OPEN 8 ACCESS Freely available online PLOS COMPUTATIONAL BIOLOGY

Ab Initio Prediction of Transcription Factor
Targets Using Structural Knowledge

Tommy Kaplan'2, Nir Friedman'", Hanah Margalitz*

1 School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel, 2 Department of Molecular Genetics and Biotechnology, Faculty of Medicine,
The Hebrew University, Jerusalem, Israel

Current approaches for identification and detection of transcription factor binding sites rely on an extensive set of
known target genes. Here we describe a novel structure-based approach applicable to transcription factors with no
prior binding data. Our approach combines sequence data and structural information to infer context-specific amino
acid-nucleotide recognition preferences. These are used to predict binding sites for novel transcription factors from
the same structural family. We demonstrate our approach on the Cys,His, Zinc Finger protein family, and show that the
learned DNA-recognition preferences are compatible with experimental results. We use these preferences to perform a
genome-wide scan for direct targets of Drosophila melanogaster Cys,His, transcription factors. By analyzing the
predicted targets along with gene annotation and expression data we infer the function and activity of these proteins.
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of each residue, which may depend on its relative position

Introduction . . . .
and orientation with respect to the nucleotide. Then, we

Specific binding of transcription factors to cis-regulatory need to collect statistics about the DNA-binding preferences
elements is a crucial component of transcriptional regula- in this context. This can be achieved from an ensemble of
tion. Previous studies have used both experimental and solved protein-DNA complexes from the same family.
computational approaches to determine the relationships Unfortunately, sufficient data of this type are currently
between transcription factors and their targets. In particular, unavailable.
probabilistic models were employed to characterize the To overcome this obstacle, we propose to estimate context-
binding preferences of transcription factors, and to identify specific DNA-recognition preferences from available se-
their putative sites in genomic sequences [1,2]. This approach quence data using statistical estimation procedures. The
is useful when binding data are available, but cannot be input of our method is a set of pairs of transcription factors
applied to proteins without extensive experimental binding and their target DNA sequences [2]. We then identify the
studies. This difficulty is particularly emphasized in view of residues and nucleotides that participate in protein-DNA
the genome projects, where new proteins are classified as interaction, and collect statistics about the DNA-binding
DNA-binding according to their sequence, yet there is no preferences of residues under different contexts of the
information about the genes they regulate. binding domain. These are then used to discover the binding

To address the challenge of profiling the binding sites of site of other transcription factors from the same family, for
novel proteins, we propose a family-wise approach that which no targets are known.
builds on structural information and on the known binding We apply our approach to the CysoHisy Zinc Finger DNA-
sites of other proteins from the same family. We use solved binding family. This family is the largest known DNA-binding
protein-DNA complexes [3] to determine the exact archi- family in multicellular organisms [9] and has been studied
tecture of interactions between nucleotides and amino acids extensively [10]. Members of this family bind DNA targets
at the DNA-binding domain. Although sharing the same according to a stringent binding model [11,12], which maps
structure, different proteins from a structural family have the exact interactions between specific residues in the DNA-
different binding specificities because of the presence of binding domain with nucleotides at the DNA site (Figure 1).
different residues at the DNA-binding positions. To predict We use many Zinc Finger proteins together with their native
their binding site motif, we need to identify the residues DNA targets (extracted from the TRANSFAC database [2]),
at these positions and understand their DNA-binding and apply an iterative expectation maximization (EM)
preferences.

In previous studies, we used the empirical frequencies of
. G . . . s . . Received January 10, 2005; Accepted February 11, 2005; Published June 24, 2005
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(from various protein families) to build a set of “DNA-
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algorithm [13] to estimate position-specific DNA-recognition
preferences (Figure 2). These are used in turn for predicting
the DNA binding site motifs of novel proteins in the family
(Figure 3), and for performing a genome-wide scan for
putative targets.

Results

In Silico Reconstruction of DNA-Recognition Preferences

In order to estimate the context-specific DNA-recognition
preferences of the CysoHiss Zinc Finger DNA-binding family
we used the canonical binding model learned from the solved
protein-DNA complex of Egr-1 [11,12]. According to this
model, the binding specificity of each Zinc Finger domain is
determined by residues at four key positions (see Figure 1).
We aimed to learn a different set of DNA-recognition
preferences for each of the four key positions. These sets
should express the probability of every amino acid to
interact with each nucleotide. Since the number of solved
protein-DNA complexes is insufficient to estimate these

\) \ ) \)
Finger1 Finger2 Finger3

Figure 1. The Canonical Cys,His, Zinc Finger DNA Binding Model

Residues at positions 6, 3, 2, and —1 (relative to the beginning of the a-
helix) at each finger interact with adjacent nucleotides in the DNA
molecule (interactions shown with arrows). (Figure adapted from a figure
by Prof. Aaron Klug, with permission.)

DOI: 10.1371/journal.pcbi.0010001.g001
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Figure 2. Estimating DNA-Recognition Preferences

The DNA-recognition preferences are estimated from unaligned pairs of
transcription factors and their DNA targets [2] (above). The EM algorithm
[13] is used to simultaneously assess the exact binding positions of each
protein-DNA pair (bottom right), and to estimate four sets of position-
specific DNA-recognition preferences (bottom left).

DOI: 10.1371/journal.pcbi.0010001.g002

preferences directly, we resorted to sequence data of
proteins and their DNA targets. We extracted 455 protein-
DNA pairs from the TRANSFAC 7.3 database [2] (see
Materials and Methods). Unfortunately, the exact binding
locations of these DNA targets are not pinpointed, and thus
we employed statistical tools to infer them (see Figure 2;
Materials and Methods). We then used the protein-DNA
binding model to identify the interacting residues and
nucleotides, and collect statistics on their binding prefer-
ences (see Materials and Methods). Based on these we esti-
mated four sets of DNA-recognition preferences (Figure 4;
Tables S1 and S2), showing both context-independent
preferences (such as the preference of lysine for guanine)
and context-dependent ones (e.g., the preference of aspartic
acid for cytosine). Table S3 shows the 10%-90% confidence
intervals of the estimated probabilities.

