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Abstract

High-elevation ecosystems are traditionally viewed as environments in which predominantly autogamous breeding systems
should be selected because of the limited pollinator availability. Chaetanthera renifolia (Asteraceae) is an endemic
monocarpic triennial herb restricted to a narrow altitudinal range within the high Andes of central Chile (3300–3500 m a.s.l.),
just below the vegetation limit. This species displays one of the larger capitulum within the genus. Under the reproductive
assurance hypothesis, and considering its short longevity (monocarpic triennial), an autogamous breeding system and low
levels of pollen limitation would be predicted for C. renifolia. In contrast, considering its large floral size, a xenogamous
breeding system, and significant levels of pollen limitation could be expected. In addition, the increased pollination
probability hypothesis predicts prolonged stigma longevity for high alpine plants. We tested these alternative predictions
by performing experimental crossings in the field to establish the breeding system and to measure the magnitude of pollen
limitation in two populations of C. renifolia. In addition, we measured the stigma longevity in unpollinated and open
pollinated capitula, and pollinator visitation rates in the field. We found low levels of self-compatibility and significant levels
of pollen limitation in C. renifolia. Pollinator visitation rates were moderate (0.047–0.079 visits per capitulum per 30 min).
Although pollinator visitation rate significantly differed between populations, they were not translated into differences in
achene output. Finally, C. renifolia stigma longevity of unpollinated plants was extremely long and significantly higher than
that of open pollinated plants (26.362.8 days vs. 10.162.2, respectively), which gives support to the increased pollination
probability hypothesis for high-elevation flowering plants. Our results add to a growing number of studies that show that
xenogamous breeding systems and mechanisms to increase pollination opportunities can be selected in high-elevation
ecosystems.
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Introduction

High-elevation environments are characterized by low temper-

atures, strong winds, and overcast conditions, which make them

unsuitable for insect pollinators [1]. In these ecosystems, several

community studies have documented that the levels of diversity,

availability and activity of insect pollinators suffer progressive

reductions with elevation above the timberline as a consequence of

harsh climatic conditions that limit insect flight [2–9].

The reproductive assurance hypothesis posits that, for successful

sexual reproduction to occur, autogamous reproduction and self-

fertilization should evolve where pollinators are scarce [10–12].

Thus, transitions toward autogamous self-fertilization have been

proposed as an evolutionary solution for alpine and arctic plants

that deal with low pollinator availability. While some studies have

found increases in self-fertilization with elevation [13,14], there is

also evidence of increased outcrossing [15] and decreased selfing

rates with elevation [16]. In addition, the scarce pollinator service

at high elevation has been argued as a cause to explain the high

frequency of asexual reproduction (clonality and apomixis) in

alpine species [17,18]. Self-fertilization is also associated with adult

longevity. For instance, self-fertilization is far more common in

annuals than in perennials [19,20].

In contrast to the reproductive assurance hypothesis, the

increased pollination probability hypothesis predicts that increases

in flower showiness [17,21,22] and flower longevity with elevation

[23–29] would compensate for the scarcity of pollinators at higher

altitudes, challenging the traditional assumption that biotic

pollination is limited in high-elevation environments. In general,

pollen limitation (the reduction in reproductive success because of

a shortage in pollen supply) in obligate out-crossing species tends

to be higher than in self-compatible species [30]. Due to the low

pollinator abundance, pollen limitation is expected to be high in

high-elevation environments [e.g. 31, 32]. A recent meta-analysis

by Garcı́a-Camacho & Totland (2009) [33] reported that although

alpine plants show significant pollen limitation, there is no

difference in pollen limitation between alpine and lowland species.

Chaetanthera renifolia (Asteraceae) is an endemic species that has

been historically restricted to a narrow elevation range (3200–

3400 m asl) within the high Andes of the province of Santiago, in
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central Chile [34]. Chaetanthera renifolia has one of the largest

capitula among high-elevation Andean species within the genus

(Table 1) [35] and is also characterized by its short adult longevity,

being a monocarpic triennial (Torres-Dı́az, unpublished data).

