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Abstract: Activity recognition has received considerable attention in many research fields, such as
industrial and healthcare fields. However, many researches about activity recognition have focused
on static activities and dynamic activities in current literature, while, the transitional activities,
such as stand-to-sit and sit-to-stand, are more difficult to recognize than both of them. Consider that
it may be important in real applications. Thus, a novel framework is proposed in this paper to
recognize static activities, dynamic activities, and transitional activities by utilizing stacked denoising
autoencoders (SDAE), which is able to extract features automatically as a deep learning model
rather than utilize manual features extracted by conventional machine learning methods. Moreover,
the resampling technique (random oversampling) is used to improve problem of unbalanced samples
due to relatively short duration characteristic of transitional activity. The experiment protocol is
designed to collect twelve daily activities (three types) by using wearable sensors from 10 adults in
smart lab of Ulster University, the experiment results show the significant performance on transitional
activity recognition and achieve the overall accuracy of 94.88% on three types of activities. The results
obtained by comparing with other methods and performances on other three public datasets verify
the feasibility and priority of our framework. This paper also explores the effect of multiple sensors
(accelerometer and gyroscope) to determine the optimal combination for activity recognition.

Keywords: activity recognition; transitional activities; stacked denoising autoencoders; wearable
sensors; resampling technique

1. Introduction

Activity recognition, as an important application, has been received considerable attention and
is widely used in many research fields, such as industrial and healthcare fields [1]. In general,
activity recognition means that people’s daily behavior types are identified by a large amount of
human behavior information that is collected by a variety of channels which include camera [2],
microphone [3], sensor [4,5], and so on. Moreover, for activity recognition, research has found four
dominant groups of technologies and two emerging technologies: smartphones, wearables, video,
electronic components, Wi-Fi, and assistive robots [6]. Wearable sensors that are currently embedded
in smart devices are widely used. It is prevailing to utilize wearables which have embedded sensors to
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collect data, such as smartphones [7], due to the reason that wearable devices are convenient to carry
and suitable for long-term monitoring.

The wearable sensors that are used to collect raw data are varied [8–11]. For example,
there are accelerometer, gyroscope, magnetometer, barometer, light, proximity, GPS, and so on.
Paraschiakos et al. focused on the task of activity recognition from accelerometer data by combining
ankle and wrist accelerometers [12]. Elsts et al. also used wearable accelerometers to propose an
energy-efficient activity recognition framework [13]. Additionally, Lawal et al. utilized accelerometer
and gyroscope signals from seven different body parts to generate frequency image sequences for
predicting human activity [14]. The accelerometer measures acceleration of subject in experiment
to analyze human motion states. The gyroscope is commonly used to measure the angle of rotation
and its rate of change. Thus, the combination of the two sensors is able to collect informative data,
which include more representative features.

The activity recognition is to identify various types of human daily activities that are grouped
according to different points of view. For example, the main monitoring activities are classified into
static activity, dynamic activity [15] and transitional activity according to activities’ characteristics,
which is also studied in this paper. Generally, the static activities (e.g., standing, sleeping) and
the dynamic activities (e.g., walking, running) are focused in current researches, which have
achieved significant performance. But the transitional activities (e.g., stand-to-sit, sit-to-stand)
are more complicated due to their short duration, which cause easy loss of performance [16].
Although transitional activities have some overlaps with static and dynamic activities, it is
indispensable to detect transitional activities in real life. A variety of activities are usually performed by
people in a period of time, containing various transitional activities that include the end of an activity
and the beginning of next activity. The transitional activity can also play a huge role in practical
application. For patients, monitoring the transitional period makes great sense, which can help
diagnosing patient’s physical state in real-time [17]. Nowadays, there is already clinical application
that using Sit-to-Stand Test to judge safety and reliability with older intensive care unit patients at
discharge [18]. Thus, transitional activities recognition is worth studying. Meanwhile, transitional
activities are intermediate and short-term transitions between two activities, thus the number of
instances of transitional activities is usually far less than static and dynamic activities in an experiment,
which results in drops of accuracy due to the imbalance of sample number. In order to alleviate the
sample imbalance problem, some methods can play an important role in it. Research has investigated
this problem by improving the performance of the recognition model [19]. In addition to modifying
model, it can also be alleviated from the perspective of data processing. Therefore, the resampling
technique [20] is also used to improve unbalanced problem.

The activity recognition is often conducted by many conventional machine learning algorithms,
such as KNN [21,22], SVM [23], Random Forest (RF) [24], and K-means [25]. The universal
procedures which perform activity recognition by applying machine learning algorithms contain data
gathering, data preprocessing, data segmentation, feature extraction, classifier training, and testing.
Feature extraction is the core of procedure, which has a significant influence on classification
performance. In this step, features are often extracted manually. Even though conducting activity
recognition by applying machine learning algorithms have reached reasonable performance, they need
high time-cost and computing resource for extracting features manually. Thus, deep learning methods
that are able to extract features automatically have received more widespread attention on human
activity recognition [26,27].

In this paper, the stacked denoising autoencoder (SDAE) [8], which is a kind of deep learning
model utilized to perform activity recognition on account of its advantages. Firstly, it is able to
extract features automatically comparing with conventional machine learning methods. Secondly, it is
able to reduce data dimension to simplify calculation while preserving information, thus providing
better conditions for learning in the final training stage. Thirdly, it utilizes encoder to compress
unnecessary data and uses decoder to reconstruct data, which is able to extract useful higher
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level of representations [28]. Moreover, our experimental data are collected by using wearable
sensors that contain accelerometer and gyroscope. The data from the two sensors that are tri-axial
are three-dimensional [29], which describes meaningful human movement tendency in realistic
space. Additionally we would focus on not only the static and dynamic activities recognition,
but also transitional activities recognition. Thus, our activities’ types in this study contain three
static activities (standing, sleeping, and watching TV), three dynamic activities (walking, running,
and sweeping) and six transitional activities (stand-to-sit, sit-to-stand, stand-to-walk, walk-to-stand,
lie-to-sit, and sit-to-lie).