Learned Recognition Preferences Are Consistent with
Experimental Results

We evaluated the four reconstructed sets of DNA-recog-
nition preferences by comparing them with experimental
data. First, we compared the derived preferences with
qualitative preferences based on phage-display experiments
[10] and found the two to be consistent (data not shown).
Second, we predicted binding site models for Egr-1 variants
for which experimental binding data were available [14],
using their sequences and our estimated preferences. These
models were used to score the binding of Egr-1 variants to
a set of DNA targets that were tested in the experimental
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Figure 3. Predicting the DNA Binding Site Motifs of Novel Transcription Factors

The protein’s DNA-binding domains are identified using the Cys,His, conserved pattern (top left). The residues at the key positions (6, 3, 2 and —1) of
each finger (marked in red in the bottom left panel) are then assigned onto the canonical binding model (bottom right), and the sets of position-specific
DNA-recognition preferences (top right panel) are used to construct a probabilistic model of the DNA binding site. For example, the lysine at the sixth
position of the third finger faces the first position of the binding site (dotted blue arrow). We predict the nucleotide probabilities at this position using

the appropriate recognition preferences (dotted black arrow).
DOI: 10.1371/journal.pcbi.0010001.9g003

study. We found that our predictions were highly correlated
with the experimentally measured binding affinities [14]
(Table S4).

Next, we evaluated the ability of the estimated recognition
preferences to identify binding sites within genomic sequen-
ces. We compiled a dataset of binding sites of ten CysoHiso
transcription factors. These involved 43 experimentally
verified binding sites within natural genomic promoter
sequences with a total length of 14,534 bp (Table S5). Using
the recognition preferences, we predicted the binding site
models of the ten transcription factors and used them to scan
the respective promoter regions for putative binding sites
(Figure 5A and 5B; see Materials and Methods). To prevent
bias by known sites in our training data, we applied a “leave
protein out” cross-validation analysis, and predicted the DNA
binding model of a protein using DNA-recognition prefer-
ences that were learned from a reduced dataset, from which
all its binding sites were removed. Our method marked
30 locations as putative binding sites, out of which 21
matched experimental knowledge (sensitivity of 49% and
specificity of 70%, p < 10748; see Table S6).

Benos et al. [15] proposed a method (SAMIE) to estimate
CysoHisy Zinc Finger position-specific binding preferences
from in vitro SELEX binding experiments. We compared the
predictions of the known binding sites within promoter
regions provided by our position-specific recognition pref-
erences to those of Benos et al. [15] and of Mandel-
Gutfreund et al. [5] (Figure 5C; Table S7). These results
suggest that predictions based on our recognition prefer-
ences out-perform the predictions based on the other
methods.

To further evaluate our predictions, we used the binding
locations of Spl along human Chromosomes 21 and 22, as
mapped by genome-wide chromatin immunoprecipita-
tion [16]. We compiled two datasets of 1-kb-long sequences:
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one dataset included sequences that exhibited highly
significant binding, and the other dataset included sequen-
ces that showed no binding at all (to be used as a control;
see Materials and Methods). We used the DNA-recognition
preferences to predict a binding site model for Spl, and
scanned the genomic sequences with it. We identified Spl
binding sites in 45% of the experimentally bound se-
quences, and in only 5% of the control
(Figure 5D).

sequences

Ab Initio Genome-Wide Prediction of Transcription Factor
Binding Sites

In the past few years many genomes were solved, yielding
sequences of thousands of putative transcription factors.
However, only little is currently known about the binding
specificities of these factors and about their target genes. To
address this problem, we applied our predictive scheme to
the Drosophila melanogaster genome in a fully automated
manner. We first scanned the sequences of 16,201 putative
gene products and identified 29 canonical CysyHiso, Zinc
Finger transcription factors with three or four fingers (see
Materials and Methods). We then used their sequences and
the estimated DNA-recognition preferences to compile a
binding site model for each transcription factor, as in Fig-
ure 3 (see Figure S1 and Table S8 for detailed models).
Finally, we used these binding site models to scan the
upstream promoter regions of 15,665 D. melanogaster genes.
Multiple putative direct targets were predicted for each
Zinc Finger, as detailed at http://compbio.cs.huji.ac.il/Zinc.
The number of putative direct target genes for each
transcription factor and the overlap between targets of
different factors are shown in Figures S2 and S3. Interest-
ingly, several Zinc Fingers have similar residues at the DNA-
binding positions, and are therefore predicted to bind
similar sites and to have mutual predicted targets (see
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Figure 4. Four Sets of Position-Specific DNA-Recognition Preferences in
Zinc Fingers

The estimated sets of DNA-recognition preferences for the DNA-binding
residues at positions 6, 3, 2, and —1 of the Zinc Finger domain are displayed
as sequence logos. At each position, the associated distribution of nucleo-
tides is displayed for each amino acid. The total height of letters represents
the information content (in bits) of the position, and the relative height of
each letter represents its probability. Color intensity indicates the level of
confidence for a given amino acid at a certain position (where paler colors
indicate lower confidence due to low occurrences of the amino acid at the
specific position in the training data) (see Tables S1 and S2 for full data).
Some of the DNA binding preferences are general, regardless of the
residue’s position within the zinc finger (e.g., lysine’s tendency to bind
guanine), while others are position-dependent (e.g. the tendency of
phenylalanine to bind cytosine only when in position 2).

DOI: 10.1371/journal.pcbi.0010001.g004

Figures S1 and S3). In D. melanogaster, this phenomenon has
been reported for at least some transcription factors (e.g.,
Spl and Btd) [17].

