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Hematological malignancies comprise a diverse set of
lymphoid andmyeloid neoplasms in which normal hema-
topoiesis has gone awry and together account for∼10% of
all new cancer cases diagnosed in the United States in
2016. Recent intensive genomic sequencing of hemato-
poietic malignancies has identified recurrent mutations
in genes that encode regulators of chromatin structure
and function, highlighting the central role that aberrant
epigenetic regulation plays in the pathogenesis of these
neoplasms. Deciphering the molecular mechanisms for
how alterations in epigenetic modifiers, specifically
histone and DNAmethylases and demethylases, drive he-
matopoietic cancer could provide new avenues for devel-
oping novel targeted epigenetic therapies for treating
hematological malignancies. Just as past studies of blood
cancers led to pioneering discoveries relevant to other
cancers, determining the contribution of epigenetic mod-
ifiers in hematologic cancers could also have a broader im-
pact on our understanding of the pathogenesis of solid
tumors in which these factors are mutated.

Hematopoiesis is a highly dynamic developmental pro-
cess requiring both self-renewal and a well-regulated dif-
ferentiation process of hematopoietic stem cells (HSCs)
to maintain the lifelong regeneration of the mammalian
blood cells. The ontogeny of the mouse hematopoietic
system involves twowaves of hematopoiesis during devel-
opment, beginning with a transient primitive hematopoi-
esis, which originates from the embryonic mesoderm and
progresses to the extraembryonic yolk sac to produce
primitive erythrocytes and some myeloid cells around
embryonic day 7.5 (E7.5) of mouse development (Medvin-
sky et al. 2011). After the first wave of primitive hemato-
poiesis, HSCs are generated in the aorta–gonad–
mesonephros (AGM) around E9.5, resulting in a second
wave of definitive hematopoiesis, which contributes to
all hematopoietic lineages found in the fetus and adult
mice. As embryonic development progresses, HSCs colo-
nize the fetal liver around E12.5 and, shortly before birth,

migrate to the bone marrow, where they reside through-
out life (Fig. 1A; Moore and Metcalf 1970; Lux et al.
2008; Orkin and Zon 2008; Baron et al. 2012; Cullen
et al. 2014). In mammalian adults, HSCs exist in a rela-
tively quiescent state but retain the capabilities of both
self-renewal and multipotency, ensuring their lifelong
maintenance in the bone marrow while, through a hierar-
chical cascade of differentiation, giving rise to all types of
phenotypically distinct mature blood cells (Fig. 1B). A
combination of extrinsic and intrinsic factors—including
niche-associated factors, signal transduction pathways,
transcription factors, and chromatin modifiers—contrib-
utes to the dynamic equilibrium between self-renewal
and the multipotent differentiation potential of HSCs.
The disruption and misregulation of these processes
have the potential to lead to life-threatening hematologi-
cal disorders (Li and Clevers 2010; Doulatov et al. 2012).
Hematologic malignancies can arise during any stage of

blood cell development and can affect the production and
function of blood cells with consequences that include an
inability to fight off infections or susceptibility to uncon-
trolled bleeding. The HSCs in the bone marrow can give
rise to immature progenitor cells of either the myeloid
or lymphoid lineages. The cells ofmyeloid lineage include
erythrocytes, platelets, and thewhite blood cells of the in-
nate immune response such as neutrophils, eosinophils,
dendritic cells, and macrophages, while the lymphoid lin-
eage produces B and T lymphocytes involved in the adap-
tive immune response (Fig. 1B). Perturbation of normal
hematopoietic differentiation can result in three main
types of blood cancers in clinic: leukemia, lymphoma,
andmyeloma. Leukemia is caused by an excessive produc-
tion of abnormal white blood cells in the bonemarrow, re-
sulting in circulating leukemic cells in the blood. Based on
the lineage of the neoplastic cells and the clinical course,
leukemia can be categorized into acute lymphocytic leu-
kemia (ALL), acute myeloid leukemia (AML), chronic
lymphoid leukemia (CLL), and chronic myeloid leukemia
(CML).

[Keywords: chromatin; epigenetics; hematopoiesis; histone]
Corresponding author: ash@northwestern.edu
Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.284109.
116.

© 2016 Hu and Shilatifard This article is distributed exclusively by Cold
Spring Harbor Laboratory Press for the first six months after the full-issue
publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml).
After six months, it is available under a Creative Commons License (At-
tribution-NonCommercial 4.0 International), as described at http://
creativecommons.org/licenses/by-nc/4.0/.

GENES & DEVELOPMENT 30:2021–2041 Published by Cold Spring Harbor Laboratory Press; ISSN 0890-9369/16; www.genesdev.org 2021

mailto:ash@northwestern.edu
mailto:ash@northwestern.edu
http://www.genesdev.org/cgi/doi/10.1101/gad.284109.116
http://www.genesdev.org/cgi/doi/10.1101/gad.284109.116
http://www.genesdev.org/cgi/doi/10.1101/gad.284109.116
http://genesdev.cshlp.org/site/misc/terms.xhtml
http://genesdev.cshlp.org/site/misc/terms.xhtml
http://genesdev.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genesdev.cshlp.org/site/misc/terms.xhtml


Lymphomas are derived from a transformation of lym-
phocytes residing in lymph nodes that has adverse effects
on the lymphatic and immune systems. Lymphomas can
result from the transformation of B or T lymphocytes or
natural killer (NK) cells and can be divided into two
main types: Hodgkin’s lymphoma and non-Hodgkin’s
lymphoma (NHL). The majority of NHLs (∼85%) is
B-cell lymphomas, which can be further divided based
on their appearance (e.g., follicular vs. diffuse) and how
quickly they are likely to grow and spread (indolent vs.

aggressive). The indolent NHLs mainly are comprised of
follicular lymphoma (FL), mantle cell lymphoma, margin-
al zone lymphoma, small lymphocytic lymphoma, and
cutaneous T-cell lymphoma (CTCL). Any of the indolent
lymphomas can demonstrate aggressive behavior or a
higher-grade transformation. The aggressive NHLs con-
sist of diffuse large B-cell lymphoma (DLBCL), Burkitt’s
lymphoma, lymphoblastic lymphoma, and various groups
of T-cell and NK-cell lymphomas. The third major type of
hematologic malignancies are plasmacytic neoplasms in

Figure 1. Hematopoietic systems in mammals. (A) Embryonic tissues of mouse hematopoietic development. Mouse hematopoietic ac-
tivity arises from the mesoderm and first emerges in the extraembryonic yolk sac around E7.5 followed by the establishment of HSCs in
AGMand the placenta around E.9.5. HSCs colonize the fetal liver around E12.5, migrate to the bonemarrow before birth, and reside there
throughout life. (B) Schematic overview of normal hematopoietic hierarchy in adult mice. HSCs sit at the top of the hierarchy and have
both the capacity of self-renewal and the multipotent potential to give rise to all mature hematopoietic cell lineages. After receiving a
differentiation signal, HSCs first lose self-renewing capacity and then progressively lose lineage potential, as they are restricted to a certain
lineage. (LT-HSC) Long-term HSC; (ST-HSC) short-term repopulating HSC; (MPP) multipotent progenitor; (CMP) commonmyeloid pro-
genitor; (CLP) common lymphoid progenitor; (LMPP) lymphoid-primed multipotent progenitor; (MEP) megakaryocyte/erythroid progen-
itor; (GMP) granulocyte-macrophage progenitor.
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which abnormal antibodies secreting B lymphocytes,
called plasma cells, accumulate in the bone marrow or
within other tissues. Based on the site of involvement,
the disease burden, and the presence of end organ damage,
these neoplasms can be divided into several categories,
including plasmacytoma (of bone or extramedullary),
monoclonal gammopathy of undetermined significance
(MGUS), smoldering (asymptomatic) myeloma, and
symptomatic plasma cell myeloma.
Myeloid malignancies also include myeloprolifera-

tive neoplasms (MPNs) and myelodysplastic syndrome
(MDS). MDS is a group of diverse bone marrow disorders
characterized by disorderly and ineffective hematopoiesis,
which can lead to cytopenia, low levels of red blood cells
(anemia), neutrophils (neutropenia), or platelets (throm-
bocytopenia). These lower cell counts can result from a
failure of progenitor cells to mature, thereby accumulat-
ing in the bone marrow, or, alternatively, progenitor cells
could mature into blood cells with a shortened life span.
Seemingly mature blood cells may not function properly
due to an abnormal shape (dysplasia). Around 30% of
MDS cases have the possibility of turning into AML (Lind-
berg 2005). MDS itself can arise as an adverse effect of ra-
diation and chemotherapy. MPNs is a group of diseases
characterized by the overproduction of one or more blood
cell types in the bonemarrowand circulating blood (Saeidi
2016). MPN can also further evolve into AML.
The term “epigenetics” was coined by developmental

biologist Conrad Waddington to describe heritable chang-
es in the cellular phenotype and gene expression that are
independent of alterations in the DNA sequence during
embryonic development (Slack 2002; Berger et al. 2009).
Classic examples of the epigenetic regulation of gene
expression include genomic imprinting, position effect
variegation, and the regulation of homeotic (Hox) gene ex-
pression. These processes turn out to be regulated by chro-
matin modifiers implementing DNA methylation for
genomic imprinting, methylation of H3 Lys9 for the es-
tablishment of heterochromatin, and methylation of his-
tone H3 at Lys4 or Lys27 for the activation or repression
of Hox gene expression, respectively (Piunti and Shilati-
fard 2016). By controlling chromatin architecture and
accessibility, modifications of DNA and histones can
convey this epigenetic information and influence gene ex-
pression through favoring or antagonizing the recruitment
of the activating or repressive complexes.
The primary role of the transcription factors such as