The aims of the present study were to determine the breeding

system, the magnitude of pollen limitation, pollinator visitation

rates, and the stigma longevity in C. renifolia. Considering the

reproductive assurance hypothesis and its short adult longevity, a

predominantly autogamous breeding system with low levels of

pollen limitation would be expected for C. renifolia. In contrast,

under the increased pollination probability hypothesis, the large

C. renifolia capitulum size within its genus (Table 1) could be

interpreted as an adaptation to deal with low pollinator availability

and hence an outcrossing breeding system, with the high pollen

limitation and high stigma longevity that could be expected for this

species.

Methods

The species
Chaetanthera renifolia (J. Rémy) Cabrera (Asteraceae: Mutisieae) is

a small (3–4 cm tall) perennial (triennial) prostrate rosette herb,

endemic to the high Andes of the Santiago province, Chile [34].

This species is branchless and is characterized by dark green

renifom leaves. C. renifolia has sessile floral capitula (ca. 36 mm

diameter) formed by white sterile ray flowers and bisexual yellow

tubular disk flowers. C. renifolia normally displays only one

capitulum per plant; individuals with more than one capitulum

can also be found, yet in very low frequencies (,0.1%, C. Torres-

Dı́az, unpublished data). As many other Asteraceae species, C.

renifolia is a protandrous herb (i.e., anthers release pollen before

stigmas are receptive) (C. Torres- Dı́az, personal observation).

This species shows broad variation in total capitulum size and disk

diameter (Table 1). To date, individuals from only five populations

of C. renifolia have been collected and stored in herbaria [36]. Due

of the inherent difficulty of vegetation samplings in the high Andes

(lack of roads), the conservation status of this species is yet to be

determined. C. renifolia is at present regarded as a rare/

insufficiently known species.

Study sites
The present field study was conducted in two of the five

currently known populations of C. renifolia, La Parva and Piedra

Numerada, which are located within the subnival vegetation belt

sensu Arroyo et al. (1981) [37], over 1100 m above the Kageneckia

angustifolia (Rosaceae) tree-line at 2200 m asl. Mean annual

temperature in the study area is 1.8–2.4uC [38]. The climate is

alpine with influence from the Mediterranean-type climate

existing in lowlands [39]. Mean annual precipitation, which

mostly falls as snow during winter months, is 400–900 mm [40].

La Parva population (LP; 3360 m asl) is located on a NW slope

(33u199 06.20 S; 70u169 50.20 W). Piedra Numerada population

(PN; 3450 m asl) is located on a NE slope (33u17949.20 S;

70u13918.50 W). Linear geographic distance between the popula-

tions is ca. 6 km. Plant density did not differ between sites (mean

number of plants per m2 6 1 SE = 0.638 6 0.061 at LP and 0.599

6 0.077 at PN; One-way ANOVA, F1,100 = 0.158, P = 0.691). The

vegetation corresponds to the subnival Andean vegetation belt,

which is dominated by sub-shrubs of the Asteraceae family (e.g.,

Nassauvia and Senecio spp.), cushion plants (e.g., Laretia acaulis),

grasses (e.g., Stipa and Hordeum comosum) and rosette-forming small

perennial herbs (e.g., Viola spp., Pozoa spp., Adesmia spp. and

Tropaeolum) [38].

Breeding system
To evaluate the breeding system of C. renifolia, a series of field

experiments was carried out between January and April 2009

at LP and PN populations. We applied two pollination treat-

ments (spontaneous self-pollination vs. hand cross-pollination) to

evaluate the degree of dependence of C. renifolia on pollinators for

successful achene production. Because of the small size (6–9 mm

long) and the high number of florets per capitulum (50–250), it

was not possible to emasculate florets to assess apomictic achene

Table 1. Capitulum and disc size (mean 6 SD) of
Chaetanthera renifolia and other coexisting congeners at the
same Andean basin in central Chile.

Species
Capitulum
size (mm) Disc size (mm)

Chaetanthera renifolia

La Parva (NW, 3340) n = 50 46.365.14 16.864.03

Piedra Numerada (NE, 3460) n = 50 44.065.12 15.362.45

Chaetanthera pentacaenoides

La Parva (W, 3300) n = 50 8.560.70 * 2.560.32 *

Tres puntas (Flat, 3600) n = 50 7.960.63 * 2.160.31 *

Chaetanthera apiculata

La Parva (N, 3160) n = 50 18.961.76 * 5.160.57 *

La Parva (W, 3100) n = 50 20.362.30 * 5.760.78 *

Chaetanthera lycopodioides

La Parva (W, 3250) n = 50 14.361.78 * 3.260.57 *

La Terraza (E, 3300) n = 50 15.361.47 * 3.260.45 *

The slope aspect, elevation (m asl) and number of sampled capitula are
indicated for each population.
*Indicates significant differences (P,0.001, t-test) for comparisons of C. renifolia
floral traits vs. each of the species.
doi:10.1371/journal.pone.0019497.t001

Table 2. Effects of pollination treatment on the reproduction
of two populations of Chaetanthera renifolia.

