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Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood with a
propensity to metastasize. Current treatment for patients with RMS includes conventional
systemic chemotherapy, radiation therapy, and surgical resection; nevertheless, little to no
improvement in long term survival has been achieved in decades—underlining the need for
target discovery and new therapeutic approaches to targeting tumor cells or the tumor
microenvironment. To evaluate cross-species sarcoma extracellular matrix production, we
have usedmurinemodels which feature knowledge of themyogenic cell-of-origin. With focus
on the RMS/undifferentiated pleomorphic sarcoma (UPS) continuum, we have constructed
tissue microarrays of 48 murine and four human sarcomas to analyze expression of seven
different collagens, fibrillins, and collagen-modifying proteins, with cross-correlation to RNA
deep sequencing. We have uncovered that RMS produces increased expression of type
XVIII collagen alpha 1 (COL18A1), which is clinically associated with decreased long-term
survival. We have also identified significantly increased RNA expression of COL4A1, FBN2,
PLOD1, and PLOD2 in human RMS relative to normal skeletal muscle. These results
complement recent studies investigating whether soft tissue sarcomas utilize collagens,
fibrillins, and collagen-modifying enzymes to alter the structural integrity of surrounding host
extracellular matrix/collagen quaternary structure resulting in improved ability to improve the
ability to invade regionally and metastasize, for which therapeutic targeting is possible.

Keywords: matrix, COL18A1, PLOD1/2, rhabdomyosarcoma, survival
INTRODUCTION

Rhabdomyosarcoma (RMS) are highly malignant tumors known to phenocopy some of the early
events in skeletal muscle embryogenesis but are also known to arise from tissues not known to
contain striated muscle or muscle stem cells (1). Embryonal rhabdomyosarcoma (eRMS) and
alveolar rhabdomyosarcoma (aRMS) are the major histological subtypes. eRMS is the most
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common subtype accounting for half of all RMS cases and occurs
most often in the head, neck, and genitourinary tract (2). aRMS
usually occurs in adolescents and young adults and is commonly
found in the trunk and extremities.

To address the pressing and unmet clinical need for new
treatments of soft tissue sarcomas, we have generated multiple
genetically-engineered mouse (GEM) models of aRMS, eRMS and
the undifferentiated pleomorphic sarcoma (UPS) subtype of non-
rhabdomyosarcoma soft-tissue sarcoma (NRSTS) (3–7) (Figure 1).
Lymphatic and hematogenous (pulmonary) metastasis is a
predominant feature (4) and a primary cause of mortality in
these models (9). We characterized these soft tissue sarcoma
Frontiers in Oncology | www.frontiersin.org 2
models and demonstrate them to be representative of the human
diseases by histopathology, gene expression and other features (3, 4,
8, 10). Furthermore, these conditional models have the special
features of knowing the cell-of-origin as well as the mutational
profile making them a valuable tool to study RMS (Figure 1).