RUNX1/AML1, EVI-1, GATA3, IKAROS, and ETS in de-
termining the various stages of normal hematopoiesis is
reflected in their misregulation being the most common
cause of hematopoietic transformation. The past several
years have brought about an increased understanding of
the biochemical and cellular functions of chromatin-mod-
ifying and remodeling enzymes, specifically as coactiva-
tors and corepressors for the regulation of transcription
during normal hematopoiesis and in the misregulation
of their activities related to hematological malignancies.
Indeed, high-throughput, genome-scale sequencing has
revealed that chromatinmodifiers are among themost fre-
quently mutated in cancer in general, particularly in he-

matological malignancies, suggesting prominent roles
played by the epigenetic alterations in these diseases
(Lawrence et al. 2014). In contrast to genetic aberrations,
epigenetic alterations are generally reversible and thus
may have a more therapeutic value from a clinical stand-
point. Indeed, inhibitors targeting chromatin-modifying
enzymes are being used in clinical trials (Cai et al. 2015;
Brien et al. 2016). In this review, we discuss our current
understanding of how epigenetic regulators function in
normal hematopoiesis and highlight the consequences
of mutations in the DNA and histone lysine methylation
machineries in hematological malignancies.

MLL in normal hematopoiesis and in the transcriptional
elongation checkpoint defect in leukemia

The mixed-lineage leukemia (MLL or KMT2A) gene was
originally identified through cytogenetic studies of infant
leukemia patient cells as being involved in chromosomal
rearrangements that juxtaposed the N terminus of MLL
with a variety of translocation partners. Although it was
suspected of being involved as a transcriptional regulator
based on its homology with Trithorax, a regulator of ho-
meotic gene expression in Drosophila, insights into its
biochemical function came from the purification of the
closest yeast homolog Set1 [Su(var)3-9, enhancer of zeste,
and trithorax domain 1]. These studies demonstrated that
simple model systems such as yeast and Drosophila can
provide fundamentally important molecular information
about conserved biological processes such as transcription
and epigenetics that are relevant to hematopoiesis and he-
matological malignancies.
Fundamental molecular studies in yeast identified Set1

as biochemically residing in a large macromolecular com-
plex that was named the complex of proteins associated
with Set1 (COMPASS). This complex harbors methyl-
transferase activity specifically toward Lys4 of histone
H3 (Miller et al. 2001; Krogan et al. 2002; Shilatifard
2012; Piunti and Shilatifard 2016). The human wild-type
MLL gene encodes a protein of 3969 amino acids that is
post-translationally cleaved by Taspase I into N-terminal
and C-terminal fragments (Hsieh et al. 2003; Shilatifard
2012). The two halves of MLL function together in a
COMPASS-like complex with core subunits related to
those found in yeast COMPASS as well as additional
interactors such as the tumor suppressor menin (Fig. 2A;
Hsieh et al. 2003; Yokoyama et al. 2004). As in yeast
Set1, the C-terminal SET domain confers histone H3K4
methyltransferase activity to MLL (Milne et al. 2002;
Nakamura et al. 2002).
Mll (Kmt2a) is required for normal numbers of hemato-

poietic progenitors. Its deletion inmice causes embryonic
lethality at E16.5, with fetal livers having dramatically re-
duced numbers of HSCs, indicating an essential role for
Mll in embryonic hematopoiesis (Hess et al. 1997; Ernst
et al. 2004; McMahon et al. 2007). Mll is also essential
for sustaining postnatal hematopoiesis, as a conditional
deletion in postnatal mice with hematopoietic-specific
Vav-Cre leads to a multilineage defect in differentiation
and a decrease in adult hematopoietic progenitors, with
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a fatal bonemarrow failure occurring at∼3 wk of age (Jude
et al. 2007; Gan et al. 2010).

Leukemia resulting from MLL translocations follows
an aggressive clinical course with a poor response to con-
ventional chemotherapy and often relapses very early.
More than 70 translocation partners have been identified,
but they share little or no sequence similarities. All of the
MLL chimeras retain theN terminus but lose themajority
of the C-terminal portion of MLL, which contains the cat-
alytic SET domain for H3K4 methylation (Fig. 2B). How-
ever, the molecular mechanisms by which MLL
chimeras could contribute to the pathogenesis of leuke-
mia were unknown until the biochemical identification
of the translocation partner ELL as a transcription elonga-
tion factor for RNA polymerase II (Pol II) (Shilatifard et al.
1996; Shilatifard 1998). ELL was the first MLL transloca-
tion partner for which a molecular function was demon-
strated. Based on this seminal discovery, it was proposed
>20 years ago that the misregulation of transcriptional
elongation by RNA Pol II could play a central role in leu-

kemic pathogenesis, a model that is now driving the clin-
ical approaches for the treatment of leukemia associated
with MLL translocations (Cai et al. 2015). Purification of
some of the most common MLL translocation partners
led to the identification of the super elongation complex
(SEC) that includes ELL; another previously known tran-
scription elongation factor, P-TEFb; and additional MLL
translocation partners AFF1, AFF4, ENL, and AF9 (Fig.
2C; Lin et al. 2010). ELL is also found in the little elonga-
tion complex (LEC), which specifically regulates distinct
stages of small nuclear RNA transcription, essential
housekeeping functions that are likely compensated for
by the wild-type allele of ELL in leukemia (Smith et al.
2011; Hu et al. 2013b).

A distinct protein complex that also functions in tran-
scription elongation is DotCom (DOT1L complex), which
contains the H3K79 methyltransferase DOT1L and the
MLL chromosomal translocation partners AF10, AF17,
ENL, and AF9 (Fig. 2C; Okada et al. 2005; Mohan
et al. 2010a,b). Dot1l mutant mice are embryonic-lethal

Figure 2. MLL translocation partners function in leuke-
mogenesis. (A) Schematic representation of the domain
structure of MLL and its stably associated cofactors in
a COMPASS-like complex. MLL contains multiple do-
mains essential for its biochemical and physiological
function and is cleaved by Taspase I after aspartic acid
2718 to generate a largeN-terminal fragment and a small
C-terminal fragment, which subsequently associate non-
covalently through FY-rich N-terminal (FYRN) and FY-
rich C-terminal (FYRC) domains. (AT hook) Binds to
the minor groove of AT-rich DNA sequences; (PHD)
Plant homology domain; (SET) Su(var)3-9, enhancer of
zeste, and trithorax domain. Core COMPASS subunits
WDR5, RBBP5, ASH2L, and DPY30 interact with the
SET domain, while Menin and HCF1 associate with
more N-terminal regions. (B) Structure of the most fre-
quent MLL chimeras in acute leukemia. A typical MLL
fusion protein contains the N terminus of MLL and a
C-terminal portion of one of >70 fusion partners. The
AT hook andCXXC domains are retained in allMLL chi-
meras. (C ) Two distinct complexes regulating transcrip-
tion are made up of some of the most frequent MLL
fusion partners: SEC (super elongation complex) and
DotCom (DOT1L complex). SEC comprises the ELL fam-
ily members ELL1, ELL2, and ELL3; the MLL transloca-
tion partners AF4/FMR2 family (AFF) member 1 (AFF1,
also known as AF4) and AFF4; eleven-nineteen leukemia
(ENL); the ALL1-fused gene from chromosome 9 (AF9);
and the RNA polymerase II (Pol II) elongation factor P-
TEFb (containing CDK9 and either cyclin T1 or cyclin
T2). DotCom is composed of AF10, AF17, DOT1L, and
AF9 or ENL. DOT1L is a methyltransferase specific for
H3K79. (D) Therapeutic targeting of MLL translocated
leukemia. MLL chimeras recruit SEC and/or DotCom
toMLL target genes, which leads to their aberrant activa-
tion throughmisregulation of the transcriptional elonga-
tion checkpoint (Smith and Shilatifard 2013). Multiple
therapeutic strategies have been developed to target dif-
ferent steps required for the activation of MLL chimera
target genes in leukemia: MI503 blocks the association