The main contributions in this study are described, as follows:

1. In this paper, besides static and dynamic activities recognition, we also focus on utilizing deep
learning models to perform transitional activities recognition which are more difficult and
complicated than other two cases.

2. We have improved the problem of unbalanced samples due to relatively short duration
characteristic of transitional activity by applying the resampling methods and adopted varied
resampling methods to search optimal scenario.

3. A novel framework based on stacked denoising autoencoder is utilized to recognize three
types of activities, which has achieved significant performances and compared with other
classical methods to verify the effectiveness of SDAE model on activity recognition, especially for
transitional activities.

The rest of this paper is organized as follows: Section 2 introduces existing related works about
activity recognition and deep learning methods. Section 3 describes the overall framework about
architecture of stacked denoising autoencoder model. Section 4 designs the experimental procedures
and proposes the methods of data preprocessing. The results of experiment are presented and analyzed.
Finally, the conclusions are drawn in Section 6.

2. Related Work

In activity recognition, the widespread usage of portable and wearable smart devices, such as
smartphones and smartwatches that are embedded with sensors, have enabled the human activity
data to be gathered large-scale. Before smart devices became ubiquitous, human activity recognition
was cumbersome by attaching multiple sensors to a user’s body [30]. However, with the proliferation
of affordable smart devices, it has become easier to collect information about user activity through
sensors embedded in the device. Various methods of detecting human activities using acceleration
sensors of smartphones have been proposed [31]. In the current study, conventional machine learning
methods and deep learning methods are widely used due to their different characteristics.

2.1. Conventional Machine Learning Methods

In this study, the data we used came from accelerometer and gyroscope, which included three
types of activities (static, dynamic, and transitional activities). Transitional activity recognition has
greater complexity owing to short duration. Jorge-L took feature vectors as input for activity prediction
using an SVM and utilized a filtering module to deal with transitions and fluctuations on the SVM
module output [32]. Machine learning methods are widely used to predict transitional activities,
such as SVM, KNN, Random Forest, and so on. Junhuai Li proposed a method based on conventional
machine learning algorithms, they first utilized K-means to distinguish between basic activities and
transitional activities and then used Random Forest classifier to recognize the two types of activities
accurately [33]. In this paper, we exploit a deep learning model, stacked denoising autoencoder,
in order to recognize transitional activities. Feature extraction influences the algorithm performance,
computation time and complexity [34]. Conventional machine learning classification methods are often
used to complete tasks based on the extracted features. For instance, a paper exploited discrete cosine
transform to extract effective features and used PCA to reduce the dimension of feature [35]. At last,
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they applied multi-class Support Vector Machine (SVM) to recognize human activity. Decision Tree
(DT) classifier [36] has the preferable performance in recognizing daily activities. Deep neural language
model is exploited for the discovery of interleaved and overlapping activities [37]. The model builds
hierarchical activities and captures the inherent complexities in activity details. Backpropagation
techniques was used to train feedforward neural for complex human activity recognition in a smart
home environment [38]. Although the algorithm outperformed the Hidden Markov Model [39],
DT, and SVM, it requires a combination of manual feature extraction to achieve high performance
accuracy. However, for these conventional machine learning algorithms, there have been a drawback
that they need to manually extract features. There is no doubt that extracting features manually
increases the time consuming, energy and model building procedure. Thus, in this direction, the deep
learning model that extracts features automatically has received more considerable attention.

2.2. Deep Learning Methods

With the emergence of deep learning and increased computation powers, deep learning methods
are being widely adopted for automatic feature learning in diverse areas, like natural language
processing, image classification, and speech recognition [40–42]. Recently, it has been used to
extract features automatically from data collected by mobile and wearable sensors, and then classify
human activity. In many researches, Convolutional Neural Network (CNN) [43–45] and Denoising
Autoencoder [46], Restricted Boltzmann Machines [47] were used to extract features from data
automatically. In this study, the stacked denoising autoencoder technique is utilized for activity
recognition. Denoising autoencoder was proposed by P. Vincent et al. [48] and then A. Wang et al. [46]
proposed the denoising autoencoder technique to learn underlying feature representation in sensor
data and then integrate it with a classifier trained into single architecture to obtain powerful recognition
model. Stacked autoencoder was introduced to analyze human activity from data of motion sensors,
which has a high performance [49]. Therefore, autoencoder methods have demonstrated significant
approaches for automatic feature representation to learn latent feature representation for human
activity monitoring and detection approach. What is more, stacked denoising autoencoder was utilized
to recognize eight activities, which achieved high accuracy [8]. However, it also only focused on static
and dynamic activities not transitional activities. Generally, stacked autoencoder provides compact
feature representation from continuous unlabelled sensor streams to achieve robust and seamless
implementation of human activity recognition system [34]. In addition to the above mentioned,
deep learning methods also include Recurrent Neural Network (RNN) [50,51], Long Short-Term
Memory (LSTM) [52], Deep Belief Networks (DBN) [53], and so on. In Table 1, some references that
utilized deep learning methods were listed. These deep learning models also have the advantage that
extract features automatically.