Very little is known about the composition of the RMS tumor
microenvironment (TME). In this study, we have uncovered that
type XVIII collagen alpha 1 (encoded by COL18A1) is expressed
highly in aRMS and eRMS. Interestingly, the variant of
rhabdomyosarcoma cell cultures that produce COL18A1 is the
‘alveolar’ subtype, thus called because rich collagen stroma
encasing the tumor cells is reminiscent of lung histology.
FIGURE 1 | Conditional (Cre/LoxP) Mouse Models of Rhabdomyosarcoma (RMS) and Non-Rhabdomyosarcoma Soft Tissue Sarcomas, including like
undifferentiated pleomorphic sarcoma (UPS). Phenotype of the sarcoma depends not only on mutational profile, but also on cell (lineage) of origin and timing of
the initiation before or after birth (5–8). Surprisingly, eRMS, and UPS exist in a continuum (7). Also, to our surprise postnatal muscle progenitors almost never gave
rise to aRMS.
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In addition to analyzing the expression of collagens in RMS, we
also examined the expression of the post-translational collagen-
modifying enzymes such as prolyl 3-hydroxylase (P3H2, LEPREL1),
lysyl hydroxylase 1 (LH1, PLOD1) and lysyl hydroxylase 2 (LH2,
PLOD2) which facilitate collagen maturation (reviewed in (11)).
Whereas prolyl 4-hydroxylation of the Yaa position of Gly-Xaa-Yaa
by P4H enzyme is ubiquitous and provides stability to the collagen
triple helix, prolyl 3-hydroxylation by P3H2 in the Xaa position of a
Gly-Xaa-4Hyp sequence can be far less frequent—yet biologically
essential for processes such as the maternal-fetal interface with
respect to collagen IV (12). Like type IV collagen, type XVIII
collagen (COL18) contains a relatively large number of Gly-Pro-
Hyp sequences (13). Lysyl hydroxylases target the Yaa position
lysine residues in Gly-Xaa-Lys tripeptides (11). This post-
translational lysyl hydroxylation allows subsequent glycosylation
of hydroxylysine. Hydroxylysines and O-linked glycosylation of
hydroxylysines within procollagen are essential to the formation of
intra- and inter-molecular crosslinks (11). The critical underlying
biology of the extracellular matrix not only has implications for
histological appearance, but may also create therapeutic
opportunities (14), which motivated this study.
MATERIALS AND METHODS

Murine RMS Cell Cultures
All murine cell cultures were isolated from tumors generated in
house by our genetically engineered mouse model (GEMM).
Isolation of primary tumor cells and culturing method have been
previously described (15, 16). Briefly, tumors are dissected from
mice under sterile conditions. Tumors are digested over night at
4°C in a 1% collagenase IV solution (17104019, Sigma Aldrich, St
Louis, MO, USA) diluted in DMEM. After 18 h, cells are briefly
vortexed then passed through a 70 mM filter. Cells were
centrifuged at 200 g for 5 min, and the cell pellet was
resuspended in 13 mL growth media then transferred to a T75
tissue culture flask. Cells were expanded at 37°C in 5% CO2.

Tumor cultures U21459 and U23674 have been previously
described (5). U48484 has been previously described (17). PCB-
00380 has been previously described (18). PCB-00232 has been
previously described (19). The genotype of GEMM tumors used
in HIC studies are as follows: U24988-MCreTg Cre/WT, P3Fm/
P3Fm, F2-10/F2-10; U20745-MCreTg (Cre/WT), F2-10/F2-10;
U37125-Myf6 ICNm/WT, F2-10/F2-10; U34278-Pax7 CreERp/
WT, F2-10/F2-10; U24085-Myf5 ICNm/WT, F2-10/F2-10;
U24055-Myf5 ICNm/WT, F2-10/Del2-10; U33915: Pax7
CreERp/WT, F2-10/F2-10; U57810- Myf6 ICNm/ICNm, F2-1-/
F2-10; U34279- Pax7 CreERp/WT, F2-10/F2-10.

Immunoblotting
For the analysis of secreted proteins, the medium was collected and
proteins were precipitated with 0.2 mg/mL ammonium sulfate,
centrifuged, dissolved in Tris Buffered Saline (TBS), and run on
the SDS-PAGE.Western blotting with antibodies against COL18A1
(anti-NC1, 1087+ (20); anti-NC11 1112+ obtained from Dr.
Takako Sasaki (unpublished)) was performed after transfer to a
nitrocellulose membrane.
Frontiers in Oncology | www.frontiersin.org 3
Cells were also fixed in methanol and stained with rabbit
polyclonal antibody against murine type IV collagen from PF-
HR9 cells (21), rabbit polyclonal against murine NC2 domain of
collagen XVI (trimeric form, native conformation) purified using
antigen-coupled column from serum (Hans Peter Bächinger’s
Laboratory, unpublished), antibodies against murine COL18A1
(anti-NC1, 1087+; anti-NC11, 1112+ from Dr. Takako Sasaki)
and antibody against murine fibrillin-1 (9543 from Dr. Lynn
Sakai, Oregon Health & Science University).