of Menin with MLL, potentially affecting recruitment of the MLL chimera to chromatin (indicated by a question mark); flavopiridol
(FP) inhibits the kinase activity of SEC subunit P-TEFb; and EPZ-5676 is a small molecule blocking the enzymatic activity of DOT1L.
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between E10.5 and E13.5 and display a severe anemia due
to reduced expression of the erythroid master regulator
Gata2 (Feng et al. 2010). HoxA9 and Meis1 are the best-
characterized targets of the MLL chimeras, and their
simultaneous overexpression was shown to be sufficient
for leukemic transformation (Kroon et al. 1998; Buske
and Humphries 2000; Zeisig et al. 2004). Both SEC and
DotCom have been shown to directly associate with
HoxA9 and Meis1 loci and are required for their overex-
pression (Okada et al. 2005; Lin et al. 2010; Neff and
Armstrong 2013). Genetic deletion ofDot1l or pharmaco-
logical inhibition of its methyltransferase activity renders
MLL chimeras unable to activate the malignant tran-
scriptional program in mouse models (Okada et al. 2005;
Krivtsov et al. 2008; Chang et al. 2010; Bernt et al. 2011;
Nguyen et al. 2011; Deshpande et al. 2013). Consequently,
a selective DOT1L small molecule inhibitor compound,
EPZ-5676, has been under investigation for the treatment
of MLL-rearranged leukemia (Cai et al. 2015). In addition
to translocations, partial tandem duplications (PTDs) of
MLL have been observed in leukemia with a normal kar-
yotype and linked to an unfavorable prognosis after treat-
ment (Caligiuri et al. 1994, 1998; Schichman et al. 1994).
PTD most commonly occurs by insertion of either exons
5–11 or 5–12 into intron 4 of the full-lengthMLL gene, and
this leads to a duplicated N-terminal region that harbors
both the AT hooks and the CXXC domains (Whitman
et al. 2005). A recent study showed that leukemia cells
with MLL-PTD are sensitive to DOT1L small molecule
inhibition by EPZ-5676, although the oncogenic mecha-
nisms of MLL-PTDmay differ from that of MLL chimeras
(Kuhn et al. 2015). Furthermore, since SEC contains the P-
TEFb kinase module, specific targeting of this activity or
the disruption of its biochemical integrity in leukemic
cells may represent additional therapeutic strategies for
MLL translocation-based leukemia (Fig. 2D).
Another therapeutic strategy for treating MLL translo-

cation-based leukemia is to prevent the recruitment of
MLL chimeras to chromatin. Menin associates directly
with an N-terminal region of MLL that is retained in all
MLL chimeras. This interaction has been shown to be es-
sential for the leukemic activity ofMLL chimeras through
facilitating the recruitment to chromatin (Yokoyama
et al. 2004, 2005; Caslini et al. 2007). Small molecule dis-
ruptors of the MLL–menin interaction were identified
through high-throughput screening and structure-based
design (Grembecka et al. 2012; Shi et al. 2012). Pharmaco-
logical treatment with these inhibitors (MI-2-2 and
MI503) in both leukemic cell lines and a mouse model
of leukemia led to apoptosis and hematopoietic differenti-
ation, proliferation defects, and reversal of MLL chimera-
driven leukemic transcriptional signatures (Fig. 2D;
Grembecka et al. 2012; Borkin et al. 2015). However, it
is not clear whether or how the inhibition of this mode
of recruitment by MI-2-2 and MI503 discriminates be-
tween the chimera, the wild-type MLL, or its closest
homolog, MLL2 (KMT2B; GeneID 9757). Further molecu-
lar studies on the inhibitory role of MI-2-2 and MI503 on
endogenous MLL/MLL2/COMPASS and the changes in
the pattern of H3K4methylation should shed further light

on this process and determine whether such an approach
is feasible or useful for the treatment of MLL transloca-
tion-based leukemia.
MLL translocation or PTD in leukemia patients usually

occurs in one allele, leaving the second allele unaffected
in most cases. Studies have reported that the wild-type
MLL is essential for leukemic transformation byMLL chi-
meras and that its action is dependent on histone methyl-
transferase activity (Milne et al. 2010; Cao et al. 2014).
The methyltransferase activity of MLL requires the for-
mation of a core complex with the WDR5, RBBP5,
ASH2L, and DPY30 subunits (abbreviated as WRAD in
the literature) (Dou et al. 2006; Patel et al. 2008, 2009).
Therefore, small molecules (MM-102 and MM-401) that
inhibit the methyltransferase activity of MLL via disrup-
tion of its association with WDR5 were developed and
have been shown to function by blocking proliferation, in-
duction of apoptosis, and differentiation of the cells ex-
pressing MLL-AF9 (Karatas et al. 2013; Cao et al. 2014).
However, the basis for the specificity of these inhibitors
for MLL versus other members of the COMPASS family
is unclear, as WDR5 is a shared component throughout
the COMPASS family. Furthermore, mouse genetic stud-
ies have demonstrated that the SET domain of the wild-
type copy of MLL is dispensable for leukemogenesis (Mis-
hra et al. 2014), raising the question of the efficacy of tar-
geting the wild-type copy of MLL for treating MLL
chimera-driven leukemia.

Mutations ofMLL3 andMLL4members of the COMPASS
family in enhancer malfunction and hematological
malignancies

Transcriptional enhancers were originally defined as non-
codingDNAsequences that can increase the transcription
of cognate genes in a distance-, position-, and orientation-
independent manner (Dorsett 1999; Smith and Shilatifard
2014). A high level of H3K4monomethylation (H3K4me1)
with a relatively low level of H3K4me3 trimethylation
(H3K4me3) has been identified as a signature of enhancers
(Heintzman et al. 2007, 2009). MLL3 and MLL4 (KMT2C
and KMT2D) comprise one of the three major branches of
the COMPASS family in mammals, with the other two
major branches represented by MLL/MLL2 (KMT2A/
KMT2B) and SET1A/SET1B (Mohan et al. 2011; Herz
et al. 2012; Shilatifard 2012). MLL3 (KMT2C), MLL4
(KMT2D; GeneID 8085), and their Drosophila ortholog,
Trr (Trithorax-related), implement the bulk of H3K4me1
at enhancers and are required for enhancer–promoter
communication during development (Fig. 3A; Herz et al.
2012, 2014; Hu et al. 2013a). Further studies by other lab-
oratories have now confirmed these original findings es-
tablishing MLL3 and MLL4 COMPASS as major
regulators of enhancer H3K4 function (Kanda et al. 2013;
Lee et al. 2013; Smith and Shilatifard 2014).
Chromatin signatures can be used to further classify en-

hancers as variably existing in inactive, active, or poised
states. Histone H3K4me1 alone marks enhancers before
their activation (Heintzman et al. 2007), with the addition
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ofH3K27ac indicating active enhancers. Poised enhancers
are distinguished by the presence of H3K27me3 and are
found primarily in stem and progenitor cells, transitioning
to active enhancers upon differentiation cues (Creyghton

et al. 2010; Rada-Iglesias et al. 2011). The MLL3, MLL4
(GeneID 8085), and Trr forms of COMPASS harbor a
unique subunit, UTX, which has H3K27 demethylase ac-
tivity. This raises the possibility that these complexes not