It is obvious that these experiments that adopted deep learning models in Table 1 achieved
acceptable accuracy. Thus, deep learning methods not only extract features automatically, but also
improve the experiments’ performance. Moreover, when compared to these deep learning models,
the SDAE model is able to improve effectively the problem of gradient disappearance and compress
data by utilizing encoder, which extracts more representative features. Moreover, the SDAE model can
reduce dimension of data to simplify calculation and improve operation efficiency. Thus, in this study,
we would focus on stacked denoising autoencoders to extract feature and recognize human activity.
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Table 1. References of applying deep learning methods on activity recognition (the Acc is accelerometer, the Gyr is gyroscope, the Mag is magnetometer, and the Bar
is barometer).

Reference Method Sensor Activity Classes Accuracy

Gu et al. [8] SDAE Acc+ Gyr+ Mag+ Bar stilling, running, walking, upstairs, downstairs, upElevator, downElevato, falsemotion 94.34%

Charissa et al. [43] CNN+ tFFT Acc+ Gyr walking sitting, upstairs, downstairs, standing, laying 95.75%

Song-Mi et al. [44] 1D-CNN Acc run, walk, still 92.71%

Mario [45] CNN Acc walking, sitting, jumping, lying, climbing_up, standing, running, climbing_down 94%

Masaya Inoue et al. [50] RNN Acc standing, sitting, downstairs, laying, walking, upstairs 95.42%

Yao et al. [51] CNN+ RNN Acc+ Gyr standing, climbStair-down, biking, walking, sitting, climbStair-up 94.20%

Yu et al. [52] LSTM Acc+ Gyr walking, upstarirs, standing, sitting, downstairs, laying down 93.79%

Zhang et al. [53] DBN Acc walking, running, standing, sitting, upstairs, downstairs, lying 98.60%
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3. Materials and Methods

In this section, the overall framework of experiment and the method (SDAE) are described in
detail, which are used to distinguish two types of activity on human activity recognition. The SDAE is
a kind of deep learning model that extracts features automatically. The framework includes two parts:
Data preprocessing and SDAE model, which is illustrated in Figure 1.
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Figure 1. The overall framework of stacked denoising autoencoder (SDAE)-based activity recognition.
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3.1. Data Preprocessing

After collecting data, data preprocessing is a critical procedure, which includes data segmentation,
resampling and standardized, as is shown in Figure 1. In our experiment, the data are collected in
a controlled lab environment by using wearable accelerometer and gyroscope. Ten healthy adults
were chosen to perform twelve activities. At first, data segmentation was carried out in order to
improve recognition accuracy. Then, owing to scarcity of transitional activity samples, the problem of
unbalanced samples will drop recognition accuracy. The resampling technique was applied in order to
improve this problem. Moreover, data standardization was also an important procedure to promote
performance of experiment.

The dataset that we collected contains three primary types of activities: static activity, dynamic
activity, and transitional activity. The static activity includes standing, sleeping, and watching
TV. The dynamic activity includes walking, running, and sleeping. The transitional activity
includes stand-to-sit, sit-to-stand, stand-to-walk, walk-to-stand, lie-to-sit, and sit-to-stand. All of
the experimental data are collected by leveraging accelerometer and gyroscope, which have three-axis,
xi = {acx

i , acy
i , acz

i , gyx
i , gyy

i , gyz
i }. The preprocessing procedure is needed to be carried out before the

experimental data become input of the model.

3.1.1. Segmentation

Data segmentation is an essential procedure in human activity recognition, which is directly
related to the recognition performance. In realistic world, human activities are continuous behaviors
so that a single data sample at a time point cannot reflect enough tendency of an activity. Thus, it is
necessary to segment data before training neural network. More representative features of each activity
are extracted after data segmentation. In our experiment, the sliding window with 50% overlap is
utilized to segment dataset, which has a significant influence on recognition performance. Thus,
the dataset is segmented by integrating n samples as a sequence according to sampling rate, namely

xac = {acx
k , . . . , acx

k+n−1, acy
k , . . . , acy

k+n−1, acz
k, . . . , acz

k+n−1}. (1)

xgy = {gyx
k , . . . , gyx

k+n−1, gyy
k , . . . , gyy

k+n−1, gyz
k, . . . , gyz

k+n−1}. (2)

xi = {xac, xgy}. (3)

where xi is a 1×M vector (M equals to 3072 in this study), xac represents raw data from accelerometer,
xgy represents raw data from gyroscope, and k is sequence size. The n is set to 512 in this paper
according to sample rate of 102.4 Hz and time interval of five seconds, which is used to combine
512 samples into one instance. A sliding window whose size is 512 with a 50% overlap is utilized to
complete this process. After segmenting, every instance corresponds to a specific activity class. By this
way, we acquired more powerful performance of classifier.

3.1.2. Resampling

After segmentation, we then choose whether to apply resampling technique or not according to
the distribution of samples. That is because the accuracy of model drops when the distribution of
samples is unbalanced. In general, in order to improve the unbalanced samples problem, the common
used method is the resampling technique, such as random undersampling, random oversampling and
Synthetic Minority Oversampling Technique (SMOTE) [54–56].

Random undersampling is able to promote running efficiency by decreasing the number of
training dataset when the dataset is too big, but it may discard some important information,
which results in inaccuracy of model. Random oversampling is able to duplicate some classes,
which just has few samples to increase the number of minority class and make sample size become
balanced, but it may cause overfitting problem due to random duplicate. Despite all of this,
the SDAE model that we utilized is able to decrease noise and, therefore, mitigate overfitting problem.