Source of variation DF MS F P-value

Percentage of achene set

Plant size (covariate) 1 0.01 0.58 0.499

Treatment (T) 1 12.47 385.41 ,0.001

Site (S) 1 0.05 1.46 0.230

T x S 1 0.01 0.09 0.754

Error 67 0.04

Achene weight

Plant size (covariate) 1 1.43 0.39 0.529

Treatment (T) 1 2.61 0.73 0.396

Site (S) 1 3.47 0.97 0.328

T x S 1 1.59 0.45 0.507

Error 67 3.57

ANCOVA summary of effects of pollination treatment (autonomous self-
pollination vs. hand cross-pollination) and site (La Parva and Piedra Numerada)
on the percentage of achene set and achene weight of Chaetanthera renifolia
plants. Plant size (diameter) was entered as a covariate. Significant effects are
indicated in bold.
doi:10.1371/journal.pone.0019497.t002

Extended Flower Longevity in a High Andean Plant
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production. Achene production through geitonogamous self-

fertilization among florets from different capitula of the same

plant seems to be uncommon because of the very low abundance

(,0.1%) of plants with more than one capitulum per plant (C.

Torres-Dı́az, field observation). Florets in Asteraceae usually

bloom sequentially within capitula from outermost to innermost.

Since each floret is protandous some overlapping between florets

in male and female phases within capitulum can occurs. Thus,

some geitonogamous self-pollination is possible when female-

phase florets (from outermost) overlap with male-phase florets

(from innermost). The spontaneous self-pollination treatment

consisted of 18 plants excluded from insect pollinators by fine

mesh nylon bags (1 mm mesh) just before anthesis. The hand

cross-pollination treatment consisted of 18 focal plants that were

manually crossed with fresh pollen from 5–7 individuals in male

phase. Pollen was carefully brushed on the receptive stigmas of

each of the 18 female-phase capitula. To avoid the possibility of

reductions in fitness due to bi-parental inbreeding, pollen donors

were located at least 10 meters apart from focal females. After

withering, all sampled capitula (all plants displayed one

capitulum) were covered with cloth bags to prevent losses of

achenes and florets (from late February to March 2009). All bags

were retrieved in March-April, allowing enough time for achene

development. Each plant was analyzed for achene output

(number of achenes) and achene quality (weight of achenes).

We expressed achene output as percentage of achene set, which

was measured as the percentage of ovaries of open florets that set

achenes (1006 (number of achenes/number of florets)). Given the

difficulty of emasculating florets in Asteraceae, some degree of

self-pollination could occur in hand pollination treatment.

Therefore achene output of cross-pollination treatment was

corrected subtracting the mean value of achene output of the

spontaneous self-pollination treatment. In addition, we individ-

ually weighed ten dry achenes per capitulum to the nearest

milligram using a digital balance. Finally, we calculated an

autofertility index (AI) by dividing the achene set of bagged

capitula by the achene set of hand-outcrossed capitula [12].

Pollen limitation
To evaluate whether the amount of pollen reaching the stigmas

constrains achene production of C. renifolia, we performed

supplemental hand-pollination experiments. Along the flowering

peak (between late January and early February), a total of 60

Figure 1. Effects of pollination treatments (spontaneous self-pollination vs. hand cross-pollination) on reproduction of
Chaetanthera renifolia. Mean percentage of achene set and achene weight at La Parva (A and C) and Piedra Numerada (C and D). Open bars:
autogamous self-pollinated (n = 18); Grey bars: hand cross-pollination (n = 18). Bars are means 6 SE. *** Indicates significant differences (P,0.001).
doi:10.1371/journal.pone.0019497.g001

Table 3. Effect of supplemental hand-pollination on the
reproduction of two populations of Chaetanthera renifolia.