Figure 3. Misregulation of MLL3/4/COMPASS
and polycomb group (PcG) proteins in hematopoiet-
ic transformation. (A) In normal HSCs and progeni-
tors, MLL3/4/COMPASS and EZH2/PRC2 control
the proper expression of genes involved in self-re-
newal and differentiation through implementation
of H3K4me1 and H3K27me3 at enhancers. UTX, a
component of the MLL3/MLL4/COMPASS-like
complexes, harbors a demethylase activity specific
for H3K27me3 that could antagonize transcription-
al repression by the EZH2/PRC2 complex. (B) Dur-
ing lymphoma development, the catalytic subunit
of PRC2, EZH2, is frequently mutated at Y641.
This mutation results in a switch in substrate pref-
erence from nonmethylated to the monomethy-
lated and dimethylated histone H3K27, leading to
increased levels of H3K27 dimethylation
(H3K27me2) and H3K27me3 at enhancers and pro-
moters. Additionally, inactivating mutations in en-
hancer monomethyltransferases MLL3 and MLL4/
COMPASS can cause loss of H3K4me1 at enhanc-
ers. Altogether, these events independently or to-
gether could lead to repression of enhancers and
promoters of tumor suppressor genes to promote
lymphomagenesis. (C ) Schematic illustration of
mammalian PRC1 and PRC2 complexes. PRC2 is
composed of four core components—EED (embry-
onic ectoderm development), SUZ12 (suppressor
of zeste 12 homolog), RBAP46, and RBAP48—and
an enzymatic subunit, EZH1 or EZH2. EED and
SUZ12 are essential for the stability of EZH1 and
EZH2 and therefore for H3K27 methylation (Pasini
et al. 2004; Xie et al. 2014). PRC1 complexes in-
clude both canonical and noncanonical forms in
mammalian cells. Both canonical and noncanonical
PRC1 complexes contain the catalytic subunit
RING1A or RING1B that implements H2AK119
monoubiquitination. Canonical PRC1 complexes
can variably include CBX2, CBX4, CBX7 or CBX8;
BMI1 (also known as PCGF4) orMEL18 (also known
as PCGF2); and PHC1, PHC2, or PHC3. The chro-
modomain found in the CBX proteins that partici-
pates in canonical PRC1 mediates the interaction
with H3K27me3 that is catalyzed by PRC2. Nonca-
nonical PRC1 complexes can contain RYBP or
YAF2 and PCGF1, PCGF3, PCGF5, or PCGF6. (D)
Inactivating mutations in MLL3, MLL4, UTX, and
EZH2 were observed in myeloid leukemias (MDS,
chronic myelomonocytic leukemia [CMML], and
primary myelofibrosis [PMF]) and T-cell ALL (T-
ALL). EZH1 can partially compensate for the loss
of EZH2 in depositing H3K27me3 at enhancers

and promoters. Loss of function of MLL3 and MLL4 removes H3K4me1 from enhancers, while UTX inactivation may increase
H3K27me3 at the enhancers and promoters. All of these epigenetic alterations can collaborate to suppress the enhancers of tumor sup-
pressor genes involved inmyeloid leukemia and T-ALL. (E) Inmyeloid hematopoietic cells, ASXL1 (additional sex combs-like 1) promotes
the repression of PRC2 targets via a currently unknown mechanism. (Top panel) Loss-of-function mutations of ASXL1 are frequently de-
tected inCMML,MDS, andMPN, and thesemutations could give rise to activation of an oncogene normally repressed by PRC2-mediated
H3K27me3. (Bottom panel) BRCA1-associated protein 1 (BAP1) can function to attenuate the activity of PRC2. BAP1 loss results in in-
creased expression of EZH2, which can result in myeloid transformation through the repression of tumor suppressor genes.
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only are responsible for H3K4me1 at inactive, active, and
poised enhancers but also may facilitate enhancer transi-
tioning from a poised to an active state during hematopoi-
etic differentiation (Fig. 3A; Cho et al. 2007; Herz et al.
2012).
Recent cancer genome sequencing approaches of many

types of primary tumors and cancer cell lines have re-
vealed that MLL3 and MLL4/COMPASS are among the
most frequently mutated genes in both solid tumors and
hematological malignancies (Morgan and Shilatifard
2015). The MLL3 mutation or its deletion is found in he-
matological malignancies, including 15% of DLBCL,
MDS, and AML (Mrozek 2008; Pasqualucci et al. 2011;
Zhang et al. 2013). MLL4 (GeneID 8085) mutations are
prevalent in NHL (Morin et al. 2011; Pasqualucci et al.
2011; Lohr et al. 2012; Green et al. 2015), ALL (Mar
et al. 2012; Lindqvist et al. 2015; Neumann et al. 2015),
and AML (Kandoth et al. 2013). Most of the MLL3 and
MLL4/COMPASS mutations are heterozygous nonsense,
frameshift, and internal insertions/deletions (indels), re-
sulting in protein truncations—which is suggestive of a
haploinsufficient tumor suppressor function of MLL3
and MLL4 (GeneID 8085)—in cancer pathogenesis. A tu-
mor suppressor function of MLL3 has been proven in a
mouse model of AML, with a 50% reduction in gene dos-
age cooperating with other genetic alterations to promote
leukemogenesis (Chen et al. 2014).
FLs can transform from the indolent to themore aggres-

sive DLBCL, which has allowed the collection and analy-
sis of sequential tumor lymphoid biopsies from the same
patient (Okosun et al. 2014). These and related studies
suggest that somatic MLL4 (GeneID 8085) mutations are
likely to be early events that occur in a common progeni-
tor cell, with additional mutations leading to themore ag-
gressive state (Green et al. 2013, 2015; Okosun et al. 2014;
Pasqualucci et al. 2014; Ortega-Molina et al. 2015).Mouse
models using Bcl2 overexpression and conditional dele-
tion of Mll4 (Kmt2d; GeneID 381022) demonstrate that
Mll4 loss promotes the development of lymphoma
through the expansion of germinal centers, likely due to
the loss of the expression of known tumor suppressor
genes regulating B-cell-activating pathways (Fig. 3B; Orte-
ga-Molina et al. 2015; Zhang et al. 2015).
Although occurring at a lower rate than truncating mu-

tations, missense mutations of MLL4 (GeneID 8085) are
found throughout the protein in lymphomas, with many
of the missense mutations located in the C-terminal do-
mains impairing the in vitro histone methyltransferase
activity of MLL4 (Zhang et al. 2015). However, these mu-
tations have not been characterized in vivo, and their con-
tributions to lymphomagenesis are currently unknown.
Recently developed genome-editing tools such as CRISPR
will allow the exploration of these missense mutations in
mouse models, potentially providing insight into their
contribution to hematological malignancies.
In contrast to MLL4-inactivating mutations contribut-

ing to lymphomagenesis, recent studies with conditional
ablation ofMll4 (Kmt2d; GeneID 381022) in AML cells re-
vealed that Mll4 is essential for MLL-AF9-induced leuke-
mogenesis (Santos et al. 2014). When Mll4 was deleted in

HSCs by crossing Mll4f/f mice with transgenic mice that
express interferon-inducible MxCre, expansion of HSCs
and common myeloid progenitors (CMPs) in the bone
marrow were observed. However, these HSCs are im-
paired in their self-renewing capability due to oxidative
stress-induced DNA damage. Therefore, it has been pro-
posed that MLL4/COMPASS helps enforce a differentia-
tion blockade of leukemic stem cells by up-regulating
expression of antioxidant genes, with decreased cellular
reactive oxygen species (ROS) protecting against oxidative
stress-induced DNA damage (Santos et al. 2014).
A potential mechanism for mutations in MLL3 and

MLL4/COMPASS family members leading to lympho-
magenesis and other hematological cancers is the mis-
regulation of enhancer function during hematopoietic
differentiation (Herz et al. 2014). Aberrant transcriptional
enhancer activity through either alterations of chromatin
modifications, mutations in enhancer-binding factors, or
mutations of enhancers themselves could potentially
lead to oncogenesis (Herz et al. 2014). A classic example
of enhancer-mediated oncogenesis is the chromosomal
translocation commonly found in Burkitt’s lymphoma
that places theMYC oncogene under the control of an im-
munoglobulin heavy chain (Igh) enhancer, leading to the
uncontrolled expression of MYC and the development of
lymphoma (Dalla-Favera et al. 1982; Park et al. 2005).
More recently, two independent studies of AML with a
chromosomal inversion between GATA2 and EVI1 re-
vealed that this inversion allows for promiscuous activa-
tion of EVI1 by a GATA2 enhancer (Groschel et al. 2014;
Yamazaki et al. 2014). Even a single-nucleotide polymor-
phism in a PU.1 enhancer leads to reduced PU.1 expres-
sion that contributes to the development of AML (Steidl
et al. 2007). Furthermore, in a subset of T-cell ALL (T-
ALL), heterozygous acquisition of a short DNA sequence
at a noncoding intergenic region creates a binding site for
the transcription factor MYB, thereby creating a de novo
enhancer to activate allele-specific expression of TAL1
(Mansour et al. 2014). A long-range NOTCH1-dependent
oncogenic enhancer was found to undergo focal amplifica-
tions to aberrantly activate MYC expression to drive T-
ALL (Herranz et al. 2014). The pervasive contribution of
enhancer malfunction in hematological malignancies
and the high rate of the mutation of the MLL3 and
MLL4 (GeneID 8085) forms of COMPASS suggest that al-
terations in enhancer activity by MLL3 and MLL4 muta-
tions help drive an oncogenic program (Fig. 3B). Further
studies aimed at identifying MLL4-dependent enhancers
and how these factors are specifically recruited to their
cognate site using methods such as ChIP-seq (chromatin
immunoprecipitation [ChIP] combined with high-
throughput sequencing), genome editing, and gene expres-
sion profiling will be required for testing this hypothesis.