Sensors 2020, 20, 5114 8 of 22

The SMOTE method analyzes samples of minority class and synthesize new instances, and then
adds these synthetic samples to dataset. More specifically, for each sample in minority classes,
their near neighbors can be acquired according to euclidean distance between them and other samples.
Subsequently, some samples are chosen randomly to create new samples by applying Equation (4).
These examples would be added to the original dataset.

xnew = x + rand(0, 1)∗ | x− xn | . (4)

where xn is a sample in minority class and x is a random nearest neighbor sample of xn. rand(0, 1)
represents a random number between 0 and 1, | x− xn | calculate euclidean distance between x and xn.
By this way, it alleviates overfitting problem effectively and does not discard meaningful information.
However, the SMOTE also has its faults, it may generate extra noise when creating new instances.

These methods are able to improve unbalanced samples problem and they have specific drawbacks.
We would discuss and analyze their performance in next section. Moreover, data standardization was
carried out before it was taken as input of model in order to improve the accuracy. In this step, each value
is mapped to the 0–1 range by applying mean and standard deviation:

x∗ =
x− µ

σ
. (5)

where x∗ represents the input data, x represents concrete value, µ is mean and σ is standard deviation.
In the end, the whole dataset was divided into training set, validation set, and testing set with the ratio
of 6:2:2 randomly.

3.2. Stacked Denoising Autoencoder

The stacked denoising autoencoder stacks input layers and hidden layers of multiple denoising
autoencoders (DAE). Figure 1 illustrates its architecture and overall design in this paper. DAE includes
an input layer, a hidden layer, and an output layer, which utilizes encoder and decoder to acquire
output. The encoder can encode input data to learn hidden features. Subsequently, the decoder is able
to decode the output of encoder to restructure data. Its goal is to minimize the loss between input and
output and make them keep consistent as far as possible. What is more, a denoising factor is used to
corrupt input in order to avoid the problem that output is a direct copy of raw input. The training
process of stacked denoising autoencoder consists two steps: (i) pretraining; (ii) fine-tuning.

3.2.1. Pretraining

In this step, the stacked denoising autoencoder utilizes greedy layer-wise training to update
parameters. In other words, every denoising autoencoder in stacked denoising autoencoder are trained
separately. Moreover, every DAE’s output will act as input of subsequent denoising autoencoder until
the whole network is trained.

There are two processes in training process of denoising autoencoder: encoding and decoding.
In the encoding process, our training data from accelerometer and gyroscope will be mapped to hidden
layer by applying a sigmoid function, which is used to compress data, and it is then reconstructed by
applying a sigmoid function in the decoding process. The error between the input data and the output
data would be minimized by using gradient descent.

Formally, let xi represents the input data, which have already been preprocessed and segmented.
xi is a 1*N vector. The N equals 3072 in this paper. The whole dataset is represented, as follows:

Sn = {x0, x1, . . . , xn}. (6)
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Firstly, each xi must be corrupted by a denoising factor a, which obtain x
′
i . The probability of each

node lost in the layer is a. Subsequently, in the encoding section, x
′
i is mapped to hidden layer by a

sigmoid function f , namely
y = f (W1x

′
i + b1). (7)

where W1 and b1 are the weight matrix and bias, respectively. Afterwards, the y is mapped to output
layer by a sigmoid function g, namely

z = g(W2y + b2). (8)

where W2 and b2 are the weight matrix and bias respectively. Subsequently, the error between the
output data and raw data is computed. The loss function we utilize is cross entropy, which is written as:

L(xi, z) = −
n

∑
i=0

(xilog(z) + (1− xi)log(1− z)). (9)

Last, the parameters of each layer are updated by applying gradient descent. After that,
the pretraining process is done.

3.2.2. Fine-Tuning

In this step, a softmax layer is added at the top of network, which is used to identify current type
of activity. Afterwards, the whole network would be trained liked a Multilayer Perceptron (MLP) in
a supervised manner using labeled data. It is noted that the parameters of pretraining progress are
shared with fine-tuning progress. Subsequently, parameters of each layer are fine-tuned by applying
backpropagation and gradient descent. In training progress, the whole dataset is divided into training
set, validation set, and test set in proportion. The training set is used to train model, validation set
is used to detect optimal model specifications, and test set is used to test the performance of model.
The pseudo-code of human daily activity recognition in this paper is described in Algorithm 1.

Algorithm 1 Human activity recognition method with SDAE.

Input: Raw dataset D
Output: Activity types of testing dataset

1: Data Preprocessing:
2: Segment the dataset according to sampling frequency
3: Apply the random oversampling
4: Standardize the dataset to obtain input vector xi
5: Divide the dataset into training dataset Dtrain, validation dataset Dvalidate, test dataset Dtest
6: Pretraining:
7: while l <= Hidden layers Nl do
8: The dataset xi in Dtrain is corrupted into x

′
i by adding a denoising factor. Then let x

′
i as input to

train l-th layer of stacked denoising autoencoder.
9: The output of l-th layer will be the input of l + 1-th layer

10: l += 1
11: end while
12: Fine-tuning:
13: Fine-tune the whole network by applying backpropagation. Utilize labeled dataset Dtrain to train

softmax layer.
14: Test:
15: Use the Dtrain and Dvalidate to train model and validate performance of model respectively.

Recognize the activity type of test data Dtest.



Sensors 2020, 20, 5114 10 of 22

3.3. Experimental Design

This experiment was carried out in a controlled laboratory environment of the Ulster University
and approved by an independent research/ethics review board in order to acquire efficient and useful
information of activities. Ten healthy adults who came from the Ulster University were chosen to
perform the twelve activities that were grouped into three classes: static activities, dynamic activities,
and transitional activities. These activities contain standing, sleeping, watching TV, walking, running,
sweeping, stand-to-sit, sit-to-stand, stand-to-walk, walk-to-stand, lie-to-sit, and sit-to-lie. Table 2
provides their brief descriptions.