To infer the function of the 29 transcription factors, we
employed the functional annotations of their predicted target
genes (based on the Gene Ontology [GO] terms [18]). The
target sets of most transcription factors (21 out of 29) were
found to be significantly enriched with at least one GO term
(Figure 6A). For some of the transcription factors, the
enriched GO terms match prior biological knowledge. For
example, the putative targets of Glass were found to be
enriched with terms related to photoreceptor cell develop-
ment, consistent with previous studies that linked the Glass
transcription factor with eye photoreceptor development [19].
Similarly, the putative targets of Btd and Spl were enriched
with developmental terms, such as neurogenesis, development,
and organogenesis. Indeed these regulators are known to play
essential roles in mechanosensory development [17]. Further-
more, our analysis suggests possible functions for unknown
proteins, as well as new annotations for some of the already
known regulators (see Figure S4 for complete results).
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We further evaluated the function and activity of the 29
transcription factors based on the mRNA expression profiles
of their target genes (Figure 6B). We used expression data
from early embryogenesis [20], as well as data from the entire
life cycle of D. melanogaster [21]. In each experiment and for
each transcription factor, we tested whether its putative
targets showed similarity in their expression patterns and
differed from the rest of the genes (see Materials and
Methods). Such coherent expression supports the suggested
relationship between the factor and the genes it is predicted
to regulate. Out of the 29 transcription factors we examined,
21 showed such significant associations in at least one
embryogenesis experiment, suggesting their active roles
throughout early developmental stages (Figure 6B). These
transcription factors include many known developmental
regulators that are active during embryonic development
(e.g., Btd, Sp1, Glass, Odd-skipped, and Stripe) [18,22], as well
as other proteins, whose function is currently unknown.
Similar results were obtained using the full life cycle gene
expression data [21], mapping putative time points at which
each regulator is predicted to be active (Figure 6B).

Note that the expression profiles are based on whole
embryos, and therefore ignore spatially differential expres-
sion patterns. Thus, the correct function of some tissue-
specific Zinc Finger proteins may be obscured in these data.
Additional insight may be gained by focusing on expression
data in homogeneous regions. Specifically, Butler et al. [23]
compared gene expression in two homogeneous parts of the
Drosophila imaginal wing disc—the body wall and the hinge-
wing pouch. In our analysis we used the ratios between the
expression levels in the two regions, and examined putative
targets for enrichment in one of the regions. We then
inferred the regulatory role of a transcription factor
(activator or repressor) using its own expression pattern.
For example, the putative targets of Stripe show higher
expression levels in the body wall than the rest of the genes
(enrichment p-value < 0.0002). Stripe itself is enriched more
than 9-fold in the body wall, relative to the wing-hinge
region. This suggests that Stripe functions mainly in the
body-wall region, where it activates its target genes. Indeed,
this is consistent with the known role of Stripe as an
activator of epidermal muscle attachment genes [24]. Using
the same reasoning, we inferred the regulatory roles of four
additional D. melanogaster transcription factors within the
imaginal wing disc, three of which were previously unchar-
acterized (Table 1).

Discussion

In this paper we propose a general framework for predicting
the DNA binding site sequence of novel transcription factors
from known families. Our framework combines structural
information about a specific DNA-binding domain with
examples of binding sites for proteins in the family. We apply
a statistical estimation algorithm to the canonical CysoHiss
Zinc Finger DNA-binding family, and derive a set of DNA-
recognition preferences for each residue at each interacting
position in the Zinc Finger DNA-binding domain.

We apply these preferences and predict the binding site
models of novel proteins from the same family. Finally, we use
the predicted models in genome-wide scans and identify the
proteins’ putative direct target genes.

June 2005 | Volume 1 | Issue 1 | el



A
2 2
1 1
0 'AT_QAI-’.\'}}; : 0 f.’s_’-\.,z.gréA(.‘eIﬁ
Known Predicted
B Predicted Sp1 binding sites
1e-06
bt
1e-05 » »
Corrected p-value =0.05 | |
0.0001
@
2
g 0.001
Q
0.01
|
0.1
i 1 | j |
-300 -250 -200 -150 -100 -50 TSsS
position in Human DHFR promoter
C No. of False Positive binding sites
0 35 70 105 140
100%-
“w
£
“w
2
o 75% E
5 E
« 3
1]
2 g
= =
2 50% @
o @
E g
= =
(=
25% EM — 0%
i EM (with arti. sites) - s
Mandel-Gutfreund etal. —— =
0% SAMIE (COMBINED_6) —— 0
0% 0.25% 0.5% 0.75% 1%
False Positive Rate
100%
2
S 80%
w
@
>
S e0%
@
@
g
£ 40%
@
e
g 20%
ChIP bound (p<10%)
S ChiIP control (p>10%) —— e
0 2 4 6 8 10 12 14 16 18

Sp1 log-odds score

Figure 5. Validation of DNA-Recognition Preferences

(A) The predicted binding site model of human Sp1 protein is compared
to its known site (matrix V$SP1_Q6 from TRANSFAC [2], based on 108
aligned binding sites). To prevent bias by known Sp1 sites in our training
data, the set of DNA-recognition preferences was estimated from the
TRANSFAC data after removing all Sp1 sites.

(B) Scanning the 300-bp-long promoter of human dihydrofolate
reductase (DHFR) by the predicted Sp1 binding model. The p-value of
each potential binding site is shown (y-axis). Four positions achieved a
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significant p-value (higher than the horizontal red line), out of which
three are known Sp1 binding sites [41] (arrows).

(C) A summary of in silico binding experiments for 21 pairs of Zinc Finger
transcription factors and their target promoters. Shown is the tradeoff
between false positive rate (x-axis) and true positive rate (y-axis) as the
significance threshold for putative binding sites is changed. For every
threshold point, our set of recognition preferences (EM) achieves better
accuracy than the preferences of Mandel-Gutfreund et al. [5] (M-G) and
Benos et al. [15] (SAMIE). Interestingly, when the DNA-recognition prefer-
ences were estimated from training data expanded to include TRANSFAC's
artificial sequences, inferior results were obtained (dotted red line).

