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S u m m a r y  

Members of the Ets family of proto-oncogenes encode sequence-specific transcription factors that 
bind to a purine-rich motif centered around a conserved GGA trinucleotide. Ets binding sites 
have been identified in the transcriptional regulatory regions of multiple T cell genes including 
the T cell receptor cx and fl (TCR-c~ and -fl) enhancers and the Ib2 enhancer, as well as in 
the enhancers of several T cell-trophic viruses including Maloney sarcoma virus, human leukemia 
virus type 1, and human immunodeficiency virus-2. T cells express multiple members of the 
Ets gene family including Ets-1, Ets-2, GABPo~, Elf-l, and Fli-1. The different patterns of expression 
and protein-protein interactions of these different Ets family members undoubtedly contribute 
to their ability to specifically regulate distinct sets of T cell genes. However, previous studies 
have suggested that different Ets family members might also display distinct DNA binding 
specificities. In this report, we have examined the DNA binding characteristics of two Ets family 
members, Ets-1 and Elf-l, that are highly expressed in T cells. The results demonstrate that the 
minimal DNA binding domain of these proteins consists of adjacent basic and putative o~-helical 
regions that are conserved in all of the known Ets family members. Both regions are required 
for DNA binding activity. In vitro binding studies demonstrated that Ets-1 and Elf-1 display 
distinct DNA binding specificities, and, thereby interact preferentially with different naturally 
occurring Ets binding sites. A comparison of known Ets binding sites identified three nucleotides 
at the 3' end of these sequences that control the differential binding of the Ets-1 and Elf-1 proteins. 
These results are consistent with a model in which different Ets family members regulate the 
expression of different T cell genes by binding preferentially to purine-rich sequences that share 
a GGA core motif, but contain distinct flanking sequences. 

T he coordinate transcriptional regulation of sets of genes 
represents one of the important mechanisms that enable 

eukaryotic cells to respond to diverse developmental and en- 
vironmental signals. Thus, for example, resting T lympho- 
cytes express a set of tissue-specific genes that are important 
for their specialized functions, including the TCR/CD3 genes, 
and the genes encoding accessory molecules such as the CD4, 
CDS, and CD28 cell-surface antigens. Activation of such 
resting peripheral blood T cells after binding of antigen/MHC 
determinants by the TCR results in a complex pattern of 
de novo gene expression that includes the transcriptional in- 
duction of genes encoding multiple lymphokines and cell-sur- 
face antigens. The molecular mechanisms underlying tissue- 
specific gene expression in resting T cells and coordinate 
transcriptional induction after T cell activation have been the 
subject of intense scrutiny over the past several years (1). 

Recent studies from several laboratories have demonstrated 

that members of the Ets proto-oncogene family encode tran- 
scription factors that recognize a purine-rich sequence: 

AAGA r.r,_~, AAAA 
GGCC ~ TGTG 

C 

This sequence is present in the transcriptional regulatory 
regions of several viral and cellular genes that are preferen- 
tially expressed in T cells (2-6). Thus, for example, Ets-1 
binding sites in the human TCR-a gene enhancer (4), as well 
as the Maloney sarcoma virus (MSV) 1 (3) and human 
leukemia virus type 1 (HTLV-1) (2) enhancers appear to play 
critical roles in regulating the expression of these genes. Similar 

1 Abbreviations used in this paper: aa, amino acid; dpm, disintegrations per 
minute; DTT, dithiothreitol; EMSA, electrophoretic mobility shift assay; 
HTLV-1, human leukemia virus type 1; MSV, Maloney sarcoma virus. 
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purine-rich sequences are also present in the transcriptional 
regulatory regions of a number of additional T cell-specific 
genes including the TCR-~ enhancer (7), the Ib2 (8, 9), IL-3 
(10), and GM-CSF (11) promoter/enhancers, and the human 
immunodeficiency virus type 2 (HIV-2) enhancer (12) (see 
Fig. 1). The large number of potential Ets binding sites in 
these genes that are known to be expressed at distinct devel- 
opmental and activational stages in T cells raised the question 
of how these genes could all be regulated by a common set 
of Ets proteins. Recent studies of T cell Ets proteins have 
suggested a solution to this apparent paradox. First, it is now 
clear that multiple Ets proteins are present in resting and ac- 
tivated human T cells. These include Ets-1 (13), Ets-2 (13), 
Elf-1 (9), Fli-1 (14), and GABPot (15). Second, two purine- 
rich sequences in the previously described NFAT-1 and 
NF-IL2B footprints of the IL-2 enhancer (16) were shown 
to bind to a novel Ets family member, Elf-l, but not to Ets-1 
(9). These results suggested that different Ets family members 
might display distinct DNA binding specificities, and, thereby 
bind to, and regulate distinct sets of genes in resting and ac- 
tivated T cells. In this report, we provide experimental evi- 
dence that proves this hypothesis and elucidates the molec- 
ular basis for the distinct DNA binding specificities of two 
different Ets family members. 

Using deletion and mutation analyses we have localized 
the DNA binding domain of Ets-1 to a 116-amino acid poly- 
peptide that contains adjacent basic and putative or-helical 
domains, and that is conserved in all of the known Ets family 
members. Comparisons of the structures of the DNA binding 
domains of the different Ets family members, as well as their 
DNA binding specificities in vitro demonstrated that there 
are sub-families of Ets proteins that contain evolutionarily- 
conserved DNA binding domains. Members of these different 
sub-families display distinct DNA binding specificities. Thus, 
for example human Ets-1, which contains a DNA binding 
domain that is nearly identical to those of human and Dro- 
sophila Ets-2, binds preferentially to purine-rich sites within 
the TCR-ot and -/3 enhancers, but not to two Ets binding 
sites in the IL-2 enhancer. Conversely, Elf-l, which contains 
a DNA binding domain that is nearly identical to that of 
the Drosophila transcription factor, E74, binds preferentially 
to the IL-2 and HIV-2 enhancers, but not to the Ets binding 
sites in the TCtL-ot and -~ enhancers. Finally, a comparison 
of the known Ets binding sites in different T cell genes al- 
lowed the identification of three nucleotides at the 3' end 
of the binding sites that play an important role in control- 
ling the fine specificity of DNA binding by Ets-1 and Elf-1. 
Taken together, these findings help to explain how different 
Ets proteins regulate T cell transcription in response to mul- 
tiple developmental and activational signals. 

Materials and Methods 
Plasmids. Truncated versions of the human Ets-1 eDNA con- 

taining a consensus eukaryotic initiation codon at the 5' end were 
prepared by the PCR using the following synthetic oligonucleo- 
tide primers: 

(tEts-1325-441) 
5' Primer: CGAAGCTTCCACCATGGCCCTAGCTGGCTACACAGGCAGTG- 

GACCAATC 
3' Primer: GCGATATCACTCGTCGGCATCTGGCTTGACGTCCAGCATGGC 

(tEts-1372-441) 
5' Primer: CCAAGCTTCCACCATGGCCAGGAGATGGGGAAAGAGGAAAAAC 
3' Primer: GCGATATCACTCGTCGGCATCTGGCTTGACGTCCAGCATGGC 

(tEts-132s-392) 
5' Primer: CGAAGCTTCCACCATGGCCCTAGCTGGCTACACAGGCAGTG- 

GACCAATC 
3' Primer: GCGGATCCTCAGCCACGGCTCAGTTTCTCATAATTCATCTT- 

AGG 

These truncated cDNAs were cloned into the HindlII and EcoRV 
sites of pcDNA1/NEO (Invitrogen, San Diego, CA) for use in 
in vitro transcription and translation reactions. The sequence of 
the full-length Elf-1 cDNA is available from Genbank, accession 
number M82882. A truncated version of the Elf-1 eDNA (Elf- 
1108-~4) was prepared by PCR with the following synthetic oli- 
gonucleotide primers: 

5' Primer: GGGATATCCCACCATGGATTCCCCTGGCCCTATGCTGGATG 
3' Primer: GCCTCGAGCTAAAAAGAGTTGGGTTCCAGCAGTTCGTTTTG 

This truncated eDNA was cloned into the EcoR.V and Xhol sites 
of pcDNA1/NEO (Invitrogen) for use in in vitro transcription and 
translation reactions. The s-helix, basic domain, and W2 and W3 
mutants of Ets-1 were constructed by the overlap extension method 
of PCIL (17) with the following sets of PCR primers: 

(ol-helix mutant) 
5' Primer 1: CAGCCTATCCAGAATCCCGCTATACCTCGG 
3' Primer 1" CAAGTCCTGGCTTTCCTTTCCCAACTGCGC 
5' Primer 2: AGATCTCAGGTTCATCTGGAATTACTCACTGATAAATCCT- 

GTCAG 
3' Primer 2: GAGTAATTCCAGATGAACCTGAGATCTCTGGATTGGTCCA- 

CTGCCTGTGTAGCC 

(Basic domain mutant) 
5' Pr,mer 1: CAGCCTATCCAGAATCCCGCTATACCTCGG 
3' Primer 1" CAAGTCCTGGCTTTCCTTTCCCAACTGCGC 
5' Primer 2: GTAGGCAACTCTTCCGACAAAAACATCATCCACAAGACAG- 

CGGGG 
3' Primer 2: GATGTTTTTGTCGGAAGAGTTGCCTACGCCACGGCTCAGT- 

TTCTCATAATTCATCTTAGG 

(W2 mutant) 
5' Primer 1: CAGCCTATCCAGAATCCCGCTATACCTCGG 
3' Primer 1' CAAGTCCTGGCTTTCCTTTCCCAACTGCGC 
5' Primer 2: AGCTTGACAGGAGATGGCTGGGAATTCAAACTTTCTGAC 
3' Primer 2: CCCAGCCATCTCCTGTCAAGCTGATAAAAGACTGACAGGAT- 

TTATCAGTGAG 

(W3 mutant) 
5' Primer 1: CAGCCTATCCAGAATCCCGCTATACCTCGG 
3' Primer 1: CAAGTCCTGGCTTTCCTTTCCCAACTGCGC 
5' Primer 2: AGATCCGGAAAGAGGAAAAACAAACCTAAGATGAATTATGAG 
3' Primer 2: AGGTTTGTTTTTCCTCTTTCCGGATCTCCTGGCCACCTCAT- 

CTGGGTCAAAAAC 

For the c~-helix and basic domain mutants, the products of the 
second PCR reaction were digested with SphI and AatlI, and the 
resulting fragment containing the mutation was ligated into 
SphI/AatII-digested pcDNA1/NEO plasmid containing the full- 
length Ets-1 cDNA. For the W2 and W3 mutants, the products 
of the second PCtL reaction were subjected to repeat PCR. using 
the (Ets-1325-441) primers (see above) before cloning into the Hin- 
dill and EcoRV sites of pcDNA1/NEO. The sequence of each mu- 
tant was confirmed by dideoxy DNA sequence analysis. Plasmid 
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DNA was prepared by cesium chloride density gradient centrifu- 
gation as previously described (7). 

In Vitro Transcription and Translation Reactions. In vitro transcrip- 
tion reactions were carried out using a commercially available kit 
(Invitrogen) according to the manufacturer's instructions. In vitro 
translation reactions were performed using a commercially available 
rabbit reticulocyte system (Promega Corp., Madison, WI) according 
to the manufacturer's instructions, as described previously (18). 

Electrophoretic Mobility Shift Assays (EMSAs). The following 
double-stranded oligonucleotides containing overhanging BamHI/ 
BgllI ends were synthesized on a model 380]3 DNA synthesizer 
(Applied Biosystems, Inc., Foster City, CA) and labeled with 
32p-nucleotides by fill-in with the Klenow fragment of DNA poly- 
merase I before use in EMSAs: 

NFA'E AGAAAGGAGGAAAAACTGTTTCATACAGAAGGCGTT 
MSV LTR: TCGGAGAGCGGAAGCGCGC 
T(:y2: CCTCTTCTTTCCAGAGGATGTGGCTTCTGCGA 
HIV-2 LTR: CCATTTAGTTAAAGACAGGAACAGCTAT 

Binding reactions using in vitro transcribed and translated Elf-1 
and Ets-1 proteins contained 3 #1 of in vitro translated protein, 
20,000 dpm of radiolabeled oligonucleotide probe, 250 ng of 
polydl:dC, in 75 mM KC1, 10 mM Tris (pH 7.5), 1 mM dithio- 
threitol (DTT), 1 mM EDTA, and 4% Ficoll. After incubation 
for 30 min at room temperature, DNA protein complexes were 
fractionated by electrophoresis in 4% nondenaturing polyacrylamide 
gels that were run in 0.25 x TBE at 110 V for 3 h at 4~ All 
gels were dried and subjected to autoradiography using intensifying 
screens as described previously (4). 

Results 
Definition of the DNA Binding Domain of the Ets-I and Elf-1 

Proteins. A comparison of  the amino acid sequences of  the 
known Ets family members has allowed the identification of 
an 82 amino acid (aa) ETS domain that is conserved in all 
Drosophila, avian, and mammalian Ets proteins (19). This 
ETS domain is, in turn, composed of  a 42-43 aa basic region 
and a 14 aa NH2-terminal domain that is predicted to adopt 
an a-helical conformation in computer analyses using both 
the Garnier-Kobson and Kyte algorithms of  DNAStar  soft- 
ware (Madison, WI)  (Fig. 2). Previous deletional analyses 
have suggested that the basic domain of  Ets-1 is required for 

TCR (% Enh: CAGAGGATGTG* (Ta2) 

TCR [3 Enh: AACAGGATGTG* (T~3) 

CD3 ~ Enh: TTGAGGATGAG 

IL-2 Enh: AGGAGGAAAAA* (NFAT- 1 ) 
AAGAGGAAAAA* (IL-2B) 

GM-CSF Pr: CAGAGGAAATG* 
CACAGGAACAT* 

IL-3 Pr: GGGAGGAAGTA 

MSV LTR: GAGCGGAAGCG* 

IgK 3' Enh: TTCAGGAACTG* 

HIV-2 LTR: GACAGGAACAG* (CD3R) 

Consensus: AGGAGGAAATG 
GACC TGAA 

C 

Figure 1. Potential Ets binding sites in lymphoid genes. Sequences present 
in the transcriptional regulatory regions of lymphoid genes that correspond 
to the consensus Ets binding site are shown. Previously described names 
for these nuclear protein binding sites are shown in parentheses at the 
right of the binding sites. (*) Sites that have been shown to bind Ets pro- 
teins. The human TCR c~ enhancer (Enh) sequence (4), human TCK-B 
enhancer sequence (7), and CD3~ enhancer binding site (36) have been 
described previously. The human 1I,-2 enhancer sequences are from Fujita 
et al. (37). The GM-CSF and IL-3 promoter sequences are from Miyatake 
et al. (11) and Miyatake et al. (10), respectively. The MSV LTR sequence 
is from Gunther et al. (3). The Igg 3' enhancer sequence is from Meyer 
and Neuberger (38). The HIV-2 LTK sequence is from Markovitz et al. (12). 

the ability of this protein to bind to whole calf thymus 
D N A  (20). However, the precise localization of the minimal 
sequence-specific D N A  binding domain of the Ets proteins 
remained unclear. To address this question we asked whether 
a 116 aa truncated form of Ets-1 (tEts-132s-440 containing the 
basic domain and adjacent or-helical regions of  the molecule 
was able to bind in an EMSA to the Ets-1 binding site from 
the MSV LTR. As shown in Fig. 3 A,  in vitro transcribed 
and translated tEts-1ns-441 bound at least as well, if not 
better than, full-length Ets-1 to the MSV LTR. Similar results 
were obtained using a truncated form of Elf-1 (tEll-1 108-304) 
that also contained the oe-helical region and basic domains 

Figure 2. Structural comparison 
of the DNA binding domains of 
known Ets proteins. The amino acid 
sequences of the DNA binding do- 
mains of human Elf-1 (9), Dro- 
sophila E74 (22), human Ets-1 (23), 
human Ets-2 (23), Drosophila Ets-2 
(D-Ets-2) (24), human Erg (25), 
human Fli-1 (14), human Elk (39), 
and human PU.1 (40) were aligned 
using the ALIGN program of 
DNASTAR Inc. software (Madi- 
son, WI). Spaces represent gaps in- 
troduced to produce optimal align- 
ment. Dashes represent amino acids 
identical to those of human Elf-1. 
Ets family members with highly 
similar DNA binding domains are 
grouped together. The cehelical and 
basic domains conserved in all Ets 
family members are shaded and 
labeled. 
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Figure 4. Electrophoretic mobility shift analysis of the 
DNA binding specificities of Ets-1 and Elf-1 proteins. 
EMSAs using in vitro transcribed and translated tEts- 
13z5-441 and Elf-1 proteins. (Bottom) Individual radiolabeled 
probes (see Materials and Methods). Control lysates ( - )  
were translated in the absence of exogenous RNA. (~)  
Bands of altered mobility corresponding to binding of the 
in vitro translated tEts-132s~l (Ets-1) and Elf-1 proteins. 

of that protein (Fig. 3 B). In contrast, truncated forms of 
Ets containing deletions of either the o~-helical region or the 
basic domain (tEts-1372-441 and tEts-132s-392) failed to bind to 
this same probe (Fig. 3 A). To better assess the importance 
of the basic domain and ol-helical regions for DNA binding 
we introduced amino acid substitutions separately into con- 
served regions of these two domains of Ets-1, and determined 
the effects of these mutations on DNA binding activity by 
EMSA (Fig. 3 A). Mutation of either the basic domain or 
ol-helical region abolished the DNA binding activity of both 
the full-length and truncated forms of Ets-1 (Fig. 3 A). Thus, 
both the basic and o~-helical domains are required for DNA 
binding by Ets-1. 

All of the known ETS domains contain a conserved repeat 
of three tryptophans separated by 17-18 aa (19). Similar tryp- 
tophan repeats are present in the DNA binding domain of 
the c-myb protein (21). It has been hypothesized that these 
tryptophan residues may play an important role in the DNA 
binding activities of both the Myb and Ets proteins (19). To 
assess the role of the tryptophan repeats in the DNA binding 
activity of Ets-1, each of the tryptophans was mutated in the 

context of the tEts-132s-441 protein (Fig. 3 A). Mutation of 
W3 abolished DNA binding. In contrast, mutation of W2 
decreased binding only minimally. Finally, mutations of W1 
as part of the a-helix mutant also abolished DNA binding. 
However, because this mutant contained three additional amino 
acid substitutions in the ol-helical domain, the importance 
of W1 alone could not be assessed from this experiment. In 
summary, these results suggested that the tryptophans present 
in the c~-helix and basic domains (W1 and W3) play an im- 
portant role in DNA binding. In contrast, the conserved tryp- 
tophan in the spacer region between the c~-helix and the basic 
domain (W2) is not required for the DNA binding activity 
of Ets-1. It should be emphasized that the observed differ- 
ences in binding between the mutant and wild-type forms 
of the Ets-1 protein were not simply the result of differences 
in the ef~ciencies of in vitro transcription or translation be- 
cause equal amounts of in vitro translated Ets proteins as de- 
termined by SDS-PAGE were used in each of the binding 
reactions shown in Fig. 3 A. 

Evolutionarily Conserved Ets Proteins with Distinct DNA 
Binding Specificities. A comparison of the DNA binding do- 

Figure 3. The DNA binding domains of Ets-1 and Elf-1. (Middle) Schematic illustrations of the full length (Ets-1, Elf-l) and truncated (tEts-1, tEll-l) 
forms of the human Ets-1, and Elf-1 proteins. Amino acids are numbered below the maps. (~ )  ol-helix. (m) Basic domain. Amino acid sequences 
of the wild-type and mutant forms of Ets-1 are shown below the Ets-1 schematic. (A) An EMSA using a radiolabeled MSV LTR oligonucleotide 
probe (see Materials and Methods) and in vitro transcribed and -translated Ets-1 proteins is shown at right. Equal amounts of in vitro translated protein 
as assayed by SDS-PAGE were used in each binding reaction. (~)  Positions of Ets-1 and tEts-1 bands. (B) An EMSA using a radiolabeled MSV LTR 
oligonucleotide probe and in vitro transcribed and translated Elf-1 proteins is shown at right. Equal amounts of in vitro translated proteins as assayed 
by SDS-PAGE were used in each binding assay. (4)  positions of the Elf-1 and tEll-1 bands. (Left) DNA binding activities of the different Ets-1 and 
Elf-1 proteins are summarized schematically. 
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mains of the known Ets proteins revealed that they can be 
divided into several subsets based upon the structures of their 
basic and c~-helical regions (Fig. 2). For example, the basic 
domain of Elf-1 (9) is almost identical to that of Drosophila 
E74 (22) (39 of 42 amino acids are identical). Similarly, the 
basic domains of mammalian Ets-1 and Ets-2 (23) are highly 
related to each other and to those of D-Ets-2 (24) (40 of 42 
amino acids are identical), but significantly different from 
those of Elf-1 and E74. Finally, the basic domain of Erg (25) 
is almost identical to that of Fli-1 (14) (40 of 42 amino acids 
are identical). The remarkable similarities between the Dro- 
sophila and human proteins demonstrated that these sub- 
families have been conserved over at least 600 million years 
of evolution. 

The differences in the structures of the DNA binding do- 
mains between the different sub-families of Ets proteins sug- 
gested that these proteins might display distinct DNA binding 
specificities. We have reported previously that the Elf-1 pro- 
tein binds to two purine-rich sequences (EBS1 and EBS2) 
in the IL-2 enhancer, but not to the previously defined Ets-1 
binding site in the human TCR-ol enhancer (9). To examine 
this question more systematically, we compared the binding 
activities of in vitro translated Ets-1 and Elf-1 proteins to four 
different naturally occurring Ets-1 binding sites, those from 
the MSV LTR, the TCR-ot enhancer (Tot2), the IL-2 enhancer 
(NFAT), and the HIV-2 LTR (Fig. 4). Both Ets-1 and Elf-1 
bound well to the MSV LTR. In contrast, only Ets-1 bound 
to the TCR-ol enhancer, while only Elf-1 bound well to NFAT 
and the HIV-2 LTR. Thus, as predicted from the structural 
analysis of their DNA binding domains, members of the 
different sub-families of Ets proteins display subtly different 
DNA binding specificities. 

The Molecular Basis of the Distinct DNA Binding Specificities 
of Ets-I and Elf-l. We reasoned that it might be possible 
to identify specific nucleotides within the naturally occur- 
ring Ets binding sites that determine the affinities of these 
sites for different Ets proteins. A comparison of the sequences 
of several naturally occurring Ets binding sites that are known 
to display different affinities for the Ets-1 and Elf-1 proteins 
identified three nucleotides at the 3' ends of the binding sites 
that correlated with Ets-1 or Elf-1 binding activity (Fig. 5 
A). All of the sites that bind the Elf-1 protein contain an 
A at nucleotide 8 of the binding site. In contrast, the two 
sites that fail to bind Elf-1 contain a T at this position. Simi- 
larly, all of the sites that bind Ets-1 contain a CG or TG at 
positions 10 and 11 of the binding site, whereas those that 
fail to bind Ets-1 contain an AA or an AG at these positions. 
These observations are consistent with the finding that cer- 
tain sites, such as that from the MSV LTR which contains 
both an A at position 8 and a CG at positions 10 and 11, 
are capable of binding both Ets-1 and Elf-1 (Fig. 4). 

To more directly test the importance of nucleotides 8, 10, 
and 11 for Elf-1 and Ets-1 binding, respectively, we synthe- 
sized synthetic oligonucleotides with specific nucleotide sub- 
stitutions at these sites (Fig. 5 B), and determined the effects 
of these substitutions on the affinities of these sites for the 
Ets-1 and Elf-1 proteins (Fig. 5, C and D). As predicted by 

the model, changing the T at position 8 in the TCR-c~ en- 
hancer Ets-1 binding site to an A enabled this oligonucleo- 
tide to bind Elf-1 in addition to Ets-1 (Fig. 5 C). Conversely, 
changing the A at position 8 to a T in the MSV LTR 
significantly reduced the ability of this site to bind Elf-l, while 
having little or no effect on Ets-1 binding (Fig. 5, C and 
D). Altering the CG at positions 11 and 12 in the MSV LTR 
binding site to an AA abolished the ability of this site to 
bind Ets-1 with little or no effect on Elf-1 binding (Fig. 5, 
C and D). Finally, altering the AA at positions 11 and 12 
in NFAT to a TG conferred the ability to bind Ets-1 on the 
NFAT site without significantly altering the ability of NFAT 
to bind Elf-1 (data not shown). 

To confirm the differences in DNA binding affinities con- 
ferred by these mutations, we tested the ability of the mu- 
tated oligonucleotides to compete for binding by EMSA (Fig. 
5 D). The Ets-l(-)  mutant of the MSV LTR did not com- 
pete well for Ets-1 binding to the wild-type radiolabeled MSV 
LTR site, but competed quite well for Elf-1 binding to this 
same radiolabeled probe (Fig. 5 D). Conversely, the Elf-1 ( - )  
mutant of this site competed poorly for Elf-1 binding to the 
MSV LTR, but competed well for binding of Ets-1 to the 
same probe (Fig. 5 D). Taken together, these experiments 
suggested that an A at nucleotide 8 of the Ets binding site 
plays an important role in the binding of Elf-l, while a T 
at this position abolishes binding. Similarly, a CG or TG at 
positions 11 and 12 in the binding site allows binding of Ets- 
1, while an AA or AG at this position greatly reduces or 
abolishes binding. 

Discussion 

Many mammalian transcription factors belong to families 
that contain muhiple members which bind to highly related 
or identical DNA sequence motifs. Thus, for example there 
are at least eight CREB/ATF proteins that bind to a con- 
sensus octanucleotide, TGACGTCA (26), and at least three 
GATA proteins that bind to the hexanucleotide WGATAR 
(27). Similarly, the family of mammalian Ets proteins that 
bind to a purine-rich consensus sequence with a GGA core, 
contains at least eight members (9, 14, 15, 17). This mul- 
tiplicity of related transcription factors raised the question 
of how these large families of DNA binding proteins can 
differentially regulate gene expression in different cell types 
and in response to distinct extracellular signals. In some cases, 
it is clear that different factors with apparently identical DNA 
binding specificities are expressed in different cell lineages. 
Thus, for example, GATA-1 is expressed in erythroid cells, 
megakaryocytes, mast cells, and their common progenitors 
(28, 29), while GATA-3 expression in hematopoietic cells is 
restricted to T lymphocytes (18). In other cases, protein-protein 
interactions alter the DNA binding specificities of specific 
transcription factors. Thus, for example, heterodimerization 
with c-jun is required for the DNA binding activity of c-los 
(30-34). In the studies described in this report, we have demon- 
strated that subtle differences in DNA binding specificities 
between different members of the large family of related Ets 
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transcription factors can also provide a mechanism whereby 
multiple family members can regulate the expression of dis- 
tinct genes in the same cell. 

The divergence in the DNA binding specificities of the 
different Ets family members appears to have occurred quite 
early in evolution as evidenced by the remarkable similarity 
between the human Elf-1 and Drosophila E74 proteins, and 
the human Ets-1/Ets-2 and the Drosophila Ets-2 proteins. 
These differences in protein structure also appear to be reflected 
in DNA binding specificities as both Elf-1 and E74 bind the 
consensus sequence A/C G G A A A/G (5, this report). Fi- 
nally, the high degree of structural conservation between the 
Drosophila E74 and human Elf-1 proteins is also paralleled 
by interesting similarities in the presumed functions of the 
two proteins. The preponderance of evidence suggests that 
E74 plays a critical role in activating coordinate changes in 
gene expression during Drosophila development in response 
to an extracellular hormonal signal (ecdysone) (5, 21). Simi- 
larly, Elf-1 binds to sequences within the IL-2 and HIV-2 en- 
hancers that have been shown previously to play essential roles 
in activating gene expression in response to extracellular signals 
mediated through the TCR during the process of T cell acti- 
vation (9, 12). 

The experiments presented in this report have demonstrated 
that specific nucleotides at the 3' end of the Ets binding sites 
can determine the fine specificity of DNA binding of different 
Ets family members. Thus, sites with an A at position 8 of 
the binding site bind Elf-l, while those with a T at this posi- 
tion do not. Similarly, sites with a CG or TG at positions 

11 and 12 of the binding site bind Ets-1, while those with 
an AA or AG at these positions do not. An examination of 
several known Ets binding sites in T cell genes suggests that 
this mechanism may at least in part, allow for the coordinate 
expression of specific sets of T cell genes in resting and acti- 
vated T cells. Thus, for example, the TCR-c~ and -3 genes 
are coexpressed in resting T cells and the Ets binding sites 
in the TCK-c~ and -3 enhancers bind Ets-1, but not Elf-1 
(T at position 8, and CG or TG at positions 11 and 12). Con- 
versely, the IL-2, IL-3, and GM-CSF genes are only expressed 
after T cell activation, and Ets binding sites in the IL-2 en- 
hancer, the GM-CSF promoter (first site only), and the II.-3 
promoter would be predicted to bind Elf-1 but not Ets-1. 
Although the differences in the DNA binding specificities 
of the Ets-1 and Elf-1 proteins are likely to be important in 
controlling differential gene expression in resting and acti- 
vated T cells, it remains possible that differences in the pat- 
terns of expression or posttranslational processing of the 
different Ets family members also play a role in differentially 
regulating gene expression in T cells. Thus, for example, re- 
cent studies have demonstrated that Ets-1 is expressed in resting 
T cells but is downregulated after T cell activation (35). Fi- 
nally, although our data suggests that both the c~-helical re- 
gion and the basic domain of Ets proteins are important for 
DNA binding, a precise understanding of the role of each 
of these domains in contacting specific nucleotides in the Ets 
binding site awaits mutagenesis and domain swapping ex- 
periments between the different Ets family members and 
known Ets binding sites. 
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