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Abstract

This paper introduces an approach to classification of RNA-seq read counts using grey

relational analysis (GRA) and Bayesian Gaussian process (GP) models. Read counts are

transformed to microarray-like data to facilitate normal-based statistical methods. GRA is

designed to select differentially expressed genes by integrating outcomes of five individual

feature selection methods including two-sample t-test, entropy test, Bhattacharyya dis-

tance, Wilcoxon test and receiver operating characteristic curve. GRA performs as an

aggregate filter method through combining advantages of the individual methods to pro-

duce significant feature subsets that are then fed into a nonparametric GP model for classi-

fication. The proposed approach is verified by using two benchmark real datasets and the

five-fold cross-validation method. Experimental results show the performance dominance

of the GRA-based feature selection method as well as GP classifier against their competing

methods. Moreover, the results demonstrate that GRA-GP considerably dominates the

sparse Poisson linear discriminant analysis classifiers, which were introduced specifically

for read counts, on different number of features. The proposed approach therefore can be

implemented effectively in real practice for read count data analysis, which is useful in

many applications including understanding disease pathogenesis, diagnosis and treatment

monitoring at the molecular level.

Introduction

Discovery of genes that are differentially expressed is helpful in gaining insights into disease
pathogenesis, and discovering biomarkers for diagnosing and predicting the clinical status of
patients. Identifying gene biomarkers is often performed using DNA microarray, which mea-
sures gene expression of the entire human genome. DNA microarray technology however suf-
fers from the cross-hybridization procedure that yields noisy gene expression profiles. RNA
sequencing (RNA-seq) has been emerging as a favorite method against the microarray technol-
ogy [1]. RNA-seq is a technique that is capable of generating RNA-seq count data based on the
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next generation sequencing (NGS) technologies. The count data are structured as a table,
which reports the number of sequence fragments assigned to each gene for each sample. RNA-
seq is increasingly preferable to DNA microarray because it produces low background noise
count data that allow detecting transcripts at low expression levels [2, 3]. With the decreasing
cost of sequencing, the use of RNA-seq for differential expression analysis has been increased
rapidly. NGS is able to measure the expression levels of tens of thousands of transcripts simul-
taneously. Such information is useful for developing expression-based classification algorithms
to determine the diagnostic category of disease, for example cancers [4, 5].
Fig 1 shows basic steps of a typical RNA-seq experiment. Specifically, an RNA-seq experi-

ment normally requires a task of making a collection of cDNA fragments that are flanked by
sequencing adapters. This library of cDNA fragments is then sequenced using a short-read
sequencing platform. This step results in millions of short sequence reads that correspond to
individual cDNA fragments.
As the RNA-seq technology provides count data, much interest has focused on statistical

methods designed specifically for discrete counts, for example approaches using Poisson and
negative binomial (NB) distributions.Witten et al. [6] introduced a Poisson linear discriminant
analysis for modelling RNA-seq data. Alternatively, a specific nonlinear Poisson transforma-
tion was proposed in [7] and applied to the mRNA expression model to synthetically generate
the RNA-seq data. Likewise, several over-dispersed Poisson models were introduced in [8–10].
A comparison of methods and software packages for detecting differential expression in RNA-
seq studies was presented in [11, 12].
Due to the overdispersion issue, i.e. the variances are likely to exceed the means for a consid-

erable number of genes [13], the Poisson distributionmay not be suitable for modelling RNA-
seq profiles when there are biological replicates. The NB distribution is therefore more general
because it can mitigate this issue [14].
Robinson and Smyth [15] presented a quantile-adjusted conditional maximum likelihood

estimator for the dispersion parameter of the NB distribution accompanying by the R package
edgeR, which was detailed in [16]. Anders and Huber [17] proposed a method along with the
DESeq package using the NB distribution with variance and mean linked by local regression.
Hardcastle and Kelly [18] developed the algorithm baySeq that uses an empirical Bayes
approach to discover patterns of differential expression by assuming a NB distribution for the
data. Likewise,Wu et al. [19] introduced a shrinkage estimate of the dispersion parameters of
the NBmodel for RNA-seq data. This estimator characterizes the variation in gene-specific dis-
persion and provides a better detection of differential expression genes compared with edgeR
and DESeq. Love et al. [20] presented DESeq2, a successor to the DESeqmethod, to facilitate a
more quantitative analysis of comparative RNA-seq count data using shrinkage estimators for
dispersion and fold change.
Modelling sequencing data using count distributions is mathematically intractable and