(D) Cumulative distribution of Sp1 scores among the sequences of targets/
non-targets of unbiased chromatin immunoprecipitation scans of human
Chromosomes 21 and 22 [16]. The predicted Sp1 motif appearsin 45% of the
experimentally bound sequences but in only 5% of the control sequences.
DOI: 10.1371/journal.pcbi.0010001.g005

Structure-based approaches for prediction of transcription
factor binding sites have recently gained much interest
[5,8,15,25-29]. Most of the current structural approaches
define a binding model based on solved protein-DNA
complexes, and attempt to identify DNA subsequences that
best fit the amino acids that are determined as interacting
with the DNA. Previous studies [4,8] used ensembles of solved
protein—-DNA complexes (from all DNA-binding domains) to
extract general parameters for amino acid-base recognition.
Some studies used only the counts of amino acid-nucleotide
pairs to derive these parameters [4], whereas others also
considered the spatial arrangements [8]. However, for fine
grained definition of such potentials, a much larger set of
solved protein-DNA complexes is needed than is currently
available. An alternative approach to estimate DNA-recog-
nition preferences is to extract them separately for each
DNA-binding domain. However, here again, the data of
solved complexes are insufficient to allow such derivation.

In a recent study, Benos et al. [15] assigned position-specific
DNA-recognition preferences for the CysoHiso Zinc Finger
family. The model they used is similar to ours, with two
significant differences. First, they relied on data from in vitro
selection assays, such as SELEX and phage display, to train
their recognition preferences. Second, their assays screened
artificial sequences, both artificial proteins and artificial DNA
targets. In contrast, we rely on previously published informa-
tion of natural binding sites. Our approach does not require
specialized experiments, and more importantly, it captures
the specificity of natural proteins to DNA sequences. As we
showed, our preferences are consistent with independent
experimental results [6,7,10] and are superior to such
preferences derived by the other computational approaches
[56,15]. In addition, previous studies showed that there are
discrepancies between SELEX-derived motifs and those
derived from natural binding sites [30,31]. Indeed, our
method yielded inferior predictions when information on
artificial binding sequences was included in our training data.
Figure 4C shows that our set of recognition preferences is
superior to previous models in identifying genomic binding
sites. When comparing the predictions by the various
recognition preferences to measured affinities of DNA
artificial sequences [14], we report results similar to those
of Benos et al. (see Table S4).

Analysis of the Estimated DNA-Recognition Preferences
Analysis of the estimated recognition preferences suggests

that the protein-DNA recognition code is not deterministic,

but rather spans a range of preferences. Moreover, our
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Figure 6. Inferring the Function and Activity of Zinc Finger Transcription
Factors in D. melanogaster

(A) Similar gene annotation enrichment among the putative target sets
of 29 transcription factors in D. melanogaster. Blue cells correspond to
significant overabundance of a GO term (row) among the predicted
targets of a protein (column), using a hyper-geometric test. The binding
sites of most factors show enrichment in at least one GO term. For some
of the regulators, the enriched GO terms match prior biological
knowledge. For example, the putative targets of Glass (gl) were found
to be enriched with terms related to photoreceptor cell development
(red circle 1). Similarly, the putative targets of Buttonhead (btd) and Sp1
were enriched with developmental terms such as neurogenesis,
development, and organogenesis (red circle 2). Closely related GO
annotations are not shown; see Figure S4 for full results.

(B) Deducing the activity of the 29 transcription factors using gene
expression patterns. Expression data from early (0-12 h) embryogenesis
[20] and data from the entire Drosophila life cycle [21] are used to test
whether the putative direct targets of a regulator are expressed
differently than the rest of the genes in a given experiment. Red cells
correspond to significant enrichment of overexpressed targets using a
Kolmogorov-Smirnov test, while green cells correspond to enrichment of
underexpressed targets. For most of the regulators the analysis resulted
in at least one significant embryogenesis experiment, suggesting an
active role in early developmental stages (above). Similar results were
obtained using the full life cycle gene expression data (below).

DOI: 10.1371/journal.pcbi.0010001.9006

analyses show that a residue may have different nucleotide
preferences depending on its context. For some amino acids,
the qualitative preferences remain the same across various
positions, while the quantitative preferences vary (e.g.,
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arginine; see Figure 4). The DNA-binding preferences of
other residues change across various positions. For example,
histidine at position 3 tends to interact with guanine, while it
shows no preference to any nucleotide at all other positions.
Another example is the tendency of alanine at position 6 to
face guanine. This preference, which was revealed automati-
cally by our analysis, is not consistent with the chemical
nature of alanine’s side chain nor with general examinations
of amino acid-nucleotide interactions [5,8]. We suspect that
it is affected by the large number of Spl targets in our
dataset. This potential interaction was implied before in Sp1
binding sites [32] and may reflect an interaction between the
residue at position 2 with the complementary cytosine.

The Protein-DNA Binding Model

In this work, we use a binding model that is based on solved
protein-DNA complexes. The model presents a rigid and
simplistic representation of the amino acid-base interactions
at the Zinc Finger domains. Only some of the Zinc Finger
domains (termed “canonical” in this work) use this model for
binding, while others maintain more complex interactions.
As our results show, by using this model, we manage to
recover most of the DNA-binding specificities of amino acids,
and use them to predict the binding site models of novel
proteins. We believe that this model offers a fair tradeoff
between complexity (and number of parameters) and
accuracy.

Inter-Position Dependencies in the Binding Site

The CysgHise binding model inherently assumes that all
positions within the binding site are independent of each
other. This assumption is used in most computational ap-
proaches that model binding sites. Two recent papers [33,34]
discuss this issue in the context of the CysoHise Zinc Finger
domain. Their analyses of binding affinity measurements sug-
gest that weak dependencies do exist among some positions of
the binding sites of Egr-1. Nonetheless, a reasonable approx-
imation of the binding specificities is obtained even when
ignoring these dependencies. In another recent study [35], we
evaluated probabilistic models that are capable of capturing
inter-position dependencies within binding sites. Our results
show that dependencies can be found in the binding sites of
many proteins from various DNA-binding domains (especially
from the helix-turn-helix and the homeo domains). However,
our results also suggest that such models of dependencies do
not lead to significant improvements in modeling the binding
sites of Zinc Finger proteins. Thus, we believe that the
CysoHise binding model we use here is indeed a reasonable
approximation of the actual binding.