Table 2. The concrete descriptions of twelve human daily activities.

Class Activities Description

Stationary
Activities

standing The subject stands still and maintains 5 min

sleeping
The subject sleeps on the sofa for 5 min and is allowed to do
some small movements, such as changing the lying posture

watching TV
The subject watches TV for 5 min when he sits on the sofa in a
comfortable position. And changing sitting posture is allowed

Dynamic
Activities

walking The subject walks on treadmill at constant speed for 5 min

running The subject runs on treadmill for 5 min

sweeping The subject sweeps in room with vacuum cleaner for 5 min

Transitional
Activities

stand-to-sit Standing for 15 s, and then sitting on the sofa, repeat 15 times

sit-to-stand Sitting on the sofa for 10 s, and then standing up, repeat 15 times

stand-to-walk Standing for 15 s, and then walking for 15 s, repeat 15 times

walk-to-stand Walking for 15 s, and then standing for 15 s, repeat 15 times

lie-to-sit Sitting on the sofa for 15 s, and then lying down, repeat 15 times

sit-to-lie Lying on the sofa, and then sitting on the sofa, repeat 15 times

In designing progress, every subject was attached a tri-axial accelerometer and a tri-axial
gyroscope on their left wrist which is one of the most common placements in activity detection.
Then they performed twelve activities according to the description of Table 2 by following a verbal
guided sequence. Each activity will be performed in the predefined order above a rest period of
one minute will be observed between each activity and each repeat. The subjects will carry out each
activity five times to ensure the repeatability and reliability of measurement. Moreover, the researcher
informed subjects what activity to perform, but not limit strictly how to perform. The raw data were
collected by a Shimmer wireless sensing platform that contains an on-board tri-axial accelerometer
and gyroscope with a configurable sampling rate up to 1 kHz and an amplitude range up to ±6 g.
The Shimmer is a compact, wearable sensing platform, which runs on the TinyOS operating system.
Sensor data from the SHIMMER are transmitted via Bluetooth to a PC. In reality, our original data were
collected with a sampling rate of 102.4 Hz and an amplitude range of ±2.0 g (g = 9.8 m/s2), which was
conducted by accelerometer and gyroscope sensors. Therefore, 4,020,288 samples were recorded over
ten hours in the end.

4. Results

In this section, we will analyze the experimental results. After data preprocessing, the segmented
dataset is taken as input of model to train. Meanwhile, various experimental methods will be used.
In this step, we will discuss results in terms of different perspectives.
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4.1. Experimental Result Without Resampling

In our study, there are 12 activities, which contain standing, sleeping, watching TV, walking,
running, sweeping, stand-to-sit, sit-to-stand, stand-to-walk, walk-to-stand, lie-to-sit, and sit-to-lie.
The recognition accuracy of every activity is shown in Table 3 in order to analyze the performance of
experiment without resampling.

In experiment, the estimation metrics this paper adopted are Accuracy, Precision, Recall, and F1
score. The Accuracy is the proportion between number of true labels model predicted (the sum
of true positives and true negatives) and all true labels (the sum of true positives, true negatives,
false positives, and false negatives) (Equation (10)). The Precision of an activity is proportion between
the number of correct predictions (true positives) and the number of corresponding activity’s label
model predicted (the sum of true positives and false positives) (Equation (11)). The Recall of an activity
is the proportion between the number of true label model predicted (true positives) and the number of
this activity’s realistic label (the sum of true positives and false positives) (Equation (12)). The F1 score
is the combination of the Precision and the Recall (Equation (13)), which can be defined, as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 score = 2× Precision× Recall
Precision + Recall

(13)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

Table 3. Performance of each activity class recognition without resampling.

Accuracy (%) Precision (%) Recall (%) F1 Score (%)

standing 97.03 94.72 97.03 95.86
sleeping 97.32 98.37 97.32 97.84

watching TV 96.82 92.54 96.82 94.63
walking 86.75 85.71 86.75 86.25
running 95.73 91.81 95.73 93.73

sweeping 88.92 82.52 88.92 85.60
stand-to-sit 62.16 63.01 62.16 62.59
sit-to-stand 51.19 70.49 51.19 59.31

stand-to-walk 35.14 39.39 35.14 37.14
walk-to-stand 26.51 51.16 26.51 34.92

lie-to-sit 73.33 68.75 73.33 70.97
sit-to-lie 58.73 58.73 58.73 58.73

Table 3 shows the performance of static and dynamic activity recognition. It is obvious that
they have achieved high accuracy and static activity recognition performance is better. However,
the performance of transitional activities recognition is much lower than static and dynamic activities.
For example, the walk-to-stand activity recognition obtained a worst accuracy of 26.52% which
is bolded and the sleeping activity recognition achieved the best precision of 98.37%, which is
bolded. The main reason for this result is that our dataset is unbalanced. The maximum gap has
been up to 246,074 samples between transitional and other activities. The relatively short duration
characteristic of transitional activities make the number of transitional activities be far less than static
and dynamic activities. Meanwhile, it can be concluded that the problem of unbalanced samples will
drop accuracy apparently.
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Therefore, the resampling techniques are utilized to improve the problem of unbalanced samples
in order to promote the performance of experiment.