complicated because of the presence of extreme values, high skewness and the mean-variance
dependency. Therefore, an alternative approach has emerged by using transformation proce-
dures for the count RNA-seq data and applying normal-basedmicroarray-like statistical
methods. This reduces the disadvantages relating to the mathematical intractability of count
distributions compared to the normal distribution and opens access to a wide range of known
algorithms developed for microarray data. Several prevalent methods include logarithm trans-
formation [3], variance-stabilizing transformation (VST) [17], TMM transformation [21], reg-
ularized logarithm [20], and variance modelling at the observation level “voom” method [22].
voom was verified and demonstrated that it performs as well or better than existing RNA-seq
methods. This paper therefore promotes the use of voommethod to process the RNA-seq data.
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Using the voom transformation, we introduce an aggregate feature selectionmethod based
on the grey relational analysis (GRA) technique [23] to deal with transformed RNA-seq data.
Compressed feature subsets obtained by the filter GRAmethod are fed into the Bayesian non-
parametric Gaussian process (GP) models [24] for classification. Benchmark sequencing data-
sets are used to validate and show the significant dominance of the proposed approach against
competingmethods.We also perform rigorous statistical significance test to ensure the conclu-
sions driven out of this study are valid and general. Next section presents in detail the proposed
methodology and motivations of using GRA and GP methods.

Methods

The proposedmethodology for analysis of RNA-seq read counts is graphically presented in Fig
2. One of the basic tasks in the analysis of RNA-seq count data is the detection of differentially
expressed genes [25]. In this paper, the RNA-seq read counts are first transformed using the
voommethod [22]. The transform alleviates the typical skewness, dependency betweenmean
and variance or extreme values of RNA-seq data. After the transformation, RNA-seq data can
be treated as if it was microarray data. This means that any normal-basedmethods or gene set
testing procedures can be applied to RNA-seq data. We then design the GRA-based aggregate
feature selectionmethod that combines outcomes of five individual methods including two-
sample t-test, entropy test (known as Kullback-Liebler distance or divergence) [26],

Fig 1. Basic steps of a typical RNA-seq experiment.

doi:10.1371/journal.pone.0164766.g001
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Bhattacharyya distance [27], Wilcoxon test [28] and receiver operating characteristic (ROC)
curve [29] to select significant genes as biomarkers. GRA-based method performs as a filter
approach based on the assumption that the features are independent. This assumption is often
made for high-dimensional low-sample data as there are too few observations available to be
able to effectively estimate the dependence structure among the features [6, 30–32].
Once discriminant feature subsets have been selected, they serve as inputs into the GP mod-

els for classification. GP is fast and computationally tractable based on analytic formulae. A GP
is completely characterized by its mean and covariance functions but it is not limited by a
parametric form. Being a nonparametric method, the number and nature of GP parameters are
flexible and not fixed in advance but are determined from data. Therefore, uncertainty and

Fig 2. Proposed methodology for analyzing RNA-seq count data.

doi:10.1371/journal.pone.0164766.g002
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complexity of RNA-seq data can be addressed effectively by GP models. Under the GP view-
point, the models are transparent and hence amenable to interpretation compared to black-
box methods such as neural networks [24]. Generalization capability of GP based on Bayesian
formalism can yield high classification performance for RNA-seq data modelling.Details of
the voom transform approach, GRA-based feature selectionmethod and GP models are
sequentially presented in the following subsections.

RNA-seq data transformation

Raw RNA-seq data are assembled in integer read counts. Specific characteristics of RNA-seq
data that concern analysts are the presence of extreme values, high skewness, and the mean-
variance dependency (i.e. heteroscedasticity). Logarithm transformation is a prevalent method
to eliminate RNA-seq extreme values [3]. The variance-stabilizing transformation (VST) pro-
posed in [17] is also often used to deal with skewed RNA-seq data. Alternatively, Love et al.
[20] introduced regularized logarithm to transform RNA-seq data to render them homoscedas-
tic. Law et al. [22] proposed voommethod that converts the counts to log-counts per million
with associated precision weights. After this, the normal-basedmethods can be applied to
RNA-seq data as if it was microarray data. Details of the voommethod are presented in the
Supplementary Materials section.