Polycomb group (PcG) proteins in normal
and malignant hematopoiesis

PcG proteins were initially identified in Drosophila by
mutations that cause homeotic transformations, such as
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leg-to-antenna transformations or the appearance of addi-
tional sex combs on the second and third pairs of legs (Le-
wis 1978; Struhl 1981). These transformations result from
derepression of the homeotic genes (called Hox genes in
vertebrates) due to loss-of-functionmutations in genes en-
coding PcG proteins. In mammals, PcG proteins are also
critical regulators of developmental gene expression and
tissue homeostasis. Their misregulation has been widely
linked to multiple disease states in a variety of contexts,
particularly in cancers, including hematological malig-
nancies (Varambally et al. 2002; Bracken et al. 2003; Schle-
singer et al. 2007; Kondo et al. 2008; Martinez et al. 2009).
PcG proteins operate in at least two distinct multiprotein
complexes, PRC1 and PRC2; each harbors an enzymatic
activity, with PRC1 implementing H2AK119 monoubi-
quitination, and PRC2 implementingH3K27methylation
(Margueron and Reinberg 2011).

The mammalian PRC2 complex consists of four core
components: EZH1 or its paralog, EZH2; embryonic ecto-
derm development (EED); suppressor of zeste 12 homolog
(SUZ12); and RBAP46/48 (also known as RBBP7/4) (Mar-
gueron and Reinberg 2011; Aranda et al. 2015; Piunti and
Shilatifard 2016). EZH2 or EZH1 forms the enzymatic
core and implements H3K27 methylation. EZH1 is pre-
sent in both dividing and differentiated cells, whereas
EZH2 is found only in actively dividing cells. The PCR2
complex with EZH1 has low methyltransferase activity
compared with the PRC2 complex containing EZH2 (Fig.
3C;Margueron et al. 2008). The composition ofmammali-
an PRC1 complexes is more variable and is comprised of
the E3 ubiquitin ligases for H2A monoubiquitination
(RING1A or RING1B) together with either canonical
(CBX2/4/7/8, PHC1/2/3, and BMI1/MEL18) or noncanon-
ical (RYBP/YAF2 and PCGF1/3/5/6) proteins (Fig. 3C;
Gao et al. 2012; Tavares et al. 2012; Aranda et al. 2015;
Piunti and Shilatifard 2016). PRC1 and PRC2 co-occupy
many PcG target loci and play crucial roles in their
reciprocal recruitment to chromatin (Boyer et al. 2006;
Schwartz et al. 2006; Ku et al. 2008). The chromobox
(CBX) proteins have a chromodomain that recognizes the
H3K27me3 mark implemented by PRC2 and mediates
the chromatin targeting of the canonical PRC1 complex
(Cao et al. 2002; Fischle et al. 2003; Min et al. 2003; Agger
et al. 2007; Lee et al. 2007). Conversely, noncanonical
PRC1-catalyzedH2AK119monoubiquitination is capable
of targeting PRC2 to chromatin (Blackledge et al. 2014;
Kalb et al. 2014).

PcG proteins are essential regulators of hematopoiesis
and can orchestrate the expression of genes that control
the balance between self-renewal and the multipotency
of HSCs. Transgenic and conditional knockout studies
in mice have provided valuable information on the physi-
ological role of PcG proteins in the hematopoietic system.
Ezh1 is required for HSCmaintenance, and its conditional
loss leads to HSC senescence and impairment of B-cell
lymphopoiesis (Hidalgo et al. 2012). Forced expression of
Ezh2 was found to prevent the exhaustion of the long-
term repopulating capacity of HSCs in a serial transplan-
tation assay and cause development of myeloproliferative
disease in recipient mice (Kamminga et al. 2006; Herrera-

Merchan et al. 2012). Several studies have shown that
PRC2 restricts HSC activity, as a partial loss of the core
components such as Ezh2, Eed, or Suz12 inmice enhances
HSC function (Majewski et al. 2008, 2010). However, a
full loss of PRC2 activity has a distinct effect on HSC
maintenance and function. Mice with an Eed deficiency
are normal in fetal liver HSC numbers but display defects
in the maintenance and differentiation of adult HSCs (Xie
et al. 2014). Homozygous deletion of Suz12 also results in
failures in both embryonic and adult hematopoiesis (Lee
et al. 2015). Collectively, these studies indicate a dosage-
dependent impact of PRC2 activity on HSC function. In
addition to HSC regulation, PRC2 also has an essential
role in lymphoid development. Conditional deletion of
EZH2 in the lymphoid lineage revealed its crucial role
in early B-cell development, rearrangement of the Igh
gene, germinal center formation, and differentiation and
survival of CD4+ T help1 (Th1) and Th2 cells (Su et al.
2003; Beguelin et al. 2013; Caganova et al. 2013; Tumes
et al. 2013; Zhang et al. 2014). Similarly, Suz12 deficiency
causes severe defects in B and T lymphopoiesis (Lee et al.
2015). Future work should clarify the mechanisms under-
lying the dosage-dependent impact of PRC2 activity on
HSC functioning and the role and mechanisms of PRC2
in the specification of other hematopoietic lineages.

PRC1 is also essential for normal hematopoiesis, with
its core subunit, BMI1, being themost-studied component
of PRC1 in hematopoiesis. Ectopic expression of Bmi1 in
mouse embryonic stem cells has been shown to promote
primitive hematopoiesis (Ding et al. 2012). Bmi1 is re-
quired for HSC self-renewal in both mice and humans.
The homozygous deletion of Bmi1 in mice decreases the
number of HSCs by inducing symmetrical division, dere-
pression of the Ink4a–Arf locus (encoding p16INK4A and
p19ARF proteins), and generation of ROS andDNAdamage
(Park et al. 2003; Iwama et al. 2004; Oguro et al. 2006; Liu
et al. 2009). Bmi1−/− cells exhibit an accelerated differen-
tiation into the B-cell lineage due to premature transcrip-
tional activation of B-cell regulators Ebf1 and Pax5 (Oguro
et al. 2010). Although homologous to Bmi1, Mel18 loss
has very little impact on the repopulating capacity of fetal
HSCs, with the self-renewing capacity of adult HSCs be-
ing enhanced in the absence of Mel18, suggesting that
Bmi1 and Mel18 have distinct functions in HSCs (Iwama
et al. 2004; Kajiume et al. 2004). However, Mel18 was
demonstrated to have important roles in the proliferation
and maturation of B cells, indicating a function in lym-
phoid differentiation (Akasaka et al. 1997; Tetsu et al.
1998).

Multiple members of the CBX family have been identi-
fied within the canonical PRC1 complex, and several of
them have been shown to be vital for hematopoietic ho-
meostasis. Cbx7 is highly expressed in long-term HSCs,
and its overexpression enhances HSC self-renewal and in-
duces leukemia, whereas an ectopic expression of Cbx2,
Cbx4, or Cbx8 results in differentiation and exhaustion
of HSCs, revealed by the competitive transplantation as-
say (Klauke et al. 2013). Although the repopulating activ-
ity of fetal liver cells deficient for Cbx2 is comparablewith
wild-type cells, homozygous deletion of Cbx2 leads to
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reduced cellularity in postnatal bone marrow, spleen, and
thymus (Core et al. 1997; Iwama et al. 2004). The knock-
down of eachmember of the CBX family in humanCD34+

core blood cells leads to a profound reduction in the prolif-
eration of hematopoietic stem and progenitor cells (van
den Boom et al. 2013).
Studies on the role of the catalytic components of the

