionally important residue. The absence of

such sequences in the database indicates that either the nature has

not explored such sequences and the existing ones are a subset of

total possible sequences or they are unfit for any function. It is

likely that certain residues in certain positions are required for the

function of the protein and the de novo design may be focused on

the set of sequences which are more stable than the native ones,

but in the vicinity of the native so that they retain their function.

Materials and Methods

(a) Generation of five-monomer sequence from the
native protein

We considered five proteins from the Protein Data Bank [37]:

Ribonuclease A (7RSA), T4-Lysozyme (1LYD), Bacillus Stear-

othermophilus Adenylate Kinase (1ZIP), Triosephosphate Isom-

erase (5TIM), and Tryptophanyl-trna Synthetase (1I6M), whose

Ca backbone conformations are shown in Figure 1.

We start with a protein conformation chosen from the Protein

Data Bank [37] and construct its connectivity (adjacency) matrix

by using its Ca atom coordinates. We compute the inter-residue

Ca - Ca distance to construct the adjacency matrix (A) and use

6.5 Å [38] as the cut-off distance to decide the interacting pairs of

residues. We exclude the adjacent residues in the chain. Thus, the

element Aij = 1 if ith and jth Ca atoms are not the sequence

neighbors and are within a distance of 6.5 Å, and 0 otherwise.

This is represented by an example of a simple 10 residue peptide

(Chignolin, 1UAO) in Figure 6. The molecular topology, the non-

covalent connections and the corresponding adjacency matrix are

given respectively in Figures 6a, 6b and 6c.

Each of the nodes (residue) in the structure graph is ranked as

described in our earlier work [31]. Briefly, the nodes are weighted

on the basis of their primary and secondary connections. In our

earlier work, the amino acids were classified as only two types (H

and P). In the present work, we have classified the amino acids into

five groups labeled A, B, C, D, and E [34] as given below.

(i) A – (L F I)

(ii) B – (M V W CY)

Table 3. BLAST results for Ribonuclease A (7RSA) (sequence identity 33%).

Protein name* PDB Score E-value

C[40,95]a Variant of Bovine Pancreatic Rnase A 1A5P 58.5 1e-07

Study of Reductive Unfolding Pathways of Rnase A (Y92g Mutant) 1YMW 57.4 3e-07

Crystal Structure of F120a Mutant of Bovine Pancreatic Rnase A 1EIC 57.4 3e-07

Structure of The P93g Variant of Rnase A 3RSP 57.4 3e-07

Crystal Structure of F120g Mutant of Bovine Pancreatic Rnase A 1EID 57.4 4e-07

Structure of A Synthetic, Non-Natural Analogue of Rnase A 2OQF 57.0 5e-07

Structure of A Cis-Proline (P114) to Glycine Variant of Rnase A 1KH8 57.0 5e-07

Crystal Structure of F120w Mutant of Bovine Pancreatic Rnase A 1EIE 57.0 5e-07

Thr45gly Variant of Rnase A 1C8W 57.0 5e-07

X-Ray Structure of Synthetic [d83a] Rnase A 2NUI 57.0 5e-07

*the length of submitted sequence and the alignment length are 124.
doi:10.1371/journal.pone.0006684.t003

Table 4. BLAST results for T4-Lysozyme (1LYD) (sequence identity 30–35%).

Protein name* PDB Score E-value

Alanine replacements within alpha- helix 126-134 of T4 Lysozyme 1L72 49.7 6e-05

N-Phenylglycinonitrile in complex with T4 Lysozyme 2RBN 49.7 7e-05

T4 Lysozyme mutant L99aM102Q 1LGU 49.7 7e-05

Site-Directed mutations of T4 Lysozyme 1L24 49.3 9e-05

Thr 157 to the thermodynamic stability of Phage T4 Lysozyme 1L12 47.8 2e-04

Alanine replacements within alpha- helix 126-134 of T4 Lysozyme 1L71 47.4 3e-04

The combination of point Mutations in T4 Lysozyme 189L 46.6 5e-04

Halide Binding Site to Bypass the 1000-atom limit to ab initio Structure Determination 1SWY 46.6 6e-04

Alpha-Helix Propensity within the context of a Folded Protein: Sites 44 and 131 in Bacteriophage 1DYE 46.6 6e-04

The Stability of T4 Lysozyme determined by directed Mutagenesis 1L38 46.6 7e-04

*the length of submitted sequence is 164 whereas the alignment is 102.
doi:10.1371/journal.pone.0006684.t004

Search in Sequence Space
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(iii) C – (H A)

(iv) D – (T G P R Q S N E D)

(v) E – (K)

The amino acid composition in the selected protein is converted

to five groups. The ranked sites are filled in the order of the types

A, B, C, D, and E. (The rationale for such an assignment was

discussed in Luthra et.al. [34])

This procedure is illustrated by using the example of

Ribonuclease A (7RSA). The amino acid sequence of 7RSA is:

KETAAAKFERQHMDSSTSAASSSNYCNQMMKSRNLTK-

DRCKPVNTFVHESLADVQAVCSQKNVACKNGQTNCYQS-

YSTMSITDCRETGSSKYPNCAYKTTQANKHIIVACEGNPY-

VPVHFDASV.