GRA-based feature selection

GRAwas introduced by Deng [33] and has been applied to solve multicriteria decisionmaking
(MCDM) problems in various fields [23, 34, 35]. GRA is part of grey system theory, which is
capable of solving problems with complicated interrelationships betweenmultiple factors and
variables.We propose the use GRA as a filter feature selection approach that combines out-
comes of individual methods including two-sample t-test, entropy test, Bhattacharyya distance,
Wilcoxon test and ROC curve. Assume the MCDM problem hasm alternatives and n criteria
(attributes) where the ith alternative can be expressed as Yi = (yi1,yi2,…,yij,…,yin) where yij is
the performance value of the criterion j of the alternative i. To formulate gene selection as an
MCDM problem, we treat genes (features) as alternatives and individual methods as criteria.
Therefore, there arem features corresponding tom alternatives. In this paper, n is equal to 5 as
there are 5 individual methods corresponding to 5 criteria. Outcomes of individual methods
are scores of every feature. For each individual method, we represent its scores as the perfor-
mance values of corresponding features. The following presents steps of the GRA algorithm.
(1) Grey relational generating: This step is to translate the performance values of all alterna-

tives into a comparability sequence. It normalizes data sequence for the experimental results
within 0 and 1. If the larger target value of the original sequence is the better, then the normali-
zation is performed by:

xij ¼
yij � mini yij

max
i

yij � mini yij
ð1Þ

Alternatively, if the smaller target value is the better then the original sequence is normal-
ized by:

xij ¼
max

i
yij � yij

max
i

yij � mini yij
ð2Þ
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where xij is the generating value of the grey relational analysis, min
i

yij is the minimum value

of yij among all alternatives i = 1,2,…,m and max
i

yij is the maximum value of yij.

(2) Define the reference sequence: Once the grey relational generating procedure is com-
plete, all performance values are scaled into [0, 1]. An alternative will be the best choice if all of
its performance values are equal to or close to 1. Therefore, we define the reference sequence
X0 as (x01,x02,…,x0j,…,x0n) = (1,1,…,1,…,1) and then find the alternative whose comparability
sequence is the closest to the reference sequenceX0.
(3) Calculate the grey relational coefficient:This coefficient is used to determine how close

xij to x0j. The larger the coefficient is the closer between xij and x0j. This coefficient can be com-
puted by:

dðx0j; xijÞ ¼
Dmin þ aDmax

Dij þ aDmax
ð3Þ

where Δij = |x0j − xij|, Dmin ¼ min
i;j

Dij, Dmax ¼ max
i;j

Dij and α is the distinguishing coefficient,

α 2 [0, 1]. The distinguishing coefficientmay expand or compress the range of the grey rela-
tional coefficient. In this paper, we set α = 0.5 for all experiments.
(4) Calculate the grey relational grade betweenXi and X0 using:

�ðX0;XiÞ ¼
Pn

j¼1

wjdðx0j; xijÞ ð4Þ

wherewj is the weight of attribute j and
Pn

j¼1
wj ¼ 1. The above equation is applied to allm

alternatives i = 1,2,…,m. The grey relational grade represents the degree of similarity between
the comparability sequence and the reference sequence. Therefore, if a comparability sequence
for an alternative achieves the greatest grey relational grade with the reference sequence, that
alternative is the best choice.
For the purpose of feature selection for classification, we rank alternatives (features) based

on their corresponding grey relational grades. Features have the top grey relational grades are
selected to form a feature set.
The next subsections scrutinize background of individual feature selection filter methods

whose outcomes are used for the proposed GRA approach. These methods are accomplished
by ranking features via scoringmetrics. They are statistic tests based on two sets of data sam-
ples in the binary classification problem. The sample means are denoted as μ1 and μ2, whereas
σ1 and σ2 are the sample standard deviations, and n1 and n2 are the sample sizes [36].

Two-sample t-test. The two-sample t-test is a parametric hypothesis test that is applied to
compare whether the average difference between two independent sets of data samples is really
significant. The test statistic is calculated by:

t ¼
m1 � m2ffiffiffiffiffiffiffiffiffiffiffiffi

s2
1

n1
þ

s2
2

n2

q ð5Þ

In the application of t-test for gene selection, the test is performed on each gene by separat-
ing the expression levels based on the class variable. The absolute value of t is used to evaluate
the significance among genes. The higher the absolute value, the more important is the gene.

Entropy test. Relative entropy, also known as Kullback-Liebler distance or divergence is a
test assuming classes are normally distributed. The entropy score for each gene is computed
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using the following expression:

e ¼
1

2

s2
1

s2
2

þ
s2

2

s2
1

� 2

� �

þ
1

s2
1

þ
1

s2
2

� �

m1 � m2ð Þ
2

� �

ð6Þ

After the computation is complete for every gene, genes with the greatest entropy scores are
selected to serve as inputs to the classification techniques.

Bhattacharyyadistance. The Bhattacharyya distance can be calculated from the standard
deviation and mean of each class as follows:

BD ¼
1

4
ln

1

4

s2
1

s2
2

þ
s2

2

s2
1

þ 2

� �� �

þ
1

4

m1 � m2ð Þ
2

s2
1
þ s2

2

� �

ð7Þ

Wilcoxon method. TheWilcoxon rank sum test [28] is a test for equality of population
locations (medians). The null hypothesis is that two populations enclose identical distribution
functions whereas the alternative hypothesis states that two distributions differ regarding the
medians. The normality assumption regarding the differences between the two samples is not
required. That is why this test is used instead of the two-sample t-test in many applications
when the normality assumption is concerned. The steps of theWilcoxon test are summarized
below [29]:

1. Assemble all observations of the two populations and rank them in the ascending order.

2. TheWilcoxon statistic is calculated by the sum of all the ranks associated with the observa-
tions from the smaller group.

3. The hypothesis decision is made based on the p-value, which is found from theWilcoxon
rank sum distribution table.

In the applications of theWilcoxon test for gene selection, the absolute values of the stan-
dardizedWilcoxon statistics are utilized to rank genes.

Receiver operating characteristic curve. Denote the distribution functions of X in the two
populations as F1(x) and F2(x). The tail functions are specified respectively Ti(x) = 1 − Fi(x),
i = 1, 2. The ROC is given as follows:

ROCðtÞ ¼ T1 T � 1

2
tð Þ

� �
; t 2 ð0; 1Þ ð8Þ

and the area under the curve (AUC) is computed by:

AUC ¼
Z1

0

ROCðtÞdt ð9Þ

The larger the AUC, the less is the overlap of the classes. Genes with the greatest AUC there-
fore are chosen to form a gene set.

Gaussian process models

A nonparametric GP is a generalization of the Gaussian probability distribution based on a
Bayesian methodology. GP is defined as a collection of random variables, any finite number of
which have a joint Gaussian distribution. GP can be used for function approximation problems
including both classification and regression. In the regression problems, likelihood function is
often assumed to be Gaussian, which combines with a GP prior to yield a posterior GP over
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functions. This exact Bayesian inference manipulation is analytically tractable. In classification
problems, as the targets are discrete class labels, the Gaussian likelihood is therefore inappro-
priate. Therefore, an approximate inference is needed for classification problems. Severalmeth-
ods have been proposed that include Laplace’s method, Expectation Propagation (EP),
variational approximations and Markov chain Monte Carlo (MCMC) modelling, e.g. see [37,
38].
The GP method for binary classification in this study is implemented by customizing the

Gaussian processes for machine learning toolbox developed by Rasmussen and Nickisch [39].
Details of GP and its parameter settings are presented in the Supplementary Materials section.

Experimental RNA-seq datasets

Two benchmark real datasets are utilized in this study for comparisons. We name the first
dataset as “Mont-Pick” as it is obtained from a combination of two studies Montgomery et al.
[40] and Pickrell et al. [41]. This data set is available through the ReCount RNA-seq database
developed by Frazee et al. [42]. The data can be used to analyze differential expression between
two ethnicities: the Montgomery group sequencedUtah people with ancestry from northern
and western Europe (the HapMap CEU population) and the Pickrell group sequencedYoruba
residents in Ibadan, Nigeria (the HapMap YRI population). These two groups of ethnicities are
treated as two separate classes in this study. There are 60 samples from the CEU group and 69
samples from the YRI group. A total of 52,580 genes are processed by which genes with zero
counts in all samples are removed. The number of nonzero count genes of the Mont-Pick data-
set is 12,984.
The second data set “cervical cancer” is available from Gene Expression Omnibus [43]

under accession number GSE20592, which was utilized in [6, 44]. The data include 29 tumor
and 29 non-tumor cervical tissue samples measured on 714 microRNAs, which are small
RNAs with 18–30 nucleotides in length. The classification task is to distinguish between tumor
and non-tumor samples. Details of the experimental datasets are presented in Table 1.
In the Mont-Pick dataset, the CEU and YRI samples were sequenced by different groups

using potentially different facilities. Therefore, the batch effect would be a factor that affects the
performance comparisons of RNA-seq data analysis approaches. To deal with this issue, we
have included the design option that addresses the batch effect in the voom transformation
method, which is implemented in the limma package [45]. Figs 3 and 4 show pseudocolor heat
maps of the expression levels before and after voom transformation for the Mont-Pick and cer-
vical cancer datasets respectively. The x-axis represents genes or genomic features of interest
whilst the y-axis represents data samples of different groups (classes). Both datasets used in
this study have two classes of samples and the horizontal red line in every heat map divides the
samples into the two classes. In each heat map, the corresponding color bar representing
expression levels is plotted adjacent to the color map. The white color represents mid points,
warm colors represent high expression levels and cool colors indicate low expression or sparse
regions.
Before voom transform, the white region locates at the bottom of color bars in both datasets

(see Figs 3a and 4a). This shows that read counts follow a positively skewed distribution, which

Table 1. Summary of RNA-seq datasets.

Datasets Features Samples Classes

Mont-Pick [42] 12,984 genes 129 CEU/YRI

Cervical cancer [44] 714 microRNAs 58 tumor/non-tumor

doi:10.1371/journal.pone.0164766.t001
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would hinder the application of normal-basedmethods.Moreover, color maps of data before
voom are almost blue with a very small proportion of warm color spots, which represent
extreme values or outliers. The range of expression levels before voom transformation is
extremely large, from 0 to 91,991 in theMont-Pick dataset and from 0 to 476,438 in the cervical
cancer dataset. The large blue areas in color maps represent sparse data, especially in Fig 4a. In
contrast, the data after voom transformation is continuously distributed with the white region
locates near the middle of color bars. In addition, the data after voom transform are less sparse
than the original count reads as heat maps are more colorfully diversifiedwith the combination
of cool and warm colors. This demonstrates that the transformed data practically follow a nor-
mal distribution and can be processed by normal-based statistical methods.

Performance evaluation metrics

To highlight the advantages of GRA-based feature selectionmethod, we implement a number
of competing methods for comparisons including ReliefF [46], iterative search margin based
algorithm (Simba) [47], signal-to-noise ratio (SNR) [48], and information gain (IG) [49].
The followingmethods are also applied for comparisons with the designedGP classifier: k-

nearest neighbors (kNN) [50], multilayer perceptron (MLP) [51], support vector machine

Fig 3. Heat maps showing expression levels of the Mont-Pick dataset (a) before and (b) after voom transform.

doi:10.1371/journal.pone.0164766.g003

Fig 4. Heat maps of the expression levels in the cervical cancer dataset (a) before and (b) after voom transform.

doi:10.1371/journal.pone.0164766.g004
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(SVM) [52] and ensemble learning AdaBoost [53]. Specifically, the number of nearest neigh-
bors in kNN is equal to 5 and SVM kernel function is the Gaussian radial basis functionwith
the scaling factor of 1. MLP is constructedwith two hidden layers and each layer comprises
five nodes. AdaBoost uses a collection of individual learners that are 100 decision trees.
Four different performancemetrics including accuracy rate, F1 score statistics (F-measure),

AUC and mutual information (MI) are used to evaluate performance of classificationmethods.
F-measure considers both the “Precision” (denoted as Pr) and “Recall” (Re) of the classification
procedure to compute the score expressed by:

F � measure ¼ 2�
Pr � Re
Pr þ Re

ð10Þ

The MI between estimated and true label is calculated by:

MIðbC;CÞ ¼
X1

ĉ¼0

X1

c¼0
pðbc; cÞ log

pðbc; cÞ
pðbcÞpðcÞ

ð11Þ

where pðbc; cÞ is the joint probability distribution function of estimated and true class labels bC
and C, and pðbcÞ and p(c) are the marginal probability distribution functions of bC and C
respectively.
The five-fold cross validation method is employed for experiments. Data samples are

divided at random into five distinct subsets and four subsets are used for training classifiers
whilst the last subset is for testing. For unbiased comparisons, each classifier is repeated 30
times and the average performance is reported along with the standard error.
To draw convincing conclusions in evaluating performance of feature selectionmethods

and classifiers, we implement the Mann-Whitney U-test [54] for comparing two sets of results.
The Mann-Whitney U-test is a nonparametric test of the null hypothesis that two populations
have distributions with equal medians, against the alternative hypothesis that they do not. As
the results over 30 trials may not be normally distributed, the use of Mann-Whitney U-test is
more appropriate than that of normal-basedmethods [55].
Note that the test is performed to compare between the set of 30 outcomes generated by

GRAmethod and that obtained by each of the competing feature selectionmethods using the
same classifier. Similar procedure is performed to compare the GP classifier with its competing
methods, i.e. kNN,MLP, SVM and AdaBoost using the same feature selectionmethod.

Results and Discussions

After voom transformation, GRA-based gene selection is employed for RNA-seq data to select
genes that are differentially expressed for classification. GRA-based method performs as a filter
method that ranks genes by combining outcomes of individual methods t-test, entropy, Bhatta-
charyya distance,Wilcoxon, and ROC. It therefore obtains the quintessence of these individual
methods and provides stable and most discriminant subsets of genes. Fig 5 shows 3D presenta-
tions of feature subsets obtained by GRA-based method using the Mont-Pick and cervical can-
cer datasets. Obviously, GRAmethod is able to provide a clear separation between samples of
two classes in both datasets. This facilitates the great classification performance of classifiers
that use GRA-based feature subsets.

Comparisons of GRA-based method with ReliefF, Simba, SNR, and IG

Feature subsets of top ten genes selected by GRA-based method serve as inputs into classifiers
for demonstration although different number of genes can be used. For comparison, the same
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number of genes is selected by other methods in order to form feature subsets. Tables 2 and 3
present classification results of different feature selectionmethods for theMont-Pick and cervi-
cal cancer datasets respectively. The classification is performed by the GP method and results
for the accuracy, F-measure, AUC and MI metrics are reported in percentage.
Each cell in these tables represents the mean and standard error of 30 classification out-

comes. The value in brackets shows the p-value of the statistical Mann-Whitney U-test between
each of the competingmethods and the GRAmethod. For example, the value of 0.003 in the
cell Accuracy-ReliefF in Table 2 is the p-value of the Mann-Whitney U-test between two sets of
accuracy outcomes: one set is generated by using ReliefF and the other is obtained by GRA.
The p-value smaller than 0.05 (the 5% significance level) indicates that the difference between
two sets are statistically significant. In other words, the GRAmethod is significantly better than
the ReliefFmethod. Values in italic in Tables 2 and 3 are p-values that are greater than 0.05.

Fig 5. Distribution of data samples of the (a) Mont-Pick dataset and (b) cervical cancer dataset.

doi:10.1371/journal.pone.0164766.g005

Table 2. Results of feature selection methods using the Mont-Pick dataset (batch effect is addressed due to potentially different facilities).

Metrics ReliefF Simba SNR IG GRA

Accuracy 93.78±0.80 (0.003) 84.81±1.26 (0.000) 96.05±0.49 (0.154) 90.80±1.22 (0.000) 96.77±0.71

F-measure 95.44±0.82 (0.022) 86.24±1.27 (0.000) 94.87±0.66 (0.003) 91.32±1.54 (0.001) 97.64±0.48

AUC 95.16±0.69 (0.005) 86.76±1.13 (0.000) 95.39±0.65 (0.031) 90.92±1.21 (0.000) 97.43±0.51

MI 75.89±3.15 (0.012) 42.99±3.60 (0.000) 78.88±2.46 (0.018) 72.68±4.73 (0.008) 88.56±2.71

doi:10.1371/journal.pone.0164766.t002
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In the Mont-Pick dataset, GRA shows a great performance compared with its competing
methods. Specifically, GRA’s accuracy is of 96.77%, which is higher than ReliefF, Simba, SNR
and IG of 93.78%, 84.81%, 96.05% and 90.80% respectively. Similar finding is seen in the cervi-
cal cancer dataset where GRAmethod outperforms other feature selectionmethods with
regard to the accuracymetric. GRA obtains 93.43% of accuracywhilst those of ReliefF, Simba,
SNR and IG are 88.33%, 87.35%, 88.23% and 90.05% respectively. Via other performancemet-
rics, i.e. F-measure, AUC and MI, GRA feature selectionmethod also demonstrates a consider-
able superiority to its competingmethods. For example, in the Mont-Pick dataset, MI of GRA
is of 88.56%, which is much greater than that of ReliefF at 75.89%, Simba at 42.99%, SNR at
78.88% and IG at 72.68%. Likewise, in the cervical cancer dataset, GRA’s MI is of 73.96%,
which is the highest performance among the examined feature selectionmethods.
The GRAmethod obtains not only greater performance but also more stable results com-

pared with its competingmethods. This is demonstrated via standard errors of the results. In
the Mont-Pick dataset, GRA results’ standard errors are mostly smaller than those of ReliefF,
Simba, SNR and IG. In the cervical cancer dataset, GRA also obtains smaller standard errors
than those of its competingmethods except only one case MI-ReliefF.
Results of the Mann-Whitney U-test for evaluating feature selectionmethods demonstrate

the statistical significance of GRA against its competing methods. In the Mont-Pick dataset, p-
values of the Mann-Whitney U-test are smaller than 0.05 except only one case Accuracy-SNR.
Therefore, the Mann-Whitney U-test rejects the null hypothesis that results of two methods
(GRA and each of the competing feature selectionmethods) come from the same distribution
at the 5% significance level. This means that GRA is significantly better than its competing
methods in terms of all performancemetrics. In the cervical cancer dataset, most p-values of
the Mann-Whitney U-test are smaller than 0.05, except the comparisons of GRA with the IG
method (for all performancemetrics) and the SNRmethod (for MI metric).

Comparisons of GP classifier with kNN, MLP, SVM, and AdaBoost

We use the GRA-based feature selectionmethod to obtain subsets of top ten features that are
fed into every classifier for comparisons. Results of all classifiers are presented in Tables 4 and
5 for the Mont-Pick and cervical cancer datasets respectively.
Clearly, the GP classifier achieves greater performance compared with its competing meth-

ods in both datasets. The difference betweenGP with kNN,MLP, SVM and AdaBoost in the
cervical cancer dataset is more considerable than that in the Mont-Pick dataset. The gap

Table 3. Results of feature selection methods using the cervical cancer dataset.

Metrics ReliefF Simba SNR IG GRA

Accuracy 88.33±1.54 (0.013) 87.35±2.02 (0.029) 88.23±1.65 (0.031) 90.05±1.80 (0.199) 93.43±1.28

F-measure 87.92±1.67 (0.023) 84.95±2.74 (0.042) 87.67±1.70 (0.020) 90.77±1.58 (0.280) 92.91±1.57

AUC 88.23±1.47 (0.006) 87.61±1.98 (0.022) 89.21±1.58 (0.043) 91.89±1.38 (0.316) 94.07±1.22

MI 58.48±4.60 (0.024) 57.07±6.08 (0.044) 57.83±4.81 (0.085) 66.16±5.10 (0.361) 73.96±4.85

doi:10.1371/journal.pone.0164766.t003

Table 4. Comparisons of classifiers using the Mont-Pick dataset (batch effect is addressed due to potentially different facilities).

Metrics kNN MLP SVM AdaBoost GP

Accuracy 95.16±0.57 (0.019) 95.15±0.70 (0.038) 95.01±0.89 (0.133) 94.50±0.72 (0.026) 96.77±0.71

F-measure 96.09±0.52 (0.019) 94.19±0.87 (0.001) 93.97±0.94 (0.002) 94.99±0.66 (0.009) 97.64±0.48

AUC 96.78±0.52 (0.473) 94.93±0.55 (0.000) 94.50±0.96 (0.012) 95.30±0.64 (0.014) 97.43±0.51

MI 76.46±2.56 (0.007) 80.06±2.53 (0.018) 81.60±3.07 (0.212) 76.62±3.24 (0.028) 88.56±2.71

doi:10.1371/journal.pone.0164766.t004
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betweenGP and its competing methods is more than 5% in the cervical cancer dataset. More
considerably, GP’s MI is greater than those of kNN,MLP, SVM and AdaBoost by more than
13%. MI of kNN,MLP, SVM and AdaBoost are respectively of 57.49%, 51.53%, 60.29% and
57.47%, which are much lower than 73.96% of the GP classifier.
With regard to the Mann-Whitney U-test results, p-values are almost smaller than 0.05,

except three cases, AUC-kNN, Accuracy-SVMand MI-SVM, in the Mont-Pick dataset and
two cases, AUC-SVM and MI-SVM, in the cervical cancer dataset.

Comparisons of the proposed approach with sPLDA classifiers

In this subsection,we compare our approach, GP classifier using GRA-based feature subsets,
with sparse Poisson linear discriminant analysis (sPLDA) classifiers, which were proposed by
Witten [6]. The classification rule assigns the test observation x� to the class for which the fol-
lowing expression is largest:

logPð dy� ¼ kjx�Þ ¼ logbf kðx
�Þ þ logbpk þ c ¼

Xp

j¼1

X�j logbdkj � bs
�
Xp

j¼1

bg j
bdkj þ logbpk þ c0 ð12Þ

where c and c0 are constants that are not dependent on the class label, whilst bpk is the estimate
of the prior probability that an observation belongs to class k. We set bp1 ¼ ::: ¼ bpK ¼ 1=K,
corresponding to the prior that all classes are equally likely. Alternatively, bf k is an estimate of
the density of an observation in class k. A Poisson model for RNA sequencing data states that
X�j jy

� ¼ k �Poissonðs�gidkjÞ where s� = s1, …, sn are the size factors for the training data, which
can be estimated using the total count, median ratio and quantile as follows:
Total count:bs � ¼

Pp
j¼1
X�j =X:: where X.. is the total number of counts of the training data.

Median ratio:bs � ¼ m�=
Pn

i¼1
mi wherem� ¼ medianj

X�j
ðPn

i¼1
XijÞ

1=n

( )

and

mi ¼ medianj
Xij

ðPn
i0¼1

Xi0jÞ
1=n

( )

.

Quantile:bs � ¼ q�=
Pn

i¼1
qi where q� is the 75th percentile of counts for the test observation,

and qi is the 75th percentile of counts for the ith training observation.
The estimate of gi is given by bg j ¼ X:j where X:j ¼

Pn
i¼1

Xij and estimate of dkj for sparse
features is provided by:

bdkj ¼

a
b
�
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Table 5. Comparisons of classifiers using the cervical cancer dataset.

Metrics kNN MLP SVM AdaBoost GP

Accuracy 88.11±1.53 (0.012) 85.33±2.00 (0.002) 87.42±2.21 (0.045) 88.38±1.32 (0.017) 93.43±1.28

F-measure 87.63±1.67 (0.016) 86.18±1.93 (0.011) 83.29±3.40 (0.019) 87.60±1.34 (0.005) 92.91±1.57

AUC 88.67±1.40 (0.007) 87.22±1.77 (0.006) 88.84±2.19 (0.065) 88.90±1.34 (0.010) 94.07±1.22

MI 57.49±4.53 (0.028) 51.53±5.24 (0.003) 60.29±5.43 (0.126) 57.47±4.08 (0.030) 73.96±4.85

doi:10.1371/journal.pone.0164766.t005
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where a ¼ XCkj
þ b, b ¼

P
i2Ck
bsibg j þ b, and ρ is a nonnegative tuning parameter that is chosen

by cross-validation. The number of features involved in classification is different when ρ is dif-
ferent. For unbiased comparisons, the number of features selected by our approach GRA-GP is
the same with those determined by sPLDA. There are three approaches of sPLDA based on
three correspondingmethods of estimating the size factors for the training data, i.e. total count,
median ratio and quantile. The comparisons are graphically depicted in Figs 6 and 7 by using
the Mont-Pick and cervical cancer datasets respectively.
Results presented in these figures are obtained using the five-fold cross validation for each

of the competingmethods.We limit the number of features to approximately 300 and the per-
formance is measured by accuracy in percentage. For each of the specifiednumber of features,
each classifier is repeated 30 times and the average result is reported. It is clear that GRA-GP
method significantly dominates all three methods of sPLDA in both datasets based on different

Fig 6. Comparisons of GRA-GP method with sPLDA classifiers using the Mont-Pick dataset.

doi:10.1371/journal.pone.0164766.g006

Fig 7. Comparisons of GRA-GP method with sPLDA classifiers using the cervical cancer dataset.

doi:10.1371/journal.pone.0164766.g007
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number of features. In the Mont-Pick dataset, the gaps betweenGRA-GP method with its com-
petingmethods are very large when the number of features are smaller than 100. GRA-GP is
still constantly superior to sPLDA classifiers when the number of feature increases. In the cer-
vical cancer dataset, there are small gaps betweenGRA-GP and its competingmethods when
the number of features are smaller than 25. These gaps are larger when the number of features
increases. sPLDA median ratio relatively ranks as the second best method after the GRA-GP.
This highlights the effectiveness of our approach against the sPLDA classifiers.

Conclusions and Future Work

This paper proposes a new approach to RNA-seq count data classification using GRA-based fea-
ture selectionmethod and the nonparametric GPmodels. RNA-seq data are assembled in integer
read counts that present extreme values, high skewness, and heteroscedasticity. The voom trans-
formation applied to RNA-seq data has turned them into microarray-like data by which a range
of normal-based statistical methods can be utilized.On one hand, GRA systematically combines
outcomes of individualmethods, i.e. two-sample t-test, entropy test, Bhattacharyya distance,
Wilcoxon test and ROC, and provides stable and robust feature subsets. By incorporating advan-
tages and quintessence of the individualmethods, GRA has shown a clear superiority to its com-
petingmethods that include ReliefF, Simba, signal to noise ratio, and information gain.
On the other hand, the nonparametric GP models based on the Bayesian inference method-

ology have addressed effectively the complexity of RNA-seq data. GP has demonstrated a con-
siderable dominance in RNA-seq data classification against its competing methods including
kNN,MLP, SVM and ensemble learning AdaBoost. Through analytic formulae, GP models are
computationally tractable and easier to handle and interpret than their conventional counter-
parts such as neural networks. Via the characterization of mean and covariance functions, GP
model fitting requires only the first- and second-ordermoments of the process to be specified.
GP therefore has the generalization capability that has increased the classification performance.
More considerably, the proposed GRA-GP approach has produced greater classification per-
formance on different numbers of features against the sPLDA classifiers, which were proposed
particularly for read counts modelling.
The use of benchmark real datasets along with the employment of various evaluation met-

rics, i.e. accuracy rate, F-measure, AUC and MI, ensure the findings of this research are well-
justified. Application of the Mann-Whitney U-test has confirmed the statistical significance of
the comparisons. This implies that the proposed approach can be implemented for many appli-
cations including finding potential markers of diseases, virus and bacteria type classification,
and cancer prediction. Further work would be devoted to exploring different feature selection
methods that may provide great performance specifically for count data classification.With
the effectiveness in classifying RNA-seq data, GP models have demonstrated as a promising
Bayesian approach in analysis of genomic data. Investigating Bayesian GP models to deal with
challenges of other types of biological data is worth another future study.
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