PRC1 complex, RING1A and RING1B, are still limited,
and H2A monoubiquitination function in fetal and adult
hematopoiesis remains unclear. Mice with homozygous
deletion of Ring1a are viable but display skeletal abnor-
malities (del Mar Lorente et al. 2000). Conditional dele-
tion of Ring1b in adult hematopoietic lineages revealed
its restrictive role in the proliferation of hematopoietic
stem and progenitor cells and its favorable function in
the proliferation of differentiated progenies (Cales et al.
2008). In vitro studies revealed that HSCs with a deletion
of both Ring1a and Ring1b show a severe defect in their
self-renewing capacity (Piunti et al. 2014). Future studies
using mice with a conditional deletion of Ring1a and/or
Ring1b will shed light on the role of H2A monoubiquiti-
nation in normal hematopoiesis.
EZH2 is the most frequently mutated PcG member in

the pathogenesis of hematological malignancies (Kroeze
et al. 2012;Woods and Levine 2015). EZH2 overexpression
is commonly observed in various epithelial malignancies,
including breast and prostate cancer, suggesting that
EZH2 functions as an oncogene (Varambally et al. 2002;
Kleer et al. 2003; Li et al. 2009a). Indeed, recurrent somatic
mutations that result in increased EZH2 enzymatic
activity have been observed in lymphoma (Morin et al.
2011; Yap et al. 2011; McCabe et al. 2012a). Monoallelic
mutations that result in substitution of Y641 within the
SET domain of EZH2 lead to increased conversion of
H3K27me1 to H3K27me2 (H3K27 dimethylation) and
H3K27me3 and have been identified in 22% of patients
with germinal center diffuse B-cell lymphoma (Morin
et al. 2011). Transgenic mouse models initially demon-
strated that a specific overexpression of EZH2Y641F/N in
lymphocytes is insufficient for lymphomagenesis on its
own but can cooperate with Bcl2 or Myc overexpression
(Beguelin et al. 2013; Berg et al. 2014). These studies sug-
gested that the carcinogenic activity of EZH2 Y641 muta-
tions rely on other oncogenic events to drive malignant
transformation. However, a more recent study with the
Y641F mutation knocked in the endogenous Ezh2 locus
in mice showed that Ezh2Y641F itself could cause develop-
ment of lymphoma and melanoma (Souroullas et al.
2016). In this mouse model, Ezh2Y641F was found to coop-
erate with the loss of p53 or overexpression of Bcl2, but
notMyc, to accelerate lymphoma progression (Souroullas
et al. 2016). These discrepancies resulting from the differ-
ent mouse models used in these studies demonstrate that
the oncogenic function of somatic mutations may not be
faithfully recapitulated by transgenic mouse models that
introduce an extra copy of mutant alleles expressed under
the control of exogenous promoters. Despite the overall
higher abundance of H3K27me3 observed in lymphoma
cells induced in knock-in Ezh2Y641F mice, many loci
lose H3K27me3 and exhibit increased transcription (Sour-

oullas et al. 2016). Therefore, the aberrantly high level of
H3K27me3 may lead to persistent repression of some
tumor suppressor genes (Fig. 3B), while its less focused dis-
tribution could allow derepression of other loci contribut-
ing to lymphomagenesis.
The importance of the H3K37me3 mark in promoting

epigenetic reprogramming in hematological malignancies
is further suggested by the high frequency of inactivating
mutations of the H3K27me3 demethylase UTX that re-
sides within MLL3/MLL4 COMPASS-like complexes
(Agger et al. 2007; Cho et al. 2007; Lan et al. 2007). Exome
and whole-genome sequencing has identified homozy-
gous and heterozygous inactivating mutations of UTX
in multiple myeloma and T-ALL but not in lymphomas
that harbor the EZH2 Y641 activating mutation (van
Haaften et al. 2009;Morin et al. 2011). Studies ofUtx func-
tion in T-ALL found that Utx can act as a tumor suppres-
sor in a Notch1-induced murine model of leukemia
(Ntziachristos et al. 2014). More recent studies found
that UTX can also act as an oncogene in TAL1-positive
T-ALL, while UTX can inhibit cell growth when overex-
pressed in TAL1-negative T-ALL cells (Benyoucef et al.
2016). Therefore, potential therapeutic options for hema-
tological cancers can be aimed at recovering normal cellu-
lar H3K27 methylation levels with small molecule
inhibitors of PRC2 or, in a subset of cases, activating mol-
ecules of H3K27 demethylases (Fig. 3D; Knutson et al.
2012; McCabe et al. 2012b).
Although an excess of H3K27me3 activity generally has

an oncogenic role in cancer, loss-of-function mutations in
EZH2 have been detected in a subset of myeloid malig-
nancies, most commonly in MDSs, chronic myelomono-
cytic leukemia (CMML), primary myelofibrosis (PMF),
and T-ALL (Ernst et al. 2010; Nikoloski et al. 2010;
Ntziachristos et al. 2012; Score et al. 2012; Simon et al.
2012; Zhang et al. 2012). These inactivating mutations
of EZH2 predict a poorer overall outcome in CMML,
MDS, and PMF (Grossmann et al. 2011; Guglielmelli
et al. 2011). Conditional loss of Ezh2 in a hematopoietic
system contributes to the pathogenesis of MDS and accel-
erates the onset of the early T-cell precursor ALL (ETP-
ALL) induced by oncogenic NRASQ61K (Score et al.
2012; Muto et al. 2013; Danis et al. 2016). Besides EZH2
inactivating mutations, loss-of-function mutations of
the PRC2 core components SUZ12 and EED have also
been detected in T-ALL, all of which lead to lower levels
of H3K27me3 (Ntziachristos et al. 2012; Simon et al.
2012). Intriguingly, myeloid leukemia can have inactivat-
ing mutations of both PRC2 components and UTX, rais-
ing the question of how simultaneous mutations of
factors with opposing enzymatic activity can contribute
to leukemogenesis (van Haaften et al. 2009; Jankowska
et al. 2011). A very recent study demonstrated that Ezh1
function is essential for the pathogenesis of myeloid ma-
lignancies induced by Ezh2 loss of function (Mochizuki-
Kashio et al. 2015). Therefore, inactivating mutations
of UTX could facilitate EZH1-dependent repression of
tumor suppressor genes that would otherwise be dere-
pressed by EZH2 loss of function (Fig. 3D). Understanding
the context in which PRC2 can act as an oncogene or
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tumor suppressor in lymphomagenesis and leukemogene-
sis will undoubtedly be an active area of future research.

Over the past decade, a series of studies has implicated
PRC1 in HSC self-renewal and differentiation, which re-
quire the core subunits of the Bmi1 and Cbx family of pro-
teins (Lessard and Sauvageau 2003; Park et al. 2003;
Klauke et al. 2013). In contrast to PRC2, somatic muta-
tions in the PRC1 components have not been reported
for hematopoietic malignancies. However, overexpres-
sion of BMI1, an integral subunit that stimulates the ubiq-
uitinase activity of PRC1 toward H2AK119, has been
observed in myeloid malignancies and has emerged as
a useful indicator for the prognosis of MDS, CMML,
and AML (Mihara et al. 2006; Chowdhury et al. 2007;
Mohty et al. 2007). However, it remains unclear whether
H2AK119 monoubiquitination is concomitantly in-
creased with BMI1 overexpression and whether this his-
tone modification contributes to myeloid malignancies.
In Drosophila, H2AK119 monoubiquitination can be re-
moved by the Polycomb-repressive deubiquitinase (PR-
DUB) complex, which is comprised of the BRCA1-associ-
ated protein 1 (BAP1) homolog, Calypso, and additional
sex combs (Asx) (Scheuermann et al. 2010). Amammalian
PR-DUB complex containing BAP1 and ASX-like 1
(ASXL1) or ASXL2 was also biochemically isolated and
demonstrated to harbor deubiquitinase activity in vitro
(Scheuermann et al. 2010; Dey et al. 2012). ASXL1 is fre-
quentlymutated in awide range ofmyeloidmalignancies,
most commonly in AML, CMML, MDS, and MPN. The
mutations of ASXL1 are associated with a dismal overall
prognosis in patients with MDS and AML (Abdel-Wahab
et al. 2011, 2012; Bejar et al. 2011; Patel et al. 2012). How-
ever, and in contrast to what has been observed in Droso-
phila, ASXL1 inactivating mutations did not cause
significant changes in the H2AK119 monoubiquitination
levels in myeloid hematopoietic cells but did promote
myeloid transformation through the loss of PRC2-medi-
dated H3K27 methylation, leading to derepression of
PRC2 target genes (Fig. 3E; Abdel-Wahab et al. 2012; Inoue
et al. 2013).