Genome-Wide Predictions of Binding Sites and Target
Genes

In the current era there is a growing gap between the
number of known protein sequences and the number of
experimentally verified binding sites. To better understand
regulatory mechanisms in newly solved genomes, it is crucial
to identify the direct target genes of novel DNA-binding
proteins. Our method opens the way for such genome-wide
assays. Here we apply it to the CyssHisy Zinc Finger DNA-
binding family. By predicting the binding site models of
regulatory proteins, one can classify genes into those that
contain significant binding sites at their regulatory promoter
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Table 1. Analysis of Differential Expression in D. melanogaster Imaginal Wing Disc

Transcription Factor Targets

Transcription Factor Role

Name Body/Wing ratio® Body/Wing Enriched Kolmogorov-Smirnov p-Value® Body/Wing Enriched Inferred Function Known Function
Stripe 9.113 Body 132 X 107* Body Activator Activator

EP2237  2.059 Body 548 X 10°* Body Activator Activator

CG10309 0.321 Wing 2.00 X 10°* Body Repressor —

CG9895 0380 Wing 8.45 X 1073 Body Repressor —

CG14655 0.302 Wing 347 X 1072 Wing Activator =

Butler et al. [23] measured the gene expression levels at two parts of the imaginal wing disc—the body wall and hinge-wing pouch, and computed the ratios between the two. The regulatory functions of transcription factors are analyzed by
comparing their ratio with the ratios of their targets. Activators are expected to have the same directional enrichment as their targets, while repressors are expected to have opposite effects. Each group of targets is assigned a p-value using a
two-tailed Kolmogorov-Smirnov test that compares the ratios in the target group to those of the rest of the genes.

2Ratio between the transcription factor's mRNA expression levels at the body wall and the wing-hinge pouch.
“p-Value of targets’ enrichment using a Kolmogorov-Smirnov test.
DOI: 10.1371/journal.pcbi.0010001.t001

regions (hence, putative target genes) and those that do not.
As we showed, our approach can scale up to such genome-
wide scans and successfully predict the target genes of many
novel Zinc Finger proteins in higher eukaryotes. Further-
more, by integrating data from external sources, such as gene
expression and GO annotations, it is possible to infer the
cellular function and activity of these novel proteins.

Applications to Other DNA-Binding Domains

Theoretically, our approach can be extended to handle
other structural families, such as the basic leucine zipper, the
homeodomain, and the basic helix-loop-helix, for which
enough binding data already exist (1,191, 505, and 201
binding sites per family, respectively). This extension requires
that the various proteins in the family show a common DNA
binding model, which can be used further for other family
members. For such families, our approach should suffice. For
other families, where the binding models are more complex
and flexible (including other Zinc Finger domains, such as
CCCC, CCHC, or even the non-canonical CysgHise), more
advanced models and learning techniques will be needed. In
spite of these possible difficulties, we believe that structural
approaches, such as the one we show here, open promising
directions, leading to successful predictions of binding site
models and, following that, to accurate identification of the
target genes of novel proteins, even on genome-wide scales.
Eventually, such approaches will be utilized to reconstruct
larger and larger portions of the transcriptional regulatory
networks that control the living cell.

Materials and Methods

Sequences of Zinc Finger proteins and their binding sites. We
trained a profile hidden Markov model [36] on 31 experimentally
determined canonical domains [37], and used it to classify the
remaining CysoHis, Zinc Finger domains in TRANSFAC [2] as
canonical or non-canonical. From these, we selected proteins with
two to four properly spaced canonical fingers. This resulted in
61 canonical CysyHiss Zinc Finger proteins, and 455 protein-binding
site pairs. We used these pairs as our training data in subsequent
steps. The total number of fingers in this dataset was 1,320, and the
total length of all binding sites was 9,761 bp (average length of 21 bp
per site).

Identification of DNA-binding residues. The interacting residues in
each finger are located at positions 6, 3, 2, and —1 relative to the
beginning of the a-helix (see Figure 1). We identify these positions
using their relative positioning in the CysoHisy conserved pattern:
CX(2-4)CX(11-13)HX(3-5)H. Although, theoretically there can be
20" different combinations of amino acids at the interacting

@ PLoS Computational Biology | www.ploscompbiol.org

0011

positions, we found only 80 different combinations among the
1,320 fingers in our database. Figures S5 and S6 show the abundance
of amino acids at the different DNA-binding positions.

The probabilistic model. We describe the binding preferences of a
protein using a probabilistic model. For a canonical Egr-1-like Zinc
Finger protein, we denote by A ={A;, : i={1,..., k}, p € {~1,2,3,6}}
the set of interacting residues in the different four positions of the
k fingers (ordered from the N- to the C-terminus). Let Ny,..., N be a
target DNA sequence. The conditional probability of an interaction
with a DNA subsequence, starting from the jth position in the DNA is

P(Nj... Njjspi-1)|A) =

k

}31 Ps(Njy3(i-1)|Art1-i6)Ps (Njgsi-1) 4114k 11-03)P-1 (Njy3(-1) 12 Art1-i-1)
(1)

where Py(N|A) is the conditional probability of nucleotide N given
amino acid A at position p. These probabilities are the parameters of
the model. For each of the four interacting positions there is a matrix
of the conditional probabilities of the four nucleotides given all
20 residues. We call these matrices the DNA-recognition preferences.