The Anti-NC11 antibody has not yet been published, though
an associated manuscript is currently in review, and a general
method is provided. Polyclonal rabbit anti-NC11 antibody was
raised as follows: the RNA isolated from the mouse endothelioma
cell line eEnd.2 was used to amplify reverse transcriptase PCR to
obtain complementary DNA (cDNA) encoding the TSP1-like
domain (NC11) of mouse collagen XVIII. The amplified cDNA
was inserted into the episomal expression vector pCEP-Pu, which
contained in addition the signal peptide of BM-40, to transfect
human EBNA-293 cells (22). The recombinant TSP1 domain was
purified from conditioned medium using dimethylaminoethanol
(DEAE) cellulose followed by Superose 6 molecular sieve
chromatography and then used for immunizing of a rabbit. The
specificity of all the anti-NC11 antibody was demonstrated by a
complete lack of staining with tissues from Col18a1−/− mice.

Tissue Microarrays
Four samples of formalin-fixed paraffin embedded (FFPE)
human RMS were available to include in a custom mouse
model tissue microarray (TMA) (1× aRMS, 3× eRMS). Forty-
eight murine model sarcomas were also included, representing
developmental stages and genotypes including early myoblast
(origin), postnatal stem cell (origin), maturing myofiber (origin),
Pax3:Foxo1-expressing, Trp53 wild type or mutated and Rb1
wildtype or mutated (5, 7, 8). Four samples of murine normal
skeletal muscle were included in a custom mouse model tissue
microarray (TMA) as the negative control.

The TMA was stained with a standard H&E stain for histologic
verification. Co-author AM classified each tumor as non-
rhabdomyosarcoma and rhabdomyosarcoma. The latter was
further divided into aRMS, eRMS, pleomorphic RMS and RMS
not otherwise specified (RMS NOS). We have included a detailed
spreadsheet file as Supplementary Table that includes demographic
features of each mouse tumor sample present on the TMA
(Supplementary Table 1). This TMA is publicly available by request.

Immunohistochemical Staining
All seven IHC stains were performed on the TMA by an
immunoperoxidase technique using the following commercial
antibodies: anti-COL18A1 (Cat #LS-B8215, rabbit polyclonal,
1:50, LifeSpan Biosciences, Seattle, WA, USA), anti-PLOD1 (Cat
#LS-C163796, rabbit polyclonal, 1:100, LifeSpan Biosciences),
anti-PLOD2 (Cat #LS-B9694, rabbit polyclonal, 1:100, LifeSpan
Biosciences), anti-FBN1 (Cat #LS-B5512, mouse monoclonal,
clone 26, 1:400, LifeSpan Biosciences), anti-FBN2 (Cat #LS-
B6338, rabbit polyclonal, 1:400, LifeSpan Biosciences), anti-
COL4A1 (Cat #LS-C175972, rabbit polyclonal, 1:50, LifeSpan
Biosciences) and anti-COL4A2 (Cat # LS-C176967, rabbit
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polyclonal, 1:50, LifeSpan Biosciences). Histology was conducted
using standard protocol. Briefly, Paraffin-embedded 5-mm thick
tissue sections were dewaxed and dehydrated in xylene and
graded alcohol concentrations and rinsed with 10 mM Tris-
HCl at pH 7.4. Slides were then treated with 3% hydrogen
peroxide. Slides were subsequently placed in 10 mM citrate
buffer (pH 6.0) at 100°C for 20 min. After slides were washed
with PBS and incubated at room temperature in 5% normal goat
serum (Invitrogen) and 0.01% Triton-X in PBS for 1 h to inhibit
non-specific binding of antibodies and incubated with the
titrated primary antibody overnight at 4°C, slides were washed
with PBS. Signal detection was performed by incubating in
biotinylated secondary antibody and subsequently with
streptavidin-HRP, and developing in diaminobenzidine
solution. Slides were counterstained with hematoxylin for
5 min, rinsed, dehydrated, and mounted with xylene-based
mounting medium. Control slides with areas of positive and
negative staining are given in Supplementary Figure 1.