Source of variation DF MS F P-value

Percentage of achene set

Plant size (covariate) 1 0.31 4.47 00.036

Treatment (T) 1 5.18 74.58 ,0.001

Site (S) 1 0.11 1.57 0.212

T x S 1 0.01 0.08 0.771

Error 113 0.07

Achene weight

Plant size (covariate) 1 14.21 18.12 ,0.001

Treatment (T) 1 75.89 96,77 ,0.001

Site (S) 1 0.44 0.56 0.455

T x S 1 2.23 2.85 0.094

Error 113 0.78

ANCOVA summary of the effects of pollination treatment (open-pollinated vs.
supplemental hand pollination) and site (La Parva and Piedra Numerada) on the
percentage of achene set and achene weight of Chaetanthera renifolia plants.
Plant size (diameter) was entered as a covariate. Significant effects are indicated
in bold.
doi:10.1371/journal.pone.0019497.t003

Extended Flower Longevity in a High Andean Plant
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Figure 2. Effects of pollination treatments (control vs. supplemental hand-pollination) on reproduction of Chaetanthera renifolia.
Mean percentage of achene set (A and B) and achene weight (mg) (C and D) at La Parva and Piedra Numerada. Open bars: control (n = 30); Grey bars:
hand supplementary pollinated (n = 30). Bars are means 6 SE. *** Indicates significant differences (P,0.001).
doi:10.1371/journal.pone.0019497.g002

Table 4. List and frequencies of insect pollinator taxa observed on Chaetanthera renifolia capitula.

Order/Family Species La Parva Piedra Numerada

N % N %

Lepidoptera

Nymphalidae Faunula leucoglene 34 72.3

Yramea lathonioides 2 3.4

Diptera

Bombyliidae Villa sp. 2 3.4 2 4.3

Villa gayi 2 3.4

Villa semifuscata 2 3.4

Sericosoma irwini 4 6.8

Lyophlaeba sp. 2 3.4

Triploechus bellus 1 1.7

Tachinidae Tachinidae sp. 11 18.6 11 23.4

Syrphidae Scaeva melanostoma 2 3.4

Hymenoptera

Megachilidae Megachile sp. 2 3.4

Andrenidae Lipanthus sp. 5 8.5

Coleoptera

Curculionidae Arthrobrachus sp. 24 40.7

Total 59 100% 47 100%

Total number of taxa 12 3

Number of individuals of each taxon observed (N), and percentage (%) of the total number of visits that each pollinator taxon made to Chaetanthera renifolia capitula
from La Parva and Piedra Numerada.
doi:10.1371/journal.pone.0019497.t004

Extended Flower Longevity in a High Andean Plant

PLoS ONE | www.plosone.org 4 May 2011 | Volume 6 | Issue 5 | e19497



plants were sampled at each of the two populations (LP and PN).

Flowering plants were randomly assigned either to supplemental

hand cross-pollination (n = 30) or to control (n = 30) treatments.

The controls consisted of untreated open-pollinated plants.

Experimental plants were located at least 4 m apart from each

other. Unfortunately, domestic livestock destroyed two plants from

the supplemental hand-pollination treatment in PN population.

All experiments were done in C. renifolia plants displaying one

capitulum only. Supplemental hand-pollination was performed

twice (in two different days) once floral capitula were at the female

stage. Pollen addition was done by collecting pollen grains from 8–

10 plants in male phase and carefully brushing them on receptive

stigmas. Because crossing with relatives may reduce female

reproductive success, pollen was collected from plants separated

by at least 5 m. After withering, all capitula were carefully bagged

with cloth sacs to retain achenes and florets. As in the breeding

system experiments, we expressed achene output as the percentage

of achene set. In addition, the mean achene weight (g) of individual

achenes was calculated for each plant. To estimate mean achene

weight a total of ten dry achenes were weighed to the nearest

milligram using a digital balance.

Pollinator visitation rates, flower visitors and female
reproductive success

We estimated pollinator activity in C. renifolia at the peak of

the flowering season (late January) [41]. Three independent

observers simultaneously monitored insect visitation at three

randomly chosen points within populations during periods of

30 min over a total of three sunny days per site. Data from all

observers were pooled to obtain a single estimate of capitula

visitation rate per each 30 min period, and six observation

periods were obtained each day. Thus, the total observation time

per plant per site was 540 min. Observations were made on all

plants inside 363 m patches from 11:30 to 16:00. For each

30 min period the total number of open capitula within patches

and air temperature (20 cm above ground level) were recorded.