BAP1 is best known for being recurrently mutated in
numerous cancers such as mesothelioma, renal cell carci-
noma, and metastatic uveal melanoma (Harbour et al.
2010; Bott et al. 2011; Pena-Llopis et al. 2012). Consistent
with a physical association with Asxl1, Bap1 loss of func-
tion also leads to myeloid transformation in mice (Dey
et al. 2012; LaFave et al. 2015). In contrast to the reduction
of H3K27me3 seenwithAsxl1 loss, Bap1 deletion leads to
increased Ezh2 expression, higher levels of H3K27me3,
and enhanced repression of PRC2 target genes in hemato-
poietic cells. Thus, Ezh2 deletion or inhibition was shown
to abrogate myeloid malignancy and mesothelioma in-
duced by Bap1 loss (LaFave et al. 2015). These findings
raise the possibility thatmyeloid transformation resulting
from ASXL1 and BAP1 loss could be independent of the
function of the BAP1–ASXL1 complex (Fig. 3E). EZH2 de-
pendence for BAP1 mutant malignancies appears to be
context-dependent, as BAP1 mutant uveal melanoma
cells do not exhibit sensitivity toward EZH2 inhibition,
which is in contrast to findings observed in hematopoietic

and mesothelioma cells (LaFave et al. 2016; Schoumacher
et al. 2016). Future work to dissect the molecular mecha-
nisms and potential cross-talk for the PRC1 and PRC2
complexes in their hematopoietic context and in MDS
and other malignancies is another important area requir-
ing investigation.

The nuclear receptor-binding SET domain (NSD)
family of H3K36 methyltransferases in hematological
malignancies

The NSD family of histone methyltransferases comprises
three proteins: NSD1, NSD2 (also known as multiple my-
eloma SET domain [MMSET] and Wolf-Hirschhorn syn-
drome candidate 1 [WHSC1]), and NSD3 (also known as
WHSC1L1). Although members of the NSD family were
initially shown to have enzymatic activity toward multi-
ple residues on histones, subsequent studies demonstrat-
ed that these enzymes preferentially implement histone
H3K36me2 (Li et al. 2009b; Kuo et al. 2011; Qiao et al.
2011). NSD1 and NSD2 have each been linked to human
developmental overgrowth syndromes. The NSD2 gene
is among a group of genes deleted inWolf-Hirschhorn syn-
drome, and loss of NSD2 is thought to be responsible for a
subset of the clinical features characteristic of this syn-
drome (Andersen et al. 2014). Deletion or loss-of-function
mutations involving NSD1 results in Sotos syndrome, an
autosomal dominant overgrowth syndrome characterized
by a distinctive facial appearance, delayed development,
and learning disabilities (Douglas et al. 2003; Turkmen
et al. 2003).

The roles of members of the NSD family in normal
hematopoiesis have not been investigated. However,
alterations of these genes are recurrently observed in he-
matological malignancies, implying critical roles in
normal hematopoiesis. A recurring t(5;11)(q35;p15.5)
chromosomal translocation fuses NSD1 to nucleoporin-
98 (NUP98) to generate a NUP98–NSD1 chimera in 5%
of human AMLs (Cerveira et al. 2003). Transplantation
studies in mice demonstrated that expression of the
NUP98–NSD1 chimera sustains self-renewal of myeloid
progenitors and is sufficient to induce AML in vivo by pre-
venting the EZH2-dependent silencing of the Hoxa9
and Meis1 proto-oncogenes (Wang et al. 2007). NSD2 is
commonly overexpressed in 15%–20%ofmultiplemyelo-
ma cases through a chromosomal translocation t(4;14)
(p16.3;q32) that juxtaposes the NSD2 gene with the IgH
locus (Chesi et al. 1998). Aberrant up-regulation of
NSD2 and a subsequent increase of H3K36me2 lead to
an altered localization and overall decrease in the levels
of H3K27me3 (Kuo et al. 2011; Martinez-Garcia et al.
2011; Popovic et al. 2014). Recent global profiling of his-
tonemodifications bymass spectrometry from 115 cancer
cell lines identified a cluster of 13 cell lines exhibiting a
signature of highH3K36me2. Thesewere divided between
multiple myeloma and ALL cell lines, with all but one of
the multiple myeloma cell lines having the t4;14 rear-
rangement with the IgH promoter, while the other multi-
ple myeloma cell line and all of the ALL lines had an
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activating mutation in the SET domain of NSD2
(E1099K). This activating mutation was found in 14% of
the t(12;21) ETV6-RUNX1-containing pediatric ALLs.
NSD2 knockdown selectively inhibited the proliferation
and xenograft growth of ALL lines harboring the E1099K
mutation in NSD2, indicating its requirement for NSD2
mutant ALL (Jaffe et al. 2013). In addition to the therapeu-
tic targeting of NSD2’s catalytic activity, an essential
function for the second plant homeodomain (PHD) finger
in targeting NSD2 to chromatin provides another poten-
tial therapeutic strategy (Huang et al. 2013b). Last, the on-
cogenic potential of NSD3 was first suggested by the
observation that it was overexpressed in breast cancer
and was later found as a fusion partner of the NUT onco-
gene in midline carcinoma (Filippakopoulos et al. 2010).
In addition, rare cases of AML and MDS have NUP98–
NSD3 fusions, but the functional importance of these fu-
sions remains to be demonstrated (Rosati et al. 2002;
Taketani et al. 2009).

DNA methylation in hematopoiesis
and hematological cancers

Long before themethylation of lysine residues in histones
were recognized as important epigenetic marks, cytosine
methylation at the C5 position of mammalian genomic
DNA, usually in the context of CpG dinucleotides, was
known to have a critical role in the epigenetic processes
of genomic imprinting and X inactivation (Yang et al.
2015). The regulation of CpG methylation has since
been established as being critical for stem cells and their
differentiation potential, while aberrant DNA methyla-
tion is pervasive in cancer, including in blood malignan-
cies. Cytosine methylation is carried out by a family of
DNAmethyltransferases, including DNMT1, DNMT3A,
and DNMT3B (Okano et al. 1998). DNMT1 is considered
as the maintenance DNA methyltransferase that can
bind hemimethylated DNA during cell division, result-
ing in the inheritance of the methylated cytosine state
in the daughter strand. DNMT3A and DNMT3B function
as de novo DNA methyltransferases, which can methyl-
ate the unmethylated cytosines during embryogenesis
(Fig. 4A; Stein et al. 1982; Okano et al. 1998; Jones and
Liang 2009).
DNA methylation is dynamically regulated during he-

matopoietic differentiation, and each DNA methyltrans-
ferase plays crucial roles in physiological hematopoiesis
(Tadokoro et al. 2007; Broske et al. 2009; Trowbridge
et al. 2009; Ji et al. 2010; Bock et al. 2012; Challen et al.
2012). Deletion of Dnmt1 in HSCs demonstrates its re-
quirement for HSC self-renewal and differentiation
(Broske et al. 2009; Trowbridge et al. 2009). Hematopoiet-
ic-specific disruption of Dnmt3a in mice leads to both in-
creased and decreased DNA methylation at individual
loci, and these together contribute to persistent self-re-
newal and a differentiation block of HSCs (Challen et al.
2012). Dnmt3b knockout alone has a negligible impact
on HSC function; however, its deletion along with
Dnmt3a further enhances the self-renewal versus differ-
entiation of HSCs (Challen et al. 2014).

Studies have revealed that the normal distribution of
methylated cytosines is disrupted in hematologicalmalig-
nancies, and even subtypes of AML have different DNA
methylation patterns (Figueroa et al. 2010). Although a
fewmutations inDNMT1 andDNMT3Bhave been report-
ed, cancer genome deep sequencing efforts have identified
an overwhelming prevalence of heterozygous mutations
of DNMT3A (Ley et al. 2010; Yamashita et al. 2010).
DNMT3A mutations have also been detected in patients
with MDS andMPN and are associated with an increased
risk of progression toAML (Stegelmann et al. 2011;Walter
et al. 2011). DNMT3A mutations can be truncating or
missense mutations. The most common mutation is the
substitution of Arg882within the catalytic domain to his-
tidine, although substitutions of R882 with other amino
acids are also observed (Ley et al. 2010; Yamashita et al.
2010). R882 mutations can induce hypomethylation by
disrupting DNMT3A oligomerization (Kim et al. 2013).
Two independent studies identified the existence of
DNMT3A mutations in preleukemic HSCs in patients
with AML. These studies indicated that DNMT3A loss-
of-function mutations may confer a self-renewal advan-
tage toHSCs and therefore lead to the development of leu-
kemia after an acquisition of mutations in additional
factors over time (Fig. 4B; Corces-Zimmerman et al.
2014; Shlush et al. 2014).
DNA methylation was long considered to be an irre-