4.2. Performance Enhancement with Resampling

The primary reason of poor performance is that the distribution of samples in our study is
extremely unbalanced. When compared to static and dynamic activities, the number of transitional
activities is too little. As mentioned above, the maximum gap has been up to 246,074 samples
between transitional activity and dynamic activity, which decreases the accuracy obviously. Thus,
the resampling technique is proposed in order to avoid the drops of accuracy. The random
oversampling, SMOTE and random undersampling are applied to enhance performance. Table 4
shows the sample size of raw data and the instance size after segmentation and applying resampling
technique. Obviously, the resampling methods have made the size of each class be same by
increasing or decreasing samples. Figure 2 demonstrates the final performance of model by applying
resampling technology.

Table 4. The number of sample of raw data and the number of instance after segmentation and applying
the resampling technique.

Initial Number After Segmentation Undersampling SMOTE Oversampling

standing 307,061 1198 238 1200 1200
sleeping 307,109 1200 238 1200 1200

watching TV 306,228 1196 238 1200 1200
walking 300,457 1174 238 1200 1200
running 294,676 1151 238 1200 1200

sweeping 302,052 1179 238 1200 1200
stand-to-sit 61,173 239 238 1200 1200
sit-to-stand 61,035 238 238 1200 1200

stand-to-walk 61,881 242 238 1200 1200
walk-to-stand 61,640 242 238 1200 1200

lie-to-sit 61,454 240 238 1200 1200
sit-to-lie 62,089 242 238 1200 1200

Figure 2. Accuracy of each activity class by applying random oversampling, SMOTE, and without
resampling. (A0-standing, A1-sleeping, A2-watching TV, A3-walking, A4-running, A5-sweeping,
A6-stand-to-sit, A7-sit-to-stand, A8-stand-to-walk, A9-walk-to-stand, A10-lie-to-sit, and A11-sit-to-lie).

According to Table 4, the sample size of different activities have large gaps and three resampling
techniques have improved the imbalance sample problem. In Figure 2, it is obvious that performance of
recognition has significant improvements after applying random oversampling and SMOTE. However,
the random undersampling has a negative impact on the recognition accuracy, which may be due
to the discard of too much useful information. Moreover, the random oversampling technique in
this study has more powerful influence. Thus, it may be known, the problem of unbalanced samples
does have significant influence on the results. When sample size is balanced, the accuracy has been
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greatly improved. Furthermore, it is noted that dynamic activities recognition performance has a slight
drop. That is because dynamic activities are more complex than other activities and more likely to
be misrecognized.

After resampling, the final classification performance of method in this study reached 94.88% as
measured by Accuracy, 94.88% as measured by Precision, 94.88% as measured by Recall, and 94.86% as
measured by F1 score. Meanwhile, the classification performance of each activities is shown in Table 5.

Table 5. The classification performance of each activity by using random oversampling technique.

Accuracy (%) Precision (%) Recall (%) F1 Score (%)

standing 96.75 95.61 96.75 95.73
sleeping 96.74 98.79 96.74 97.75

watching TV 95.77 98.37 95.77 96.85
walking 87.34 89.46 87.34 88.39
running 93.70 97.61 93.70 95.62

sweeping 84.81 89.97 84.81 87.31
stand-to-sit 98.92 95.80 98.92 97.34
sit-to-stand 95.53 96.07 95.53 95.80

stand-to-walk 95.92 93.39 95.92 94.64
walk-to-stand 97.53 93.92 97.53 95.69

lie-to-sit 97.34 96.32 97.34 96.83
sit-to-lie 98.31 93.57 98.31 95.88

From Table 5, the SDAE model acquires a significant performance and the recognition of every
activity contributes high accuracy. The balanced samples have played a great role in recognition
performance. And transitional activity recognition has achieved high accuracy by utilizing the SDAE
model. Furthermore, it is obvious that the performance of transitional activities precedes dynamic
activities. The sweeping and walking reach lowest accuracy than other activities. We assume that,
when compared to dynamic activity, the transitional activity has more obvious changes in a short time,
which make the activities’ features more representative. According to bolded results, the sweeping
achieves a lowest accuracy of 84.81%, the stand-to-sit reaches a highest accuracy of 98.92%.

A confusion matrix is given, the most obvious errors are that 15 instances of walking are incorrectly
recognized as sweeping, and 19 instances of sweeping are misrecognized as walking, as is shown in
Figure 3. It is concluded that walking activity and sweeping activity have similar characteristics to
some extent. Thus, the two activities are easily misrecognized and reach lowest accuracy of recognition.

Figure 3. The confusion matrix obtained by applying random oversampling.

4.3. Hyperparameter Analysis

When adopted different hyperparameters, the classifier had different performance. Therefore,
some specific parameters were configured in experiment to obtain the best performance.
These parameters we discussed contains iterations of training progress, pretraining learning rate,
fine-tuning learning rate and the number of hidden layer.
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(a) Iterations of training progress

In order to analyze effect of iterations, the accuracy changes of each activity are shown in Figure 4.
With the increasing of iterations, the performance of each activity has no obvious changes. There are
only three dynamic activities, walking, running, and sweeping, which have changed and have worse
performance than static and transitional activities. However, it is noted that changes of different
iterations are so small, which cannot transmit enough and useful information. Therefore, it is concluded
that the number of iterations have not a significant influence on the performance of model. Moreover,
when considering the accuracy, time-cost, and computational complexity, the choice of 200 iterations
is a balance point. For each iteration, the training dataset is first used to train network, and then the
loss of validation set and testing set can be obtained based on current parameters to detect recognition
performance. This progress will repeat 200 times.
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Figure 4. The recognition performance of each activity when using different iterations. (Pretraining
learning rate is set to 1× 10−7, number of hidden layer is set to 2; fine-tuning learning rate is set
to 0.01).