The model, as described above, does not account for the inter-
actions by the amino acid in position 2 in each finger. According to
the canonical binding model (see Figure 1), the amino acid at
position 2 interacts with the nucleotide that is complementary to the
nucleotide interacting with position 6 of the previous finger. Thus,
when we have a base pair interacting with two amino acids, we replace
the term Py(Njys(—1)|Ax+1-i,6) With the term

oPs(Njts(i-1)[Ars1-i6) + (1 — 0)Po(Njysii—1)|Arr2-i2) (2)

fori> 1, where ais a weighting coefficient that depends on the number
of examples we have seen while estimating the recognition preferences
at each position. Moreover, we add the term PQ(N7-+3(,»_1)|A,;+2_,-Y2), for
i=k+ 1, to capture the last nucleotide, which is in interaction with
position 2 of the first finger.

Estimating DNA-recognition preferences. We searched for the
DNA-recognition preferences that maximized the likelihood of the
DNA sites given the binding proteins. The DNA sequences in our
database were reported as containing the binding sites [2], yet the exact
binding locations were not pinpointed. Thus, we simultaneously
identified the exact binding locations and maximum likelihood
recognition preferences using the iterative EM algorithm [13]. Starting
with an initial choice of DNA-recognition preferences (possible
choices are discussed below), the algorithm proceeds iteratively, by
carrying out two steps. In the E-step, the expected posterior probability
of binding locations is computed for every protein-DNA pair. This is
done using the current sets of preferences. In the M-step, the DNA-
recognition preferences are updated to maximize the likelihood of the
current binding positions for all protein-DNA pairs based on the
distribution of possible binding locations computed in the E-step.

Each iteration of these two steps increases the likelihood of the
data until reaching a convergence point [13]. Although the EM
algorithm is proved to converge, it does not ensure that the final
DNA-recognition preferences are the optimal ones, because of
suboptimal local maxima of the likelihood function. This can be
overcome by using promising starting points or applying the EM
procedure with multiple random starting points (see Figure S7). An
additional potential pitfall is over-fitting the recognition preferences
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of rare residues. To address this problem and ensure that the
estimated recognition preferences for rare amino acids are close to
uniform distribution (i.e., uninformative), we use a standard method
of “pseudo-counts.” We do so by adding a constant (0.7 in the results
above) to each amino acid-nucleotide count computed at the end of
the E-step. This is equivalent to using a Dirichlet prior on the
parameters, and then performing a maximum a posteriori estimation
rather than maximum likelihood estimation.

We evaluated the robustness and convergence rate of the EM proce-
dure using a 10-fold cross-validation procedure. In each round, we
removed a part of the data, trained on the remaining pairs, and tested
the likelihood of the held-out protein-DNA pairs. We used this
procedure to test various initialization options. Our evaluation shows
that the EM algorithm performs best when initialized with the general
recognition preferences of Mandel-Gutfreund et al. [5], converging
within a few iterations. Similar results were obtained using random ini-
tialization points, although the convergence rate was somewhat slower
(see Figure S7). Also, in Figure S8 we demonstrate the correlation
between the size of the training dataset and the likelihood of test data.

Predicting the binding sites of novel proteins. Given the sequence
of a novel CysoHiso Zinc Finger protein, we identified the four key
residues at each DNA-binding domain, and utilized the appropriate
set of DNA-recognition preferences to construct a probabilistic
model of the binding site (see Figure 3).

In silico binding experiments. We used the predicted binding site
models to scan genomic sequences for putative binding sites. We
scored each possible binding position using the log of the ratio
between the probability assigned to it by the model and the
background probability (log-odds score). We then estimated the p-
value of these scores and applied a Bonferroni correction to account
for multiple tests within the same promoter region [38]. Sites with a
significant p-value (<0.05 after Bonferroni correction) were marked
as putative binding sites (see Figure 4B).

Comparison with other computational approaches. In a similar
manner, we generated probabilistic binding site models for these
transcription factors using the recognition preferences of Mandel-
Gutfreund et al. [5] and SAMIE [15]. We then scanned the
corresponding promoter regions using these models.

Ab initio genome-wide prediction of binding sites. We downloaded
genomic sequences of the D. melanogaster from FlyBase [22], release 3-1.
These include 2-kb regulatory regions upstream from 15,664 genes, and
the sequences of 16,201 putative gene products. We scanned the
proteins for canonical Zinc Finger domains using the CysyHiso
conserved pattern and our profile-HMM model (available at http:/
compbio.cs.huji.ac.il/Zinc). We found 29 proteins with properly spaced
three or four fingers (with distances of 28-31 residues between the
beginnings of Zinc Finger domains). We then used the learned sets of
DNA-recognition preferences to predict probabilistic binding site
models for these putative Zinc Finger transcription factors. Finally, we
performed in silico binding experiments by scanning each gene’s 2-kb
upstream region for two significant binding sites (p < 0.05 after
Bonferroni correction). The matched genes were marked as putative
direct targets of the transcription factor.

Enrichment of GO annotations among the target genes. FlyBase
GO annotations [18,22] were downloaded from the Gene Ontology
Consortium (http://lwww.geneontology.org) in October 2003. The en-
richment p-values were calculated by GeneXPress (http://genexpress.
stanford.edu), using a hyper-geometric test that compares the
abundance of similarly annotated genes among the putative targets
to the rest of the genome. We then applied an FDR correction for
multiple hypotheses using a false rate of 0.05 [39], and only significant
factors/terms are shown.

Inference of activity/function using gene expression data. We
downloaded genome-wide gene expression data from early embryo-
genesis stages [20] (available from FlyBase; http:/lwww.fruitfly.org/
cgi-bin/ex/insitu.pl). The expression level of each gene in each array
was transformed to log (base 2) of the ratio of expression to the
geometric average of the expression of the gene in all arrays. In
addition, we downloaded expression data from along the Drosophila
life cycle [21] (available from Stanford Microarray Database; http://
genome-wwwb.stanford.edu). These expression data are represented
as log (base 2) of expression compared to a reference sample
representing all stages of the life cycle.