versible epigenetic modification that could be removed
only by the passive mechanism of cell division. This
view was reversed by the discovery of the TET (ten-elev-
en translocation) family of dioxygenases that use oxygen,
Fe(II), and a-ketoglutarate as substrates in a sequential
enzymatic reaction to convert 5-methylcytosine (5mC)
into 5-hydroxymethylcytosine (5hmC) and subsequently
into 5-formylcytosine (5fC) and 5-carboxylcytosine
(5caC) (Iyer et al. 2009; Tahiliani et al. 2009). 5caC is rec-
ognized and replaced with a nonmethylated cytosine res-
idue by TDG (thymine DNA glycosylase)-mediated
base excision repair during the final step of cytosine
demethylation (Fig. 4A; He et al. 2011; Ito et al. 2011).
In addition, oxidized derivatives of 5mC by Tet proteins
also facilitate passive demethylation by inhibiting DNA
binding of DNMT1 during cell division (Fig. 4A; Valin-
luck and Sowers 2007; Hashimoto et al. 2012). In accor-
dance with the pervasive aberrant cytosine methylation
in blood cancers, misregulation of the TET family of pro-
teins is now implicated in oncogenesis. Indeed, TET1
was first identified as an MLL fusion partner in rare cases
of AML and ALL that have a t(10,11)(q22;q23) translo-
cation (Ono et al. 2002; Lorsbach et al. 2003; Tahiliani
et al. 2009). The chimeric protein lacks the hydroxylase
activity, as the cys-rich domain of TET1 that is essential
for enzymatic activity is deleted (Tahiliani et al. 2009).
Interestingly, studies demonstrated that TET1 is over-
expressed in MLL-rearranged leukemia and that TET1
function is required for up-regulating the expression
of MLL chimera oncogenic targets such as HOXA9,
MEIS1, and PBX3 (Huang et al. 2013a). Reconciling
this requirement for TET1 in MLL-rearranged leuke-
mias and the molecular consequence of the MLL-TET1
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rearrangement and its interplay with endogenous TET1
has yet to be determined.

Among the TET family of DNA demethylases, TET2 is
mutated most frequently in hematopoietic malignancies,
whereas alterations in TET1 and TET3 are very rare
(Abdel-Wahab et al. 2009). TET2 mutations have been
observed in both myeloid and lymphoid malignancies,
suggesting thatmutations in TET2 occur in early hemato-
poietic progenitors (Quivoron et al. 2011). TET2 muta-
tions identified in patients with hematological cancers
are usually monoallelic and inactivating, indicating that
it acts as an haploinsufficient tumor suppressor during
hematopoietic transformation (Abdel-Wahab et al. 2009;
Jankowska et al. 2009).

In vivo murine studies have clearly demonstrated that
loss of TET2 function strongly correlates with hematopoi-
etic transformation.Mice lacking TET2 are viable and fer-

tile and appear to develop normally but develop myeloid
malignancies as they age and die from myeloid disorders
resembling CMML, MDS, and MPN (Abdel-Wahab et al.
2011; Ko et al. 2011; Moran-Crusio et al. 2011; Quivoron
et al. 2011). Further cellular studies revealed that HSCs
from TET2−/− mice have an increased ability for self-re-
newal and expansion and exhibit a competitive advantage
over wild-type HSCs for repopulating hematopoietic line-
ages. TET2 deficiency impedes the overall differentiation
potential of HSCs, with a bias toward the expansion of
monocyte and macrophage lineages, which is consistent
with the myeloid transformation observed in aged mice
(Abdel-Wahab et al. 2011; Ko et al. 2011; Moran-Crusio
et al. 2011). Despite the prevalent occurrence of TET2 in-
activating mutations in lymphoid malignancies, mice
rarely develop lymphoma in the absence of TET2. Addi-
tionally, the latency for developing myeloid leukemia in

Figure 4. Misregulation ofDNAmethylation in hematologicalmalignancies. (A) Dynamics ofDNAmethylation and demethylationme-
diated by DNA methyltransferase (DNMT3A, DNMT3B, and DNMT1) and Tet (ten-eleven translocation; TET1, TET2, and TET3) pro-
teins. De novo DNA methyltransferases (DNMT3A and DNMT3B) add a methyl group to the fifth position of cytosine of CpG
dinucleotides to form 5-methylcytosine (5mC) during embryonic development. During cell division, themaintenance DNAmethyltrans-
ferase DNMT1 is targeted to hemimethylated CpG and adds amethyl group to the newly replicated DNA to faithfullymaintain the DNA
methylation pattern in daughter cells. DNA demethylation is achieved through active and passive pathways. In the active demethylation
pathway, 5mC is successively oxidized bymembers of theTET family to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-
carboxylcytosine (5caC). 5caC is further converted to unmethylated cytosine via TDG (thymineDNA glycosylase)-mediated excision and
subsequent replacement with unmethylated cytosine by the base excision repair (BER) mechanism. In addition, 5mC and its oxidized de-
rivatives can be replaced with unmethylated cytosine during DNA replication (passive demethylation) if the maintenance DNAmethyl-
ation is inhibited during DNA replication. (B). Inactivating mutations in DNMT3A and TET2 (red star) are likely to occur in preleukemic
cells (multipotent HSCs or progenitors), which increase their self-renewal property and block differentiation. The acquisition of muta-
tions in additional factors (green star) such as NPM and JAK eventually leads to the development of hematological malignancies.
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TET2-deficient mice is very long, and many elderly indi-
viduals with an age-related accumulation of TET2 muta-
tions do not necessarily develop leukemia (Quivoron
et al. 2011; Busque et al. 2012). Collectively, these lines
of evidence suggest that TET2 mutations alone are not
sufficient to initiate lymphoid transformation, and other
cooperative oncogenic events are required to drive lym-
phomagenesis and shorten the latency of myeloid leuke-
mogenesis. Indeed, alterations in multiple genes have
been found to coexist with TET2 mutations, such as
JAK2,KRAS,NRAS, and SRSF2 and the epigenetic regula-
tors EZH2, DNMT3A, and ASXL1 (Fig. 4B; Tefferi 2011;
Shih et al. 2012). The cooperative effects of TET2 loss
with other oncogenic alterations on hematopoietic trans-
formation have been confirmed in mice with the com-
bined loss of Tet2 and the mutation in Flt3 (Shih et al.
2015). Therefore, further studies focused on the coopera-
tive effects between TET2 mutations and alterations in
other genes should yield significant insights into how ge-
netic and epigenetic alterations contribute to hematopoi-
etic transformation and may provide new therapeutic
targets for leukemia with TET2 mutations.

Conclusions and future directions

Despite intensive basic research in the field of epigenetics
and chromatin biology, we have a rudimentary un-
derstanding of how epigenetic modifiers carry out their
function, including the degree to which chromatin modi-
fication-dependent and -independent functions contrib-
ute to transcriptional regulation during development.
Epigenetic modifiers have emerged recently as potential
drivers of hematological malignancies through the se-
quencing of blood cancer. However, the molecular basis
for hematopoietic transformation by many of these chro-
matin modifiers is still largely unclear. For example, the
target genes whose expression is misregulated by a given
mutant epigenetic modifier are unknown. Future studies
need to identify the key deregulated genes and determine
how their misexpression contributes to the pathogenesis
of hematological malignancies. Also, mutations in many
of the epigenetic modifiers individually are generally in-
sufficient for driving hematopoietic transformation,
with disease emergence requiring cooperation with alter-
ations in additional regulatory factors. Studies in mice
that conditionally inactivate or delete these genes alone
and in combination with other chromatin regulatory fac-
tors will hopefully provide amore in-depth understanding
of the role of these alterations during hematopoietic trans-
formation. In addition to the mouse models of these can-
cers, hematological cancers are also being modeled in
zebrafish (Etchin et al. 2011). These transparent fish are
particularly suitable for carrying out genetic and chemical
screens that can identify regulators of oncogenesis. Last,
although many chromatin modifiers such as MLL3/
MLL4/UTX in theCOMPASS-like complexes, DNMT3A,
and TET2 play a similar tumor suppressor role in different
types of cancer; mutations in some of the other epigenetic
modifiers may have a tissue-specific role in cancer devel-

opment. For example, EZH2mutations are reported to ex-
ist in both B-cell lymphoma and T-ALL. However, the
impact of these mutations on the biochemical functions
of EZH2 in cancer development is distinct. B-cell lympho-
ma-associatedmutations of EZH2 are hyperactivating and
lead to increasedH3K27methyltransferase activity, while
EZH2 function can be attenuated through inactivating
mutations in a subset of T-ALL. Thus, it is of great impor-
tance to determine the precise biochemical consequence
ofmutations in chromatinmodifiers in the context of spe-
cific hematopoietic cancers. Since many of the chromatin
modifiers that are mutated in hematopoietic malignan-
cies are also mutated in solid tumors, the identification
of the molecular basis of hematological cancers could
also be informative for developing novel therapeutic strat-
egies for other cancers with mutations in these epigenetic
modifiers.
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