(b) Pretraining learning rate

Figure 5 indicates the influence of pretraining learning rate. When different pretraining learning
rates are chosen, the performance had obvious changes. The performance of every activity was tested
when the learning late is set to 1× 10−3, 1× 10−4, 1× 10−5, 1× 10−6, 1× 10−7, 1× 10−8, respectively,
in order to analyze the influence of pretraining learning rate. As is shown in Figure 5, adopting
different learning rates can lead to enormous fluctuations. Moreover, it demonstrates that the best
performance is achieved at 1× 10−7 level by comparing six parameters though the pretraining learning
rate is set very low. Because the goal of pretraining is to acquire proper initial values of parameters and
ensure that the fine-tuning process has better astringency and performance, the pretraining learning
late does not need to be too high.

(c) Fine-tuning learning rate

In fine-tuning process of training model, backpropagation and gradient descent are used.
The learning rate has played a significant role in this process. A set of experiments has been performed
in order to search optimal setting of learning rate. Figure 6 shows the performance of activity
recognition when adopting different fine-tuning learning rates. According to Figure 6, it is obvious that
the accuracy will change evidently when the fine-tuning learning rate became smaller. It is different
from pretraining learning rate, it does not need to be set too low. It will affect the convergence rate of
model. When it is set to 0.1, 0.0001 or 0.00001, the recognition performance is very poor. Additionally,
the recognition accuracy is significant when adopting 0.01 or 0.001, both of the two choice have similar
results. Yet, when the learning rate is set to 0.1, the neural network can converge to global optimal
solution quickly. Thus, we select 0.01 as fine-tuning learning rate of model.
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Figure 5. The recognition performance of each activity when using different pretraining learning rates
(iterations is set to 200; number of hidden layer is set to 2; fine-tuning learning rate is set to 0.01).
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Figure 6. The recognition performance of each activity when using different fine-tuning learning rates
(iterations is set to 200; number of hidden layer is set to 2; pretraining learning rate is set to 1× 10−7).

(d) The number of hidden layer

In Figure 7, the performance fluctuations are exhibited when selecting different numbers of
hidden layer. It is obvious that the main disparity concentrate on walking and sweeping. The both
activities recognition achieve lowest accuracy than other activities, which is also as mentioned above.
With the growth of hidden layer number, dynamic and transitional activities recognition performance
are fluctuant while static activities are stable. Moreover, the fluctuation is not very obvious and
computational cost will raise when using more layers. Thus, we utilize two hidden layers to create the
network in order to achieve the trade-off between recognition accuracy and time-cost.
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Figure 7. The performance of each activity recognition when selecting different numbers of hidden layer
(iterations is set to 200, pretraining learning rate is set to 1× 10−7; fine-tuning learning rate is set to 0.01).
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Subsequently, Table 6 has given a list of fixed hyperparameters of neural network architecture.
Because some hyperparameters have little influence on recognition accuracy according to experiment,
we have discussed the above four hyperparameters.

Table 6. Optimal hyperparameters for neural network.

Hyperparameter Value

number of hidden layers 2
number of units per layer 500
pretraining learning rate 1× 10−7

fine-tuning learning rate 0.01
iteration 200

denoising factor 0.5
data segment size (in seconds) 5

4.4. The Influence of Single and Several Sensors

In this experiment, the data we collected were from accelerometer and gyroscope. In general,
adopting more types of sensors has a stronger influence on results. To analyze how the two sensors
affect the performance of model, Figure 8 is given to demonstrate the changes of specific activity when
using different sensors. Table 7 shows the performance of accelerometer and gyroscope.

Figure 8. The performance changes of each activity recognition when adopting different sensors.

From Figure 8, the gyroscope improved indeed the accuracy of dynamic activities (walking,
running, sweeping) recognition comparing to the single accelerometer. Moreover, it is obvious that,
when exploiting the data collected by gyroscope identified the transitional activities, the performance
of dynamically activity recognition is acceptable, but the static activity recognition is not efficient.
When the data collected by accelerometer are used, the accuracy of static and transitional activity
recognition was acceptable, but the dynamic activity was not recognized precisely. However, when the
data collected by accelerometer and gyroscope together are used, all classes of activity recognition
obtained a significant accuracy. Thus, utilizing two sensors has a good influence on result than
one sensor.

According to the Table 7, although there is not much difference in the total performance
of single accelerometer and two sensors, different activity recognition has different performance
according to Figure 8. Specifically, a combination of accelerometer and gyroscope obtained a best
performance. The single accelerometer reached an acceptable result and the single gyroscope achieved
an unsatisfactory result. However, it is not able to conclude that the data from gyroscope are not
worthy. In short, the combination of accelerometer and gyroscope contributes better performance than
applying single sensor.
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Table 7. Performance comparison of adopting different sensors.

Sensors Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Acc 93.36 93.35 93.36 93.27
Gyro 75.76 74.77 75.76 72.60

Acc+Gyro 94.88 94.88 94.88 94.86

4.5. Comparison with Other Conventional Methods

In order to demonstrate the superiority of method of this paper, we compared it with some
conventional machine learning algorithms, including Support Vector Machine (SVM), Decision Tree
(DT), Naive Bayesian Model (NBM), K-nearest neighbors (KNN), and other deep learning algorithm,
such as CNN, LSTM, and BiLSTM. In training progress of these conventional machine learning
methods, the features we extracted are statistical features, including mean, maximum, minimum,
variance, and standard deviation. Moreover, the random oversampling technique is also used to
balance samples in these methods. By comparing with other methods, their performances are shown
in Table 8.

Table 8. Performance comparison between SDAE and other methods.