Each IHC stain was scored by co-author SHG for intensity
and percentage of positive cells in each individual tumor sample
(some tumors were represented more than once in the TMA).
The intensity of each stain was scored accordingly: 0-negative; 1-
indeterminate; 2-weak positive; 3-strong positive. The intensity
and percentages were averaged for all cases containing more than
one TMA fragment. Scoring of intensity was further simplified in
a binary scheme where average intensity of greater than 1.5 was
considered positive, and 1.5 or less was considered negative.

Immunocytochemistry Staining
Cells were allowed to recover post sort in culture for 2 to 3 days
then replated in eight chamber slides at low confluency and
allowed to incubate for 2 to 3 days. Cytology was conducted
using standard protocol. Briefly, Cells were then fixed in 4%
paraformaldehyde in PBS at room temperature for 20 min. After
protein and streptavidin/biotin blocking steps, cells were washed
again, and primary antibody diluted in 5% NGS in PBS was
added overnight at 4°C. Alexafluor 546 conjugation-based
antibody (Invitrogen) at 1:200 was added, and cells were
incubated for 1 h at room temperature. Slides were mounted
using the VECTASHIELD Mounting Medium with 40, 6-
diamidino-2-phenylindole (Vector Laboratories) and visualized
with a Zeiss LSM 700 confocal microscope.

RNA Sequencing Analysis
Tissue for RNA sequencing experiments were obtained from
flash frozen tissue samples obtained from biopsy or autopsy
tissue (for human subjects) or from flash frozen tumor tissues
preserved following necropsy (for murine models). All human
tumor tissues were obtained through the pediatric tumor tissue
banking program denoted CureFAST following consent by
patient and/or patient’s guardians. The CureFAST program is
overseen by the Independent Review Board (IRB) that oversees
all human-related research at the Children’s Cancer Therapy
Development Institute.

Raw transcriptome sequencing data as short read fastq files were
aligned to the GRCh38 human reference genome for human data
and GRCm38 murine reference genome for mouse data using STAR
Frontiers in Oncology | www.frontiersin.org 4
aligner (23), and aligned transcripts were subsequently quantified for
overall expression using RSEM (24). Normal tissue gene expression
data matched to individual samples was generally unavailable, thus
region-specific skeletal muscle tissue gene expression data was
accessed from the Genotype-Tissue Expression (GTEx) project to
serve as a population normal and enable comparative expression
analysis (25). Sequencing data availability information is provided in
the Data Availability statement.

Statistical Analysis
Binary immunohistochemistry expression values were compared
between histologic groups using the Fisher exact test. Statistical
analyses were performed using R statistical software (version
3.3.1; R Foundation, Vienna, Austria) with the R commander
graphical user interface.

RNA expression comparisons between histologic groups were
analyzed using one-way analysis of variance (ANOVA) for
cohort comparisons, and individual comparisons between
relevant groups (human tumor vs. human cell line, human
tumor vs. human normal, human cell line vs. human normal,
murine tumor vs. murine normal) were made using the two-stage
linear step-up procedure FDR adjustment of Benjamini, Krieger
and Yekutieli for multiple comparisons. Statistical significance
was set at *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Error bars indicate mean ± SD or SEM. Statistical analysis was
performed with GraphPad Prism 7.0.
RESULTS