According to our reduced five amino acid alphabet, 7RSA has

the following composition of the five monomer types:

A= (L+F+I) = (2+3+3) = 8,

B = (M+V+W+C+Y) = (4+9+0+8+6) = 27,

C= (H+A) = (4+12) = 16,

D= (T+G+P+R+Q+S+N+E+D)

= (10+3+4+4+7+15+10+5+5) = 63,

E = (K) = 10;

For 7RSA’s conformation, we design a sequence with five

monomer types by assigning A type to the first eight residue sites

that are highly ranked. The next 27 are assigned B type and so on.

Thus, we obtain the five-monomer sequence for 7RSA and, in a

similar manner, for any other protein. However the total energy of

the protein structure is calculated by converting the five types back

into twenty monomer types as described below.

(b) Twenty monomer sequences from a five monomer
sequence

Since each of the five groups (A, B, C, D, and E) we considered

have multiple amino acids, there exist numerous 20-monomer

sequences corresponding to the lowest-energy five-monomer

sequence. For instance, A type of monomer can be replaced by

leucine, phenylalanine or isoleucine. For example, the number of

possible 20-monomer sequence for 7RSA is4.261087, as computed

using the information on the number of amino acids in each of the

five types. Thus the number of possible designed sequences for

7RSA with the composition fixed at the type level is:

38|527|216|963|110~4:19|1087

The number of sequences with the same composition of twenty

Figure 5. Distribution of contact of amino acids in different set
of sequences. Fraction of contact made by 20 twenty different amino
acids in the sets of sequences (the sequences for middle region of
random sequences (MRRS), tail region of random sequences (TRRS) and
middle region of designed sequences (MRDS)), generated for 7RSA.
(Note: the tryptophan (W) has a value of zero since 7RSA has no
tryptophan.)
doi:10.1371/journal.pone.0006684.g005

Figure 6. A 10-residue designed peptide CHIGNOLIN (1UAO). (a) Ribbon representation, (b) graph representation and (c) the adjacency
matrix (A) for the non-covalent contacts.
doi:10.1371/journal.pone.0006684.g006
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amino acids as 7RSA reduces to 2.0610
70

, as shown below.

8!

2!|3!|3!

� �
|

27!

4!|9!|0!|8!|6!

� �
|

16!

4!|12!

� �

|
63!

10!|3!|4!|4!|7|15!|10!|5!|5!

� �
|

10!

10!

� �
~2:01|1070

However this is a very large number for generating the

sequences and we have generated a fraction of this number as

described in section (d).

(c) Evaluation of the Energy and Lower bound in the
sequence space

We have computed the energies using MJ potential [38], as well

as two other potentials (Kolimski and Skoinick [39] and Hinds and

Levitt [40]). Since the general features were qualitatively similar,

the results pertaining only to MJ potential are presented.

Global minimum energy conformation can be identified from a

complete enumeration of the sequence space. However an

estimate of the lower bound can be obtained by optimization

techniques. We have chosen the optimization method of moving

asymptotes (MMA) [42] to find possible lowest energy sequence(s)

with the same amino acid composition. The energy of a sequence

in the chosen conformation is evaluated by using the Minayawa-

Jernigan (MJ) matrix [38], for the interacting pairs of amino acids.

We have used a gradient based optimization method [33] for

continuous modeling of the sequence space. The optimization

problem is stated below.