For each protein and in each experiment, we used a Kolmogorov-
Smirnov test to evaluate whether the expression pattern of the putative
direct target genes was different from the expression of the rest of the
genome. We then corrected the results for multiple hypotheses using
an FDR correction [39] (false rate of 0.05). Similarly, we used
differential gene expression data from D. melanogaster imaginal wing
disc [23]. For each gene, we computed the ratio of its expression in the
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body wall to its expression in the hinge-wing pouch, and performed a
two-tailed version of the Kolmogorov-Smirnov test to compare these
ratios among the putative targets and the rest of the genome.

Supporting Information

Figure S1. Sequence logos of 29 Drosophila Transcription Factors
Found at DOI: 10.1371/journal.pcbi.0010001.sg001 (617 KB PDF).

Figure S2. Number of Predicted Direct Targets
Found at DOT: 10.1371/journal.pcbi.0010001.sg002 (162 KB PDF).

Figure S3. Percentage of Pairwise Coverage between Targets

Found at DOT: 10.1371/journal.pcbi.0010001.sg003 (109 KB PDF).

Figure S4. Results of Complete GO Table
Found at DOI: 10.1371/journal.pcbi.0010001.sg004 (182 KB PDF).

Figure S5. Abundance of DNA-Binding Residues in Training Data
Found at DOI: 10.1371/journal.pcbi.0010001.sg005 (123 KB PDF).

Figure S6. Abundance of Combinations of DNA-Binding Residues in
Training Data

Found at DOIL: 10.1371/journal.pcbi.0010001.sg006 (123 KB PDF).

Figure S7. Convergence of the EM Algorithm on Held-Out Test Data
Found at DOI: 10.1371/journal.pcbi.0010001.sg007 (106 KB PDF).

Figure S8. Likelihood of Held-Out Test Data Given Different Sizes of
the Training Datasets

Found at DOI: 10.1371/journal.pcbi.0010001.sg008 (106 KB PDF).

Table S1. Four Sets of DNA-Recognition Preferences: Probabilities
Found at DOI: 10.1371/journal.pcbi.0010001.st001 (22 KB PDF).

Table S2. Four Sets of Recognition Preferences: Counts
Found at DOL 10.1371/journal.pcbi.0010001.st002 (20 KB PDF).

Table S3. Confidence Intervals on Four Sets of DNA-Recognition
Preferences

Found at DOIL: 10.1371/journal.pcbi.0010001.st003 (63 KB PDF).

Table S4. Correlation with Experimentally Measured Binding
Affinities

Found at DOI: 10.1371/journal.pcbi.0010001.st004 (514 KB TIF).

Table S5. 21 Protein-DNA Pairs
Found at DOIL 10.1371/journal.pcbi.0010001.st005 (2 MB TIF).

Table S6. Sensitivity and Specificity of Test Set at Different
Significance Threshold Values

Found at DOI: 10.1371/journal.pcbi.0010001.st006 (328 KB TIF).

Table S7. Sensitivity and Specificity of Test Set at Different
Significance Threshold Values—Other Computational Methods

Found at DOI: 10.1371/journal.pcbi.0010001.st007 (440 KB TIF).

Table S8. Position-Specific Score Matrices of 29 CysyHis, Tran-
scription Factors from Drosophila melanogaster

Found at DOIL 10.1371/journal.pcbi.0010001.st008 (55 KB PDF).

Acknowledgments

The authors wish to thank Yael Altuvia, Yoseph Barash, Ernest
Fraenkel, Benjamin Gordon, Robert Goldstein, Ruth Hershberg, Dalit
May, Lena Nekludova, Aviv Regev, and Eran Segal for helpful
discussions. TK is supported by the Yeshaya Horowitz Association
through the Center for Complexity Science. NF is supported by the
Harry and Abe Sherman Senior Lectureship in Computer Science.
This work was supported by grants from the Israeli Ministry of
Science and the Israeli Science Foundation. A preliminary version of
this manuscript appeared in RECOMB 2005 [40].

Competing interests. The authors have declared that no competing
interests exist.

Author contributions. TK, NF, and HM conceived and designed the
experiments. TK performed the experiments. TK, NF, and HM
analyzed the data and wrote the paper. "

June 2005 | Volume 1 | Issue 1 | el



References

1.

2.

10.

11.

12.

13.

14.

17.

18.

20.

21.

Stormo GD (2000) DNA binding sites: Representation and discovery.
Bioinformatics 16: 16-23.

Wingender E, Chen X, Fricke E, Geffers R, Hehl R, et al. (2001) The
TRANSFAC system on gene expression regulation. Nucleic Acids Res 29:
281-283.

Luscombe NM, Laskowski RA, Thornton JM (2001) Amino acid-base
interactions: A three-dimensional analysis of protein-DNA interactions at
an atomic level. Nucleic Acids Res 29: 2860-2874.

Mandel-Gutfreund Y, Margalit H (1998) Quantitative parameters for amino
acid-base interaction: Implications for prediction of protein-DNA binding
sites. Nucleic Acids Res 26: 2306-2312.

Mandel-Gutfreund Y, Baron A, Margalit H (2001) A structure-based
approach for prediction of protein binding sites in gene upstream regions.
Pac Symp Biocomput 2001: 139-150.

Choo Y, Klug A (1994) Toward a code for the interactions of zinc fingers
with DNA: Selection of randomized fingers displayed on phage. Proc Natl
Acad Sci U S A 91: 11163-11167.

Choo Y, Klug A (1994) Selection of DNA binding sites for zinc fingers using
rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci
USA9I1: 11168-11172.

Kono H, Sarai A (1999) Structure-based prediction of DNA target sites by
regulatory proteins. Proteins 35: 114-131.

Tupler R, Perini G, Green MR (2001) Expressing the human genome.
Nature 409: 832-833.

Wolfe SA, Greisman HA, Ramm EI, Pabo CO (1999) Analysis of zinc fingers
optimized via phage display: Evaluating the utility of a recognition code.

J Mol Biol 285: 1917-1934.

Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: Crystal
structure of a Zif268-DNA complex at 2.1 A. Science 252: 809-817.
Elrod-Erickson M, Benson TE, Pabo CO (1998) High-resolution structures
of variant Zif268-DNA complexes: Implications for understanding zinc
finger-DNA recognition. Structure 6: 451-464.

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from
incomplete data via the EM algorithm. J R Stat Soc Ser B 39: 1-38.

Bulyk ML, Huang X, Choo Y, Church GM (2001) Exploring the DNA-
binding specificities of zinc fingers with DNA microarrays. Proc Natl Acad
Sci U S A 98: 7158-7163.

. Benos PV, Lapedes AS, Stormo GD (2002) Probabilistic code for DNA

recognition by proteins of the EGR family. ] Mol Biol 323: 701-727.

. Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, et al. (2004)

Unbiased mapping of transcription factor binding sites along human
chromosomes 21 and 22 points to widespread regulation of noncoding
RNAs. Cell 116: 499-509.

Schock F, Purnell BA, Wimmer EA, Jackle H (1999) Common and diverged
functions of the Drosophila gene pair D-Sp1 and buttonhead. Mech Dev 89:
125-132.

Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, et al. (2004) The Gene
Ontology (GO) database and informatics resource. Nucleic Acids Res 32:
D258-D261.

. Moses K, Ellis MC, Rubin GM (1989) The glass gene encodes a zinc-finger

protein required by Drosophila photoreceptor cells. Nature 340: 531-536.
Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, et al. (2002)
Systematic determination of patterns of gene expression during Drosophila
embryogenesis. Genome Biol 3: RESEARCHO0088.

Arbeitman MN, Furlong EE, Imam F, Johnson E, Null BH, et al. (2002) Gene
expression during the life cycle of Drosophila melanogaster. Science 297:
2270-2275.

@ PLoS Computational Biology | www.ploscompbiol.org

0013

22.

24.

26.

27.

31.

40.

41.

Ab Initio Prediction of Target Genes

FlyBase Consortium (2003) The FlyBase database of the Drosophila genome
projects and community literature. Nucleic Acids Res 31: 172-175.

. Butler M], Jacobsen TL, Cain DM, Jarman MG, Hubank M, et al. (2003)

Discovery of genes with highly restricted expression patterns in the
Drosophila wing disc using DNA oligonucleotide microarrays. Development
130: 659-670.

Vorbruggen G, Jackle H (1997) Epidermal muscle attachment site-specific
target gene expression and interference with myotube guidance in re-
sponse to ectopic stripe expression in the developing Drosophila epidermis.
Proc Natl Acad Sci U S A 94: 8606-8611.

. Suzuki M, Gerstein M, Yagi N (1994) Stereochemical basis of DNA

recognition by Zn fingers. Nucleic Acids Res 22: 3397-3405.

Steffen NR, Murphy SD, Tolleri L, Hatfield GW, Lathrop RH (2002) DNA
sequence and structure: Direct and indirect recognition in protein-DNA
binding. Bioinformatics 18: $22-S30.

Endres RG, Schulthess TC, Wingree NS (2004) Toward an atomistic model
for predicting transcription-factor binding sites. Proteins 57: 262-268.

. Havranek JJ, Duarte CM, Baker D (2004) A simple physical model for the

prediction and design of protein-DNA interactions. ] Mol Biol 344: 59-70.
Paillard G, Deremble C, Lavery R (2004) Looking into DNA recognition:
Zinc finger binding specificity. Nucleic Acids Res 32: 6673-6682.

. Robison K, McGuire AM, Church GM (1998) A comprehensive library of

DNA-binding site matrices for 55 proteins applied to the complete
Escherichia coli K-12 genome. | Mol Biol 284: 241-254.

Shultzaberger RK, Schneider TD (1999) Using sequence logos and
information analysis of Lrp DNA binding sites to investigate discrepancies
between natural selection and SELEX. Nucleic Acids Res 27: 882-887.

. Berg JM (1992) Sp1 and the subfamily of zinc finger proteins with guanine-

rich binding sites. Proc Natl Acad Sci U S A 89: 11109-11110.

. Benos PV, Bulyk ML, Stormo GD (2002) Additivity in protein-DNA inter-

actions: How good an approximation is it? Nucleic Acids Res 30: 4442-4451.

. Bulyk ML, Johnson PLF, Church GM (2002) Nucleotides of transcription

factor binding sites exert interdependent effects on the binding affinities
of transcription factors. Nucleic Acids Res 30: 1255-1261.

. Barash Y, Elidan G, Friedman N, Kaplan T (2003) Modeling dependencies

in protein-DNA binding sites. In: Vingron M, Istrail S, Pevzner P,
Waterman M, editors. Proceedings of the Seventh International Confer-
ence on Research in Computational Molecular Biology. New York: ACM
Press. pp. 28-37.

. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: 755-763.
. Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc

finger proteins. Annu Rev Biophys Biomol Struct 29: 183-212.

. Barash Y, Elidan G, Kaplan T, Friedman N (2005) CIS: compound

importance sampling method for protein-DNA binding site p-value
estimation. Bioinformatics. 21: 596-600.

. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A

practical and powerful approach to multiple testing. ] R Stat Soc Ser B 57:
289-300.

Kaplan T, Friedman N, Margalit H (2005) Predicting transcription factor
binding sites using structural knowledge. In: Miyano S, Mesirov JP, Kasif S,
Istrail S, Pevzner PA, et al., editors. Proceedings of the Ninth International
Conference on Research in Computational Molecular Biology: Lecture
notes in computer science, Volume 3,500. Berlin: Springer-Verlag. pp.
522-537.

Kriwacki RW, Schultz SC, Steitz TA, Caradonna JP (1992) Sequence-specific
recognition of DNA by zinc-finger peptides derived from the transcription
factor Spl. Proc Natl Acad Sci U S A 89: 9759-9763.

June 2005 | Volume 1 | Issue 1 | el