COL18A1 Expression Is Elevated in RMS
COL18A1 showed significantly increased expression at the
mRNA level in human and murine aRMS and eRMS tumors
relative to normal muscle (Figures 2 and 3). COL4A1, FBN1, and
FBN2 also showed significant overexpression versus normal
muscle in both human aRMS and eRMS, and COL4A1 was
significantly expressed in murine aRMS (Figures 2 and 3).
Fibrillin-1 (FBN1) and fibrillin-2 (FBN2) are two subtypes of
the fibrillin glycoprotein incorporated into elastic tissue in the
extracellular matrix, and FBN2 is a known immunohistochemical
biomarker of eRMS (26), which was reflected at the RNA level for
eRMS more so than aRMS. Increased expressions of COL4A2,
PLOD1, and PLOD2 were seen for human RMS tumors (Figures
2 and 3). For NRSTS, Col18a1 and Plod2 (but not Fbn1 and Fbn2)
were elevated inmouse tumors (Figure 4). Statistical tests comparing
RNA expression values are presented in Supplementary Table 2.

Given that RNA studies were conducted on whole tumor, which
includes tumor cells and stromal cells, we sought to understand and
further differentiate the source of these collagen and collagen-
associated gene product expressions by immunohistochemistry on
custom tissue microarrays. The expressions of COL18A1, PLOD1,
PLOD2, FBN2, COL4A1, and COL4A2 were present in both murine
aRMS and murine eRMS (Table 1 and Figure 5). However, FBN1
was not expressed inmurine aRMS andwas weakly expressed in only
one model of murine eRMS (Table 1 and Figure 5). Models
presented as representative images for IHC results include murine
aRMS models (U21459, U24988, U48484, U20745, and U23674),
February 2021 | Volume 11 | Article 601957
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FIGURE 2 | Extracellular Matrix Gene Expression (ECM) gene expression in mouse and human aRMS. Boxplots are given for biopsies versus cell lines versus no
human aRMS cell lines, n = 564 human normal skeletal muscle, n = 13 mouse necropsy aRMS tumors, n = 12 mouse normal skeletal muscle).
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FIGURE 3 | ECM gene expression in mouse and human eRMS. Boxplots are given for biopsies versus cell lines versus normal muscle (n = 57 human eRMS bio
normal skeletal muscle, n = 4 mouse necropsy eRMS tumors, n = 12 mouse normal skeletal muscle).
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FIGURE 4 | ECM gene expression in mouse NRSTS. Boxplots are given for biopsies versus normal muscle (n = 6 mouse necropsy NRSTS tumors, n = 12 m
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TABLE 1 | Immunohistochemical expression of collagens, fibrillins and collagen modifying enzymes in human and murine models.

