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Variable selection for causal mediation
analysis using LASSO-based methods
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Abstract

Causal mediation effect estimates can be obtained from marginal structural models using inverse probability weighting

with appropriate weights. In order to compute weights, treatment and mediator propensity score models need to be

fitted first. If the covariates are high-dimensional, parsimonious propensity score models can be developed by regular-

ization methods including LASSO and its variants. Furthermore, in a mediation setup, more efficient direct or indirect

effect estimators can be obtained by using outcome-adaptive LASSO to select variables for propensity score models by

incorporating the outcome information. A simulation study is conducted to assess how different regularization methods

can affect the performance of estimated natural direct and indirect effect odds ratios. Our simulation results show that

regularizing propensity score models by outcome-adaptive LASSO can improve the efficiency of the natural effect

estimators and by optimizing balance in the covariates, bias can be reduced in most cases. The regularization methods

are then applied to MIMIC-III database, an ICU database developed by MIT.
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1 Introduction

1.1 Background

In the field of Biostatistics or medical research, often the focus is to establish causal relations between risk factors
and disease outcomes using observational data, for which adjustments must be done to address confounding
issues. Marginal structural models using inverse probability weighting is an effective method to handle confound-
ers.1,2 This method utilizes propensity score models which are commonly fitted by logistic regression. In a simple
binary treatment setting, the propensity score is defined as the probability of being treated given the covariates.
Building propensity score models using logistic regression can sometimes be challenging, since data nowadays
may have very high dimensionality. Regularization methods including LASSO and its variants, have been devel-
oped to solve this problem and to select essential variables for propensity score models.3,4

In this paper, different regularization methods will be applied to a unique database: the MIMIC-III database.
In the past 10 years, there has been a trend towards implementation of electronic health record systems in
hospitals and the Medical Information Mart for Intensive Care (MIMIC) database developed by the
Laboratory for Computational Physiology at MIT is freely accessible under a data agreement.5,6,7 The database
contains clinical data of patients admitted to the Beth Israel Deaconess Medical Center in Boston, Massachusetts.
Medical information including demographics, vital signs, laboratory results and nursing progress notes are avail-
able in this database; International Classification of Diseases (ICD-9) codes were documented on patient
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discharge. A code repository is available for the MIMIC-III database and researchers are encouraged to make
contributions to the code repository, to enhance reproducibility in health research.8

Using the MIMIC-III database, we are interested in investigating how the use of transthoracic echocardiog-
raphy (TTE) affects 28-day mortality for patients with sepsis, a life-threatening condition.9 However, diseases can
develop from risk factors through a complicated indirect pathway. In other words, the risk factor of interest may
affect the disease outcome through intermediate variables. Mediation analysis is a research area that focuses on
modeling this indirect pathway to estimate both the direct and indirect effects of the risk factors on the outcome.

One of the earliest approaches to conduct mediation analysis, proposed by Baron and Kenny,10 models
associations between treatment, mediator, and outcome by linear regressions. Direct and indirect effects can
then be estimated from the fitted regression models. However, the estimated direct and indirect effects do not
readily bear causal meanings. Robins et al.2 highlighted that marginal structural models (MSMs) with inverse
probability weighting can be used to establish a causal relationship between treatment and outcome in a setting
without mediators. Later, VanderWeele,11 Hong et al.,12 and Lange et al.13 extended ideas of Robins et al.2 and
suggested that causal mediation analysis can be conducted using MSMs with inverse probability weighting. In the
following, we will define notation and review the MSM approach for mediation analysis in detail.

1.2 Notation and review of MSMs

Consider a binary outcome Y and a baseline covariate vector X with dimension p. Define A as a binary treatment
variable. Specifically, A¼ 1 indicates the treatment group and A¼ 0 indicates the control group. Define M as a
binary mediator, which is on the causal pathway from A to Y. The observed data can be written as
ðXi;Ai;Mi;YiÞ; i ¼ 1; . . . ; n. We employ the potential outcomes framework16 to define causal mediation quanti-
ties. Ya;Ma� is defined as the outcome that would have been observed if treatment level is set to a and mediator is

set to the value it would have taken if treatment level is set to a�. Under certain assumptions, the direct effect can
be separated from the indirect effect and thus the total effect can be broken down into a natural direct and indirect
effect.15 The natural direct effect (NDE1) is defined as E½Y1;M1

� � E½Y0;M1
�; it can be interpreted as the average

outcome difference between the treatment group and the control group while controlling mediator at the level of
M1, the level the mediator would be under the treatment condition. The natural indirect effect (NIE1) is defined as
E½Y1;M1

� � E½Y1;M0
�, which is the average outcome difference between mediator level that would be obtained under

treatment (i.e. M1) and under control (i.e. M0) conditions, holding treatment at the level of 1. Similarly, we can
define NDE0 as E½Y1;M0

� � E½Y0;M0
� and NIE0 as E½Y0;M1

� � E½Y0;M0
�. Then, the total effect TE ¼ E½Y1;M1

� �
E½Y0;M0

� can be written as NDE1 þNIE0 or NDE0 þNIE1. On the other hand, since the outcome is binary, it

would be more reasonable to define the causal quantities in terms of the odds ratio of the risk or the relative risk.

For example, we can define the NDE1 odds ratio as
PðY1;M1

¼1Þ=PðY1;M1
¼0Þ

PðY0;M1
¼1Þ=PðY0;M1

¼0Þ and the NIE1 odds ratio as

PðY1;M1
¼1Þ=PðY1;M1

¼0Þ
PðY1;M0

¼1Þ=PðY1;M0
¼0Þ. The total effect odds ratio is

PðY1;M1
¼1Þ=PðY1;M1

¼0Þ
PðY0;M0

¼1Þ=PðY0;M0
¼0Þ, which can be written, e.g., as NDE1 odds

ratio�NIE0 odds ratio.
In this paper, we will follow the MSM approach by Lange et al.13 for mediation analysis. Marginal structural

models have many advantages in terms of assessing natural direct and indirect effects of a given treatment.
Specifically, MSMs can model both the natural direct and indirect effects at the same time without incorporating
a mediator into the models, resulting in parsimonious models.13 A generalized linear MSM can be written in the
following form

gðE½Ya;Ma� �Þ ¼ c0 þ c1aþ c2a
� þ c3a � a� (1)

where g is a link function and a� is the level of the treatment at which the mediator is controlled, representing the
indirect pathway from the treatment to the outcome through the mediator. First, the original dataset is replicated
once and a new variable A� is created, where A�

i ¼ Ai for i ¼ 1; . . . ; n and A�
i ¼ 1� Ai for i ¼ nþ 1; . . . ; 2n. Under

the assumption that there are no unmeasured confounders between A and M, A and Y, and M and Y, the
parameters in equation (1) can be consistently estimated by inverse probability weighting where the stabilized
weights are computed as

WS
i ¼ PðA ¼ AiÞ

PðA ¼ AijX ¼ XiÞ
PðM ¼ MijA ¼ A�

i ;X ¼ XiÞ
PðM ¼ MijA ¼ Ai;X ¼ XiÞ ; i ¼ 1; . . . ; 2n (2)
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If the interaction term (c3) is zero and weights computed by equation (2) are used in MSMs, then the natural
direct and indirect effect odds ratio is estimated as eĉ1 and eĉ2 , respectively. Please refer to Lange et al.13 for a
detailed list of the algorithm.

In order to compute the stabilized weights in equation (2), the treatment and mediator propensity score models
need to be fitted. We assume the treatment propensity score model PðAi ¼ 1jXiÞ follows a logistic model:

logitfPðAi ¼ 1jXiÞg ¼
Xp

j¼1
Xijaj. Similarly, the mediator propensity score model PðMi ¼ 1jXi;AiÞ is assumed

to follow: logitfPðMi ¼ 1jXi;AiÞg ¼
Xp

j¼1
Xijbj þgAi.

When the covariate space is large, regularizing the fitted propensity score models is necessary. Parsimonious
models are usually preferred, either from an estimation perspective or an inference perspective. In this paper,
LASSO and its variants are used to select the important variables for both treatment and mediator propensity
score models. For a given model, LASSO conducts variable selection by shrinking the coefficients of some
variables to exactly zero, leading to a simpler model.16 Suppose we have a logistic regression model
PðYi ¼ 1Þ ¼ expitfXi

Tbg. Let b ¼ ðb1; . . . ; bpÞ be the regression coefficients and k be a nonnegative regularization
parameter, the LASSO estimate b̂ for logistic regression is defined as

b̂
ð
LASSOÞ ¼ argmin

b

Xn
i¼1

f�YiðXi
TbÞ þ logð1þ eXi

TbÞg þ k
Xp
j¼1

jbjj

Adaptive LASSO (AdaLASSO) is one variant of the traditional LASSO and has better statistical properties
than the traditional LASSO. Zou17 developed an efficient algorithm for computing the AdaLASSO estimator,
which is a global optimizer of the objective function

b̂
ðAdaLASSOÞ ¼ argmin

b

Xn
i¼1

f�YiðXi
TbÞ þ logð1þ eXi

TbÞg þ kn
Xp
j¼1

ŵjjbjj

where ŵ ¼ ðŵ1; . . . ; ŵpÞ ¼ jb̂ðmleÞj�c; c > 0 and b̂
ðmleÞ

is the unpenalized maximum likelihood estimate of b. kn is a
regularization parameter and c is a power parameter. With a properly chosen kn, AdaLASSO satisfies the so-
called oracle property. The first part of the oracle property indicates that AdaLASSO regularizes a given model as
if the true underlying model is known.17 Consequently, when regularizing treatment propensity score models by
AdaLASSO, the models should select only a subset of covariates, including all confounders and treatment-related
variables. The second part of the oracle property essentially states that the AdaLASSO estimator is asymptotically
unbiased, which is a property not shared by traditional LASSO.

In Section 2, outcome-adaptive LASSO which is another variant of LASSO proposed by Shortreed and
Ertefaie,4 is outlined in detail. We then extend it to the mediation setting to estimate the natural direct and
indirect effects. A simulation study is conducted to illustrate the performance of different regularization methods
in Section 3. These methods are then applied to analyze a dataset extracted from the MIMIC-III database in
Section 4. Section 5 is for discussion and conclusion.

2 Methodology

In the causal inference literature, variables that are only related to outcome are suggested for inclusion in the
propensity score models. Rubin18 stated that including variables that are not related to the outcome in the
propensity score models can result in efficiency loss. In a later paper, Brookhart et al.19 conducted simulation
studies and discovered that adding variables that are only related to the outcome in the propensity score models
can improve efficiency without increasing bias. Wyss et al.20 also found similar results in a simulation setting with
multiple outcomes. Zhu et al.21 found that, by achieving balance in the covariates that are related to the outcome,
both finite bias and variance of the causal estimates can be reduced. Following similar ideas, outcome-adaptive
LASSO (OAL) was developed for estimating the propensity scores in a high-dimensional setting by incorporating
outcome information in the penalty function.4 In a mediation setting, it is natural to ask if such a principle of
variable selection on the covariates still applies. In our simulation section, by examining the performance of
several benchmark models, we found the propensity score model including the variables that are marginally
related to the outcome variable leads to the most efficient estimates of the natural direct and indirect effects
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and yield the smallest mean squared error, compared to other models. This again supports our speculation that
the variable selection principle in the non-mediation setting also applies to the mediation framework. Therefore,
we would extend the outcome-adapative LASSO to mediation analysis.

2.1 Outcome-adaptive LASSO for mediation analysis

Outcome-adaptive LASSO is a modified version of adaptive LASSO. When restricting c to be greater than 1 and
knnðc=2Þ�1 to go to infinity, outcome-adaptive LASSO puts less penalty weight on covariates that are only related
to the outcome and thus tends to include such covariates as well as real confounders into the propensity score
models.4 We can extend the idea of Shortreed and Ertefaie4 to the mediation setting where treatment can affect the
outcome through a mediator.

Let CA denote indices of treatment-outcome confounders, which are defined as variables that are only related to
A and Y. Let CM denote indices of mediator-outcome confounders, which are defined as variables that are only
related to M and Y. Let C denote indices of common confounders, which are defined as variables that are related
to A, M, and Y. Let P denote indices of covariates that are only related to Y and Q denote indices of covariates
that are only related to A. Denote R as indices of covariates that are only related to M. Also, denote S as indices
of covariates that are not related to A, M, and Y. Suppose we want to estimate the following propensity score
models:

logitfpAi
ðXi; aAÞg ¼ logitfPðAi ¼ 1jXi; aAÞg ¼

X
j2C[CA

aAj
Xij þ

X
k2P

aAk
Xij (3)

and

logitfpMi
ðAi;Xi; aM; gÞg ¼ logitfPðMi ¼ 1jAi;Xi; aM; gÞg

¼
X

j2C[CM
aMj

Xij þ
X
k2P

aMk
Xij þ gAi

(4)

For logistic regression, the outcome-adaptive LASSO estimate has similar form as the adaptive LASSO esti-
mate. The outcome-adaptive LASSO estimates, âA ¼ ðâA1

; . . . ; âAp
Þ and ðâM; ĝÞ ¼ ðâM1

; . . . ; âMp
; ĝÞ, which are

defined as

âA ¼ argmin
aA

Xn
i¼1

f�AiðXi
TaAÞ þ logð1þ eXi

TaAÞg þ kA
Xp
j¼1

ŵjjaAj
j (5)

and

ðâM; ĝÞ ¼ argminaM ;g

Xn
i¼1

f�MiðXi
TaM þ AigÞ þ logð1þ eXi

TaMþAigÞg þ kM gþ
Xp
j¼1

ŵjjaMj
j

 !

where ŵj ¼ j~bj j�c and (~b; ~g)¼ argminb; g lnðb; g;Y;X;A;MÞ. ln is the negative log-likelihood of Y given X;A;M
parametrized by b and g for a sample size of n. ~b are the unpenalized coefficient estimates corresponding to all the
covariates and ~g are the unpenalized coefficient estimates corresponding to treatment and mediator, respectively.
Furthermore, ~b and ~g can be obtained by fitting a linear regression of Y on X;A;M. Compared to AdaLASSO,
OAL utilizes the additional information about the outcome variable while computing the weight for each coef-
ficient, which AdaLASSO does not take account of. This is the major difference between AdaLASSO and OAL.

2.2 Selecting tuning parameters by optimizing balance

According to Rosenbaum and Rubin,22 the propensity score is one type of balancing score, which means that the
covariates will be balanced among treatment groups conditioning on the propensity scores. This balancing prop-
erty, along with the strongly ignorable treatment assignment (SITA) assumption, implies that unbiased causal
treatment effects can be obtained if sufficient covariate balancing has been achieved.23 Following this idea,
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Shortree and Ertefaie4 proposed that kA in equation (5) can be tuned by minimizing weighted absolute mean

difference (wAMD), which is a balance statistic instead of a deviance statistic.
wAMD is a measure of how similar different exposure groups are and can be computed using the fitted

treatment propensity score model as

wAMDðkAÞ ¼
Xp
j¼1

j~bj j
Xn

i¼1
ŝAi;kAXijAiXn

i¼1
ŝAi;kAAi

�
Xn

i¼1
ŝAi;kAXijð1� AiÞXn

i¼1
ŝAi;kAð1� AiÞ

�����
�����

where ŝAi;kA is the inverse probability-weighted estimator for subject i, computed using the fitted treatment pro-

pensity score model of subject i with AdaLASSO or OAL method, p̂Ai;kAðXi; âAÞ. Specifically, ŝAi;kA is defined as

the following

ŝAi;kA ¼ Ai

p̂Ai;kAðXi; âAÞ þ
1� Ai

1� p̂Ai;kAðXi; âAÞ

Similarly, we can define wAMD in a way that utilizes the fitted mediator propensity score model, as the

following

wAMDðkMÞ ¼
Xp
j¼1

j~bj j
Xn

i¼1
ŝMi;kMXijMiXn

i¼1
ŝMi;kMMi

�
Xn

i¼1
ŝMi;kMXijð1�MiÞXn

i¼1
ŝMi;kMð1�MiÞ

�����
�����

where ŝMi;kM is the inverse probability of mediator weighted estimator for subject i, computed using the fitted

mediator propensity score model of subject i with AdaLASSO or OAL method, p̂Mi;kMðAi;Xi; âM; ĝÞ. Specifically,
ŝMi;kM is defined as the following

ŝMi;kM ¼ Mi

p̂Mi;kMðAi;Xi; âM; ĝÞ þ
1�Mi

1� p̂Mi;kMðAi;Xi; âM; ĝÞ

Small wAMD indicates that, after applying the weighting procedure, the means of the covariates between

different exposure groups are close to each other. Therefore, optimal kA and kM should be chosen by minimizing

wAMD values. We will illustrate this idea in Section 3.3.

3 A simulation study

In this section, a simulation study was conducted to investigate the finite sample performance of the proposed

methods. Results of multiple benchmark models and regularized models are presented. These methods are eval-

uated based on the relative bias, standard deviation, and mean squared error (MSE) of estimated NDE, NIE, and

TE odds ratios. Assuming there is no interaction between the treatment and the mediator, we simply denote the

natural direct effect as NDE and the natural indirect effect as NIE, since NDE1 ¼ NDE0 and NIE1 ¼ NIE0.

3.1 Simulation design

In the simulation study, 500 subjects (n¼ 500) and 200 continuous covariates (p¼ 200) are generated for each data

set. Covariates are generated from a multivariate normal distribution with zero mean vector and identity covari-

ance matrix, i.e. Xi�MVNðl ¼ 0;R ¼ IÞ.
After the covariates are created, binary variables including the treatment, mediator, and outcome variables are

generated using the covariates. The treatment of each subject is generated using a Bernoulli distribution with

probability of being treated produced by a logistic regression model, i.e. Ai �BernoulliðPðAi ¼ 1ÞÞ, where

logitfPðAi ¼ 1Þg ¼
X200

j¼1
ajXij. Similarly, the mediator of each subject is generated using a Bernoulli distribution

with probability produced by a logistic regression model, i.e. Mi �BernoulliðPðMi ¼ 1ÞÞwhere
logitfPðMi ¼ 1Þg ¼

X200

j¼1
bjXij þ g1Ai. The outcome of each subject is generated using a Bernoulli distribution
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with probability produced by a logistic regression model, i.e. Yi �BernoulliðPðYi ¼ 1ÞÞwhere

logitfPðYi ¼ 1Þg ¼
X200
j¼1

djXij þ g2Ai þ g3Mi.

We set a ¼ ð1; 0; 1; 0; 0; . . . ; 0Þ; b ¼ ð1; 0; 0; 1; 0; . . . ; 0Þ and g ¼ ðg1; g2; g3Þ ¼ ð1; 1:5; 2Þ when generating the

data. To consider different levels of correlation, we consider three different scenarios for the true values of d

• Scenario A (weekly related): d ¼ ð0:2; 0:2; 0; 0; 0; . . . ; 0Þ
• Scenario B (moderately related): d ¼ ð0:6; 0:6; 0; 0; 0; . . . ; 0Þ
• Scenario C (strongly related): d ¼ ð1; 1; 0; 0; 0; . . . ; 0Þ

In the simulation setup, Xi1 ði ¼ 1; . . . ; nÞ is a confounder of Ai and Mi as well as Yi; Xi2 is only related to the

outcome; Xi3 is only related to the treatment; Xi4 is only related to the mediator. The other 196 covariates are not

related to the treatment, mediator, or outcome. Relations among the different simulated variables can be visu-

alized using Figure 1. The theoretical NDE odds ratio is calculated as eg2 and the theoretical NIE odds ratio needs

to be calculated using a numerical approximation. The detailed derivation is provided in Web Appendix A in the

Supporting Information. The theoretical TE odds ratio is the product of NDE and NIE odds ratio.

3.2 Modeling procedure

The treatment and mediator propensity score models need to be fitted before we can estimate NDE and NIE odds

ratios by MSMs. After normalizing covariates to have mean zero and standard deviation one, treatment and

mediator propensity score models are fitted using logistic regression with either LASSO, AdaLASSO, or OAL.

For OAL, a linear regression model of Y on X;A;M is fitted and the regression coefficients are used to compute

penalty weights for both the treatment and mediator propensity score models. For AdaLASSO, two linear

regression models are fitted; one model regresses A on X and the other model regresses M on X;A. The regression
coefficients of A on X are used to compute penalty weights for the treatment propensity score models and the

regression coefficients of M on X;A are used to compute penalty weights for the mediator propensity score

models. After we obtain penalty weights for the treatment and mediator propensity score models, treatment

and mediator propensity score models regularized by AdaLASSO or OAL methods can then be fitted using

the corresponding penalty weights.
In addition, four types of benchmark models are also fitted using logistic regression based on different subsets

of covariates for comparison. For example, the true treatment benchmark model is fitted using Xi1 and Xi3; the

true mediator benchmark model is fitted using Xi1 and Xi4 as well as the treatment variable. Other benchmark

model specifications are included in Web Appendix B in the Supporting Information. The purpose of the bench-

mark models is two-fold: (1) to investigate which set of covariates should be included in the propensity models for

calculating the inverse weights; (2) to provide benchmarks for examining the performance of the regularization

methods.
Following the modeling procedure proposed by Lange et al.,13 NDE and NIE odds ratios are estimated by

MSMs (equation (1)) with weights computed by equation (2). In addition, the original data set needs to be

replicated twice to create a new data set before we can calculate WS
i . A new variable A� is created by setting it

equal to A for first copy of the original data and equal to 1� A for the second copy of the original data. Then,WS
i

can be computed using the fitted value of the treatment and mediator propensity score models on the new data set.

Finally, MSMs are fitted with WS
i on the new data set; the natural direct effect odds ratio is estimated as eĉ1 and

the natural indirect effect odds ratio is estimated as eĉ2 , where ĉ1 is the estimated coefficient of a and ĉ2 is the

estimated coefficient of a� in the fitted MSM (1) as mentioned in Section 1. The total effect odds ratio is estimated

as eĉ1 � eĉ2 .

3.3 Parameter tuning process

When fitting regularized treatment and mediator propensity score models, tuning parameters in the penalty term

need to be chosen carefully to achieve reasonable coefficient estimates. In the simulation study, the LASSO

regularization parameter (k) is chosen by minimizing deviance with 10-fold cross-validation. Similarly, for each

pre-specified c value from a list: {0.5,1,2, . . .}, AdaLASSO and OAL regularization parameters (kn) are also

chosen by minimizing deviance with 10-fold cross-validation.
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In addition, for each pre-specified power parameter c value: {0.5,1,2,. . .}, AdaLASSO and OAL regularization

parameters are chosen by minimizing both wAMD(kA) and wAMD(kM), from a set of regularization parameter

values: {n�10; n�5; n�1; n�0:75; n�0:5; n�0:25; n0:25; n0:49}. This set of regularization parameter values proposed by

Shortreed and Ertefaie,4 satisfies conditions of the asymptotic properties. We search for the optimal kA from

this set based on wAMD (kA), and then