Minmize
x

EQ~
1

2
xT Qx

Subject to

Xmi

k~1

x Pi{1

j~1

mj

� �
zk

{1~0 for i~1,2, � � � ,N

0ƒxjƒ1 for j~1,2, � � � ,M~
XN

j~1

mj

where

EQ~ 1
2

PN
i~1

PN
j~1

Aij

Pmi

k~1

Pmj

l~1

e ak,alð Þx k{1ð ÞNzix l{1ð ÞNzj

� �" #

= total inter-residue energy of the protein,

x = an array of M variables that determines the type of the amino

acids at each residue site,

N = the number of residue sites in the protein chain,

mi = the number of permitted amino acids at the ith residue site,

and

Q = an M6M matrix that gives the total inter-residue energy as

per EQ

In the above problem, we continuously vary the type of amino

acid at each residue site among different amino acids within a

group. Since we have five groups (A, B, C, D, and E) and have

different number of amino acids in each group, mi is different for

each residue site. In order to ensure that more than one amino

acid does not occupy a particular site, we have used a constraint in

the above equation to take care of this problem. The continuous

nature of the variables in x enables us to vary the type of amino

acid so that gradients can be computed easily. If x Pi{1

j~1

mj

� �
zk

is

equal to one, it means that kth amino acid type is assigned to ith

residue site. In that case, the constraint ensures that the other

variables associated with the ith residue site are zero. The

formulation of this problem also permits shared occupation by

different amino acids belonging to the same group at the ith residue

site are zero. The energy function EQ is written such that it is exact

when only one amino acid is assigned to a site as well as when

multiple amino acids occupy the same site. This feature enables us

to have a continuous modeling of the discrete sequence space.

The energy of the sequences obtained from this optimization

method is shown by triangle (D) in Figures 2 and 4 for the five

different proteins. The optimization method takes a few minutes

on a single-processor P4 desktop computer in its implementation

in Matlab.

(d) Generation of Sequences
Although a complete enumeration of the sequences for a

structure is not possible, we have generated a fraction of the

sequence space (,109). Sequence sampling was done by

considering eight different sets of sequences with different

constraints and conditions. 108 sequences were generated in each

of the sets. The methods adopted for the generation of these eight

sets are summarized in Table 1. The composition was fixed in all

cases to be in agreement with the composition of the amino acids

in the native sequence. In order to evaluate the performance of the

designed sequences, sets of sequences (sets 5–8) which are close to

the designed ones were generated. These sequences were

compared with other sets of sequences (sets 1–4) which were

searched randomly in the sequence space.

Sequences in set-1 were generated in a completely random

fashion obeying the composition rule. The sets-2 and 3 are also

random sequences in which residues in certain positions are

constrained based on conservation and on the topological rank

(using the node weights on the basis of their primary and

secondary connections [31]). In set-4, we arbitrarily divided twenty

amino acids into five types, each consisting of four residues. Then

a random sequence of five types was generated. In the next step,

sequences of twenty amino acids were generated from this five type

sequence by randomly choosing the residues which belong to the

same type (This experiment was done to see the effect of any kind

of constraint).

In the designed sequence sets (set 5–8), topology based ranking

scheme (using the node weights on the basis of their primary and

secondary connections) [31] was used to rank the residues sites and

a sequence of reduced amino acid alphabet of five groups (labeled

as A, B, C, D, and E) [34] as described in section (a) was

generated. Sequences in set 5 were generated by converting the

five type of monomer to twenty types as described in section (b). In

sets 6–8, about 10% of the amino acids were constrained in their

structural position on the basis of conservation in the family of

protein, component of the largest cluster (following the procedure

given in Brinda and Vishveshwara [43]), and the top ranked

residues [31]. The list of conserved positions and respective amino

acids has been given in Table 5. The other 90% of the positions

were filled as described for set-5.

In this study, we have considered five proteins of different sizes

and folds (Ribonuclease A (7RSA), T4-Lysozyme (1LYD), Bacillus

Stearothermophilus Adenylate Kinase (1ZIP), Triosephosphate

Isomerase (5TIM), and Tryptophanyl-trna Synthetase (1I6M)). An

extensive search as described above has been done on 7RSA and

1LYD. Since similar results were obtained for these proteins, only

two types of sequences (108) were generated for 1ZIP, 5TIM and

1I6M. The time taken by each set of sequences (108) depends on

the number of amino acids in the protein. For example, it took 7
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days on a single-processor P4 desktop computer for each set in the

case of 5TIM (249residues). In the same way the time for

calculating the energy of all sequences of one set was around

75 hours.

Supporting Information

Table S1 Contacting pairs in the middle part of random

sequences (for 7RSA)

Found at: doi:10.1371/journal.pone.0006684.s001 (0.03 MB

DOC)

Table S2 Contacting pairs in the tail region of random

sequences (for 7RSA)

Found at: doi:10.1371/journal.pone.0006684.s002 (0.03 MB

DOC)

Table S3 Contacting pairs in the middle part of ranked

sequences (for 7RSA)

Found at: doi:10.1371/journal.pone.0006684.s003 (0.03 MB

DOC)
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