Methods Accuracy (%) Precision (%) Recall (%) F1 Score (%)

SVM 90.95 90.81 90.95 90.60
DT 88.15 87.53 88.15 87.54

KNN 84.84 84.38 84.84 84.29
CNN 81.33 79.85 81.33 80.27
LSTM 81.63 83.56 81.63 81.62

BiLSTM 84.75 85.23 84.75 84.63
SDAE 94.88 94.88 94.88 94.86

From Table 8, it is obvious that the SDAE model obtains a best performance than other
conventional machine learning algorithm (SVM, DT, KNN), which achieves accuracy of 94.88%.
In conventional machine learning methods, SVM acquired the best performance that recognition
accuracy exceeded 90% and other methods all have more than 80% of accuracy, which are lower
than SDAE model. In experimental progress, we found that SDAE model needs longer runtime than
conventional machine learning algorithms, but these methods need extra times to perform feature
extraction and selection. SADE is able to extract features automatically, which can save energy. Thus,
in activity recognition, it is more precise and convenient to utilize SDAE than conventional machine
learning algorithms. Furthermore, compared to CNN and LSTM, the SDAE model acquires a more
accurate result. Generally speaking, CNN and LSTM model can also achieve significant performance.
In this situation, we analyze the accuracy of each activity after utilizing LSTM and CNN. We find that
the watching TV has achieved the lowest accuracy of 42.39% than other activities that have achieved
the accuracy of 76.02–95.87% when the LSTM model is used. The CNN model has faced a similar
situation that the recognition accuracy of watching TV is the lowest. Thus, we assume that these
models can acquire significant performance in some activities (e.g., running), but they cannot extract
useful representation in some activities (e.g., watching TV), which have more similarities with other
activities. We also use BiLSTM to recognize activities. It has a better performance than CNN and
LSTM, but it also has a lower accuracy than the SDAE model. Additionally, we also find that they need
more time to train than SDAE model. In point, the SDAE model is proper.

4.6. The Performance of SDAE Model on Three Public Datasets

With the experimental verification, the behavioral dataset we collected reach a significant
performance on activity recognition. However, considering a special situation that the result of
experiment may depend on the dataset, and not on the model. Therefore, without loss of generality,
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we also conducted different experiments that exploited three public datasets, which include human
activity recognition using smartphones data set [57], activity recognition from single chest-mounted
accelerometer data set [58], and UCI daily and sports dataset [59]. Table 9 shows their basic information
and their performance in experiments are given in Table 10.

Table 9. Basic information of the three public datasets.

Datasets People Classes Sensors Transitions

Smartphone 30 6 Acc+Gyro No
Chest-mounted 15 7 Acc No

UCI 8 19 Acc+Gyro+Mag No

Table 10. Activity recognition performance of SDAE model on other public datasets.

Datasets Accuracy(%) Precision(%) Recall(%) F1 Score(%)

Smartphone 97.15 97.19 97.15 97.15
Chest-mounted 89.99 89.96 89.99 89.83

UCI 95.26 95.42 95.26 95.15

The SDAE model obtained significant performances on three public datasets, according to the
Table 10. Thus, we are able to conclude that the SDAE model has strong applicability and the result of
our experiment is convincing.

5. Discussion

The preceding results show the significant performance of SDAE model on transitional activities
and illustrate that the accuracy will drop when dataset is unbalanced. The resampling technique
provides feasible methods to improve this question and the accuracy can be greatly improved.
In the experiment, we perform multiple sets of contrast experiments, which refer to resampling,
hyperparameters, different sensors, multiple methods, and datasets. According to the resampling
experimental result, the resampling technique is able to balance sample gap and enhance the
recognition performance obviously. Additionally, the SDAE model can alleviate the overfitting
problem due to its denoising characteristic. Different sensors have unique effect on activity recognition,
the integration of varied wearable sensors can have a positive influence on performance. Additionally,
it must be noted that the measurement accuracy of wearable sensors may have an effect on recognition
performance. In this study, we have utilized a kind of accelerometer and a kind of gyroscope to collect
data. Thus, we do not discuss it in detail and it will be considered in our future work. Moreover,
we have analyzed the reason that CNN and LSTM achieve lower performance than SDAE. We assume
that these models cannot apply to all human daily activities and the architecture need to be adjusted
according to demand. Furthermore, the results on three public datasets based SDAE demonstrate
the effectiveness and applicability of our framework. According to these experimental results, it can
be concluded that SDAE is proper to recognize three types of activities in this paper, especially for
transitional activities.

In activity recognition area, the transitional activity is as important as other activities and can be
applied to healthcare filed. For example, it can play a significant role in human fall detection technique,
detecting patient state, and so on. We believe there will be more research results about transitional
activities in different fields in the future.

6. Conclusions

In this paper, we utilized the stacked denoising autoencoder, a deep learning model that
is able to extract useful features automatically and compress unnecessary data by encoder to
extract more representative features and recognize human daily activities. Moreover, besides static
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and dynamic activities, we also focused on transitional activities recognition which were more
difficult for recognizing. Furthermore, we utilized random oversampling technology to improve
problem that samples were unbalanced due to the short-term characteristic of transitional activities.
The experimental result we obtained demonstrated the SDAE model was able to achieve significant
performance on transitional activities recognition and outperformed other conventional machine
learning methods on human daily activity recognition. Meanwhile, we analyzed the influence of
sensors respectively and verified the effectiveness of the SDAE model on three public datasets for
activity recognition, which indirectly proved that the result we obtained in our dataset is convincing.

In the future, we consider studying further special human’s activity recognition, which will
be able to be applied to specific fields, such as healthcare. Additionally, we also consider utilizing
more kinds of sensors to collect data in future experiments. Furthermore, when considering various
channels of data gathering, the combination of activity recognition and computer vision is also an
important research.
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