A flower visitor was counted as a pollinator only if it touched any

disk floret. Pollinators were identified in the field and some were

captured to ensure their identification at the species level and to

verify the presence of pollen grains in their bodies. In order to

evaluate whether potential differences in pollinator visitation

rates between populations translate into differences in female

reproductive success, achene output was estimated as described

above.

Stigma longevity
We quantified the stigma longevity of: (1) open-pollinated

capitula and (2) bagged capitula (pollinator exclusion). A total of

36 capitula per population were randomly assigned to the two

treatments (n = 18). Previous field observations (C. Torres-Dı́az)

indicate that C. renifolia is a protandrous species, with styles

elongating upwards 1–2 days after the end of pollen dehiscence.

The four-lobed shape of the stigma indicates the onset of stigma

receptivity. Because successful fertilization of female florets rapidly

induces style retraction, we consider that a floret remains receptive

if the style persists elongated (upward) and stigma lobes remain

opened. This operational criterion was used to estimate the

duration of stigma receptivity (number of days). The measure of

stigma longevity considers the longevity of all stigmas in a single

capitulum. In order to evaluate whether the stigmas of capitula

excluded from pollinators remain functional afterwards, i.e.,

maintaining their potential to set achenes, we performed hand-

crossings in January of 2010. A total of 14 plants were bagged at

the end of the male phase (80–90% of the florets) and were hand

cross-pollinated 12 days after stigmas emerged from florets. After

hand-pollination, experimental capitula were bagged again until

plants withered. Finally, floral capitula were bagged as in breeding

system experiments to retain florets and achenes.

Statistical analyses
To test whether pollination treatment (spontaneous self-

pollination vs. hand cross-pollination) and population (LP and

Figure 3. Pollinator visitation rates and achene output of two
populations of Chaetanthera renifolia. (A) Mean pollinator visitation
rate at La Parva (light-grey bars, n = 18) and Piedra Numerada (dark-grey
bars, n = 17). (B) Mean percentage of achene set at La Parva (n = 40) and
Piedra Numerada (n = 41). Bars are means 6 SE. *** Indicates significant
differences (P,0.01).
doi:10.1371/journal.pone.0019497.g003

Table 5. Effects of site on pollinator visitation rates and
achene output of Chaetanthera renifolia capitula.

Source of variation DF MS F P-value

Pollinator visitation rate

Temperature (covariate) 1 0.00 0.66 0.423

Site 1 0.01 7.83 0.008

Error 32 0.01

Percentage of achene set

Plant size (covariate) 1 774.29 2.07 0.154

Site 1 218.05 0.58 0.448

Error 77 374.92

ANCOVA summary of the effects of site (La Parva and Piedra Numerada) on
pollinator visitation rate (visits per flower capitulum/30 min) to Chaetanthera
renifolia capitula and achene output. Air temperature (20 cm above soil surface)
was entered as a covariate. Significant effects are indicated in bold.
doi:10.1371/journal.pone.0019497.t005

Extended Flower Longevity in a High Andean Plant
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PN) affected achene production and achene quality of C. renifolia

we performed factorial ANCOVA’s. Plant diameter (mm) was

entered as a covariate to remove potential effects of differences in

plant size between pollination treatments and sites. Differences in

achene output and quality in control and supplemental pollination

plants among populations were analyzed using factorial ANCO-

VA’s and plant size (mm) as covariate. The percentage of achene

set data were arcsine transformed to achieve a normal distribution

both in breeding system and pollen limitation experiments.

Comparison of pollinator visitation rates between populations

was done using ANCOVA. Mean air temperature (20 cm above

ground level) over each observation period was entered as a

covariate to account for potential differences in microclimatic

conditions between sites, which could promote differences in

pollinator visitation rates, and might also influence how long it

takes for achenes develop and flowering phenology. Differences in

female reproductive success of plants from different populations

were analyzed by ANCOVA, using the percentage of achene set as

response variable, population as fixed factor and plant size as

covariate. The effects of pollination (open-pollinated vs. pollinator

excluded) and population (LP vs. PN) on stigma longevity were

analyzed using a two-way ANOVA. In all cases, post hoc

comparisons were made with Tukey tests. All analyses were

performed using Statistica 6.0.