COL18A1 COL4A1 COL4A2 FBN1 FBN2 PLOD1 PLOD2

Human Model
aRMS 100% (1/1) 0% (0/1) 100% (1/1) 0% (0/1) 0% (0/1) 0% (0/1) 100% (1/1)
eRMS 67% (2/3) 33% (1/3) 67% (2/3) 50% (1/2) 100% (3/3) 33% (1/3) 100% (3/3)
Mouse Model
Rhabdomyosarcomas 69% (20/29) 79% (23/27) 14% (4/29) 4% (1/22) 66% (19/29) 48% (14/29) 72% (21/29)
aRMS 86% (12/14) 93% (13/14) 6.7% (1/15) 0% (0/11) 64% (9/14) 71% (10/14) 79% (11/14)
eRMS 67% (4/6) 83% (5/6) 67% (4/6) 17% (1/6) 67% (4/6) 17% (1/6) 67% (4/6)
Lineage Origin:
Early Myoblast (Myf5) 70% (7/10) 89% (8/9) 10% (1/10) 0% (0/8) 60% (6/10) 50% (5/10) 80% (8/10)
Postnatal Stem Cell (Pax7) 41% (7/17) 63% (10/16) 13% (1/8) 9% (1/11) 63% (10/16) 18% (3/17) 35% (6/17)
Maturing Myoblast (Myf6) 75% (12/16) 88% (14/16) 18% (3/17) 9% (1/11) 71% (12/17) 59% (10/17) 69% (11/16)
Undifferentiated Sarcomas 50% (7/14) 64% (9/14) 14% (2/14) 10% (1/10) 64% (9/14) 24% (4/17) 29% (4/14)
Frontiers in Oncology | www.frontier
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aRMS, alveolar rhabdomyosarcoma; eRMS, embryonal rhabdomyosarcoma.
FIGURE 5 | Protein expression of collagens, fibrillins and collagen modifying enzymes in murine aRMS and eRMS. Representative images showing tissue microarray
negative control immunohistochemical staining and positive tumoral immunohistochemical staining of COL18A1, COL4A1, COL4A2, FBN1, FBN2, PLOD1, and
PLOD2. Note that the representative aRMS IHC image for FBN1 shown is nearly negative (scoring is 1). Antibody specificity is with tumor specimen ID in
parentheses listed on the figure. Models used for IHC include murine aRMS models (U21459, U24988, U48484, U20745, and U23674), a human aRMS model
(pcb00380), murine eRMS models (U37125, U34278, U24085, and U24055), and a human eRMS model (pcb00232).
rticle 601957
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a human aRMS model (pcb00380), murine eRMS models (U37125,
U34278, U24085, and U24055), and a human eRMS model
(pcb00232). The complete set of 48 murine RMS models and four
human RMS models used for IHC analysis and associated scores are
provided in Supplementary Table 3. Undifferentiated sarcomas,
which include a variety of morphologic phenotypes from spindled
to epithelioid and pleomorphic expressed all collagen-modifying
enzyme to varying degrees (Table 1). No statistically significant
trends were found in human RMS due to small sample size. Given
the visual similarity between staining of extracellular matrix proteins
and IHC background, a cohort of positive control images showing no
background when used on skeletal muscle tissues are provided
(Supplementary Figure 1).

Comparison of RMS versus undifferentiated sarcomas in mice
showed a significantly higher expression of PLOD2 in RMS (p =
0.044). When comparing aRMS to eRMS, a significantly higher
expression of PLOD1 was seen in the aRMS subtype (p = 0.05)
Frontiers in Oncology | www.frontiersin.org 9
(Table 1). In general, murine sarcomas with Rb1 nullizygosity
were associated with the undifferentiated morphology, except for
one case identified as aRMS which also showed lower expression
of COL18A1, COL4A1, and PLOD2 compared to Rb1 wildtype
sarcomas (p = 0.0035, 0.04, and 0.08, respectively).

When comparing samples based on cell-of-origin (early
myoblast, postnatal stem cell and maturing myoblast), a
significant increase in PLOD1 was seen in cases of early myoblast
andmaturing myoblast origin RMS compared to the postnatal stem
cell origin (p = 0.04). No other significant differences in cell or
lineage-of-origin were seen across the other IHC markers.

To visualize the intracellular versus extracellular localization
of the ECM related protein in RMS cell lines, we performed
immunocytochemistry (ICC) across several cultured murine
RMS cells which showed expression of FBN1, the NC2 domain
of COL16, COL4A1 as well as the NC1 and NC11 domains of
COL18A1 (Figure 6). Murine cell cultures used for ICC included
FIGURE 6 | Immunocytochemical detection of ECM-related proteins in murine sarcoma models. Expression of ECM proteins in primary cell cultures derived from
murine RMS. Immunocytochemistry using five independent antibodies against fibrillin-1, collagen XVI, collagen IV and two antibodies recognizing NC1 and NC11
domains of collagen XVIII. For each antibody, staining was intracellular and/or extracellular. Murine cell cultures used for ICC included U23674 (murine aRMS),
U48484 (murine metastatic aRMS), U33915 (murine spindle cell eRMS), U57810 (murine eRMS), and U34279 (murine pleomorphic sarcoma).
February 2021 | Volume 11 | Article 601957
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U23674 (murine aRMS), U48484 (murine metastatic aRMS),
U33915 (murine spindle cell eRMS), U57810 (murine eRMS),
and U34279 (murine pleomorphic sarcoma). Intracellular and
secreted (extracellular) COL18A1 was readily detectable by ICC
(Figure 6). Secreted COL18A1 in the conditioned media was also
detected by immunoblotting (Figure 7).