Results

Breeding system
Pollination treatment significantly affected the percentage of

achene set of C. renifolia (Table 2). Both populations showed a low

potential for autonomous self-fertilization (Autofertility-Index =

0.041 and 0.067 for LP and PN, respectively). The percentage of

achene set was 23.8 and 14.8 times higher in hand cross-pollinated

than in spontaneously self-pollinated plants at LP and PN,

respectively (Fig. 1A, B; Table 2). In contrast, achene weight did

not differ between hand-cross pollination and spontaneous self-

pollination treatments (Fig. 1C, D; Table 3). We did not find any

significant interaction between pollination treatment and popula-

tion (Table 2).

Pollen limitation
Supplemental hand-pollination resulted in a significant increase

in achene production at both sites (Fig. 2, Table 3). The

percentage of achene set was 33.4% and 34.3% higher in

supplemental hand-pollinated than in control plants from LP

and PN populations (P,0.001 in both cases, Tukey tests; Fig. 2A,

B; Table 3). In contrast, supplemental hand cross-pollination

resulted in a significant reduction in achene weight compared with

open-pollinated capitula (1.7 and 1.2 mg in LP and PN, P,0.001

in both cases, Tukey tests; Fig. 2C, D; Table 3). We did not find

any significant interaction between supplemental pollination and

site for percentage of achene set nor for achene weight. The

percentage of achene set and achene weight of open-pollinated

plants from both sites did not differ (P = 0.835 and 0.998,

respectively, Tukey tests).

Pollinator assemblage, visitation rates and female
reproductive success

A total of 12 and 3 species of insects were observed on C. renifolia

capitula at LP and PN, respectively (Table 4). While plants from

LP were mainly visited by coleopterans and dipterans, individuals

from PN were mainly pollinated by lepidopterans (Table 4). Air

temperature did not differ between LP and PN (mean 61 SE,

22.361.38uC at LP, 24.760.31uC at PN; F1,33 = 2.66, P = 0.112,

One-way ANOVA). Pollinator visitation rate was significantly

higher in LP than in PN (Fig. 3A, Table 5), thus suggesting a

greater insect availability in the former population. However, the

difference in pollinator visitation rates between sites did not result

in differences in the percentage of achene set (Fig. 3B, Table 5).

Stigma longevity
The stigmas of C. renifolia plants excluded from pollinators

remained receptive for a significantly longer time (mean 6 SE,

LP = 25.861.9 days and PN = 26.863.5 days) than those of open-

pollinated plants (LP = 10.462.8 days, PN = 9.862.2 days)

(Fig. 4A, B; Table 6). There was no interaction between treatment

and site (Table 6). The stigmas of plants excluded from pollinators

remained functional at least 12 days after the onset of exclusion, as

evidenced by a high achene production (mean 61 SE; 56.0%

63.93; n = 14) once these bagged capitula were hand-pollinated.

Discussion

Our results indicate that the endemic high Andean C. renifolia is

a xenogamous, insect-pollinated species with low potential for

autogamous seed production, and whose reproductive success is

limited by pollen. Moreover, as predicted by the increased

pollination probability hypothesis, C. renifolia showed high stigma

Figure 4. Effect of pollination (unpollinated vs. open-pollinated) on stigma longevity of Chaetanthera renifolia. Mean stigma longevity
of open-pollinated (white bars, n = 18) and pollinator–excluded plants (grey bars, n = 18) at La Parva (A) and Piedra Numerada (B) populations of
Chaetanthera renifolia. Bars are means 6 SE. *** Indicates significant differences (P,0.01).
doi:10.1371/journal.pone.0019497.g004

Extended Flower Longevity in a High Andean Plant
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longevity. As C. renifolia mostly reproduce through outcrossing, the

extended stigma longevity would allow higher xenogamous

pollination opportunities to this showy monocarpic high Andean

plant.