Clinical Significance of the Expression of
COL18A1
Biopsy samples were studied for gene expression analysis as
previously described (27). In the biopsy samples provided by the
Intergroup Rhabdomyosarcoma Study-IV (IRS-IV) (27), higher
expression of COL18A1, COL4A1, and COL4A2 was correlated
with worse outcomes in human RMS patients (Figure 8), with
the alveolar subtype showing worsened survival compared to
other RMS subtypes (Figure 8). Additionally, increased
expression of FBN1 and FBN2 was correlated with worsened
survival in aRMS (Figure 8); however, statistical significance is
not seen for FBN1 and FBN2 when examining all RMS
(Figure 8). IRS-IV samples used for analysis consisted of every
available aRMS and eRMS sample in the IRS-IV database for
which expression data was available. Samples available differed
between groups.
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The structural integrity of collagen fibers is reliant on a balance
of post-translational modification and extracellular matrix
enzyme composition, which can be significantly altered in
tumors. To date, studies of the RMS TME are limited.
However, mutations in COL2A1 have recently been associated
with chondrosarcoma risk (28).

As individual prognostic markers, increased COL18A1,
COL4A1, and COL4A2 expressions are all associated with
decreased long-term survival in all pediatric RMS subtypes, with
the alveolar subtype showing worsened survival versus other
subtypes. aRMS is most often fatal when metastatic (29), yet
recent studies of related soft tissue sarcomas suggest that collagen
subtype and modification can determine the ease with which these
sarcomas metastasize (14); furthermore, altering collagen
modifications is therapeutically amenable with FDA-approved
agents that suppress metastasis in mouse soft tissue sarcoma
models. From the perspective of therapeutic opportunities,
another study has introduced a 3D murine model recapitulating
the in vivo structure of aRMS and the ECM, which has promising
possibilities for tumor behavior and therapeutic exploration (30).

In this study, we have shown that RMS expresses specific
collagen proteins (COL18A1, COL4A1) at significantly
increased levels in pediatric RMS relative to normal muscle;
this expression in turn represents a worse prognosis (COL18A1,
COL4A1, COL4A2). Strong IHC expression of COL18A1 was
shown to have a worse outcome in pulmonary carcinomas (31)
similar to COL18A1 RNA expression in RMS. Moderate to
strong COL18A1 IHC staining is also seen in greater than two-
thirds of murine and human RMS samples in our study. Due to
small sample size in human RMS, statistical analysis is limited
to data generated from the murine RMS cohort. The
dysregulated expression of COL18A1 and the worse prognosis
associated with increased expression raises the possibility
that COL18A1 mediates RMS metastasis. Furthermore,
modification or cleavage of COL18A1 (e.g. endostatin)
perhaps alters tumor biology e.g., dysregulating tumoral
angiogenesis or increasing metastatic potential (32). In our
exploration of tumoral production of collagen, we also sought
to explore the possibility of RMS utilizing enzyme production to
alter the collagen matrix of surrounding tissues. This
phenomenon in theory is an efficient way for a tumor
originating in a stromal environment to quickly spread locally
and gain access to blood supply/nutrition. Both PLOD1 and
PLOD2 were shown to have increased overall RNA expression
in human RMS relative to normal muscle. PLOD1 is an enzyme
responsible for catalyzing the hydroxylation of lysyl residues in
collagen-like peptides and is known to be deficient in patients
with kyphoscoliotic form of Ehlers–Danlos syndrome (33).
Although PLOD1 protein expression was present in less than
50% of RMS overall, a significantly larger number of murine
aRMS samples showed PLOD1 expression compared to eRMS;
however, this finding did not correlate with RNA expression
patterns as PLOD1 expression in both murine aRMS and eRMS
is statistically indistinguishable. A significant increase in
PLOD1 RNA expression was seen in both human aRMS and
FIGURE 7 | Biochemical analysis of secreted collagen XVIII in murine
sarcoma models. Secretion of soluble type XVIII collagen molecules in cell
cultures derived from murine RMS. Western-blot analysis of conditioned
media from four cultures with two antibodies against type XVIII collagen.
Antibody anti-NC1 recognizes the C-terminal non-collagenous domain (left
panel), whereas antibody anti-NC11 recognizes the N-terminal non-
collagenous domain (right panel). The bands depicted by arrow a are intact
collagen XVIII. The bands depicted by arrow b are presumed collagen XVIII
without heparan-sulphate. The bands depicted by arrow g are presumed
fragments of collagen XVIII without NC11 domain. The bands depicted by
arrow d are presumed endostatin/endostatin-containing fragments.
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FIGURE 8 | Overexpression of COL18A1, COL4A1 and COL4A2 at the RNA level is associated with worsened outcome. Decreased overall survival at 9 years for
human RMS patients with elevated expression of COL18A1, COL4A1 and COL4A2, even when adjusted for other known clinical covariates [as per analysis in (27)].
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eRMS relative to normal muscle; unexpectedly, PLOD1 protein
expression is significantly higher in eRMS than aRMS.