Arroyo et al. [41] showed that pollinator visitation rates in the

Andes of central Chile are seldom consistent. For example,

pollinator visitation rates to Chaetanthera euphrasiones capitula ranged

from zero at low elevation (2810 m) to 0.12 visits per capitulum

per 25 min at higher elevation (3315 m). Mean pollinator

visitation rates to C. renifolia (LP = 0.079, PN = 0.047) were very

similar to those reported by Torres-Dı́az et al. [35] for cold

microclimate populations of C. apiculata and C. lycopodioides (0.057

and 0.075 respectively), but lower than those of populations in a

warmer habitat (0.446 and 0.307, respectively).

The percentage of achene set of C. renifolia was significantly

constrained by pollen availability. This is consistent with the

relatively low pollinator visitation rates found at both sites. In

addition, we found evidence that supplemental pollen addition

reduces the mass of individual achenes, which suggests that female

reproductive output is constrained by resource availability. As

achene mass is negatively correlated to achene germination [e.g. 42,

43], it is likely that there would be a cost of increasing achene output

in years of abundant pollinators in this species. As shown by Torices

& Méndez [44] achenes within a capitulum can compete by

resources, therefore, if fewer achenes compete by resources these

may achieve a larger size. In a recent meta-analysis, Garcı́a-

Camacho & Totland [33] showed that although alpine plants suffer

significant pollen limitation, there is no difference in pollen

limitation between alpine and lowland species, and between self-

compatible and self-incompatible species. Although female repro-

ductive success of C. renifolia was pollen-limited, the differences in

pollinator visitation rates between populations were not translated

into differences in achene output. Different insect species can

drastically differ in their qualities as pollinators [45,46]. Therefore,

the marked differences in pollinator assemblage composition

between LP and PN may be involved in the lack of differences in

female reproductive success between sites despite contrasting

visitation rates. For instance, although less visited, PN was mainly

visited by F. leucoglene (Lepidoptera), which has the largest body size

among the observed flower visitors (data not shown) and could have

transferred higher pollen loads onto stigmas. However, further

information is needed to validate this hypothesis.

Although a number of studies have shown that flowers of high-

elevation plants usually receive fewer visits per time unit, they can

compensate for the lack of pollination service by increasing its

longevity with altitude [23–29,47]. Floral life (and attraction) may

conclude shortly after pollination [48] and varies widely among

species [49]. For instance, several orchids wilt within a day or two

after pollination but some species can maintain flowers for as

much as nine months if unpollinated [50,51]. Interestingly,

pollinator-excluded C. renifolia capitula extended their stigma

longevity for up to 25.8 and 26.8 days. Given that the male phase

can extend for 7–9 days (data not shown), the total capitulum

longevity in C. renifolia can be as long as ,37 days, a remarkable

feature considering the floral maintenance demands in such a low

resource environment. The increased stigma longevity appears to

be an adaption to the low availability of pollinators at high

elevation. Ashman & Schoen [49] showed that there is a negative

relationship between floral longevity and pollinator visitation rate.

Our estimations of stigma longevity were obtained in the absence

of pollinators, which provides a realistic estimation of the

maximum potential capitulum longevity. Prolonged floral longev-

ity seems to be common at high elevations. Arroyo et al. [37]

found that capitula longevity increases from 4.1 days at 2310 m to

9 days at 3500 m in the Andes of central Chile. Primack [43]

reported 6.9 days (ranging from 4 to 12 days) of flower longevity

for 9 subalpine Chilean species. In turn, Fabbro & Körner [29]

and Primack [43] reported slightly longer longevities for European

alpine (8.3 days) and for subalpine species from New Zealand (7.8

days), respectively. Bingham & Orthner [24] found that while low-

elevation populations of Campanula remained receptive for 1.5

days, high-elevation flowers were receptive for 2.4 days. It is

important to note that our measures of stigma longevity are at

inflorescence level (capitulum), whereas data from other authors

are at flower level. To our knowledge, the stigma longevity

reported in the present study has not been reported before in any

alpine species. This prolonged stigma longevity may increase

pollination opportunities for this high-elevation triennial species.

Future studies should evaluate the limits of extended stigma

lifespan in this alpine species.

Concluding remarks
In a general context, our results add new evidence to a growing

number of studies that emphasize that autogamous reproduction is

far from being a rule in high elevation ecosystems. The extremely

high stigma longevity found here appears to be an adaption to life

at high elevation that can increase opportunities for cross-

pollination.
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