Previous studies have shown correlation of PLOD2
expression with metastatic potential in soft tissue sarcoma (14)
akin to our discoveries in RMS. The fact that a larger number of
aRMS show increased PLOD1 expression compared to eRMS
may be related to the possibility that the more aggressive alveolar
subtype utilizes hypoxia-dependent mechanisms to break down
collagen. However, PLOD1/2 RNA expression did not correlate
with worse outcome when looking at all RMS samples as a cohort
and adjusting for stage.

In an attempt to isolate a specific tumoral mechanism
based on the myogenic cell-of-origin, we analyzed whole
transcriptome sequencing data segmented across murine
aRMS and eRMS, and protein expression by IHC in RMS
segmented by disease indication and by cell-of-origin (early
myoblast, postnatal stem cell and maturing myoblast). Protein
expression analysis by IHC yielded one important finding:
significantly fewer cases of RMS with postnatal stem cell as
cell-of-origin showed PLOD1 positivity compared to other cells-
of-origin. Given that cell-of-origin influences pharmacological
response (5), absence of PLOD1 positivity could potentially
have diagnostic or even therapeutic value. Note that in the
context of murine RMS models which have undergone whole
transcriptome sequencing, the cell-of-origin status cleanly
separated by histological diagnosis of aRMS or eRMS. Thus, we
did not perform cell-of-origin based statistical comparison of
extracellular matrix protein gene expression.

A more aggressive, undifferentiated morphology was
associated with the Rb1 nullizygous mouse sarcomas and was
not seen in eRMS subtypes. The Rb1 nullizygous sarcomas had a
significantly lower number of tumors expressing COL18A1,
COL4A1, and PLOD2. As described above, expression of
COL18A1 and PLOD2 is associated with increased tumor
infiltration, metastasis, and worse overall survival and thus
offer potential therapeutic targets. This preliminary data
suggests these targets are present in a higher number of aRMS/
eRMS cases than in undifferentiated sarcomas and may represent
a treatment opportunity.

Overall, our findings imply that RMS produces an imbalance in
expression of a variety of collagens and collagen-modifying
enzymes implicated in tumor growth and metastasis. COL18A1
expression is significantly increased in all RMS compared to
normal muscle and is associated with worse overall survival. Our
identification of overexpression of additional collagen markers at
the RNA and protein level, specifically PLOD1 and PLOD2, may
be considered for evaluation with potential FDA-approved or
investigational therapies targeting these enzymes in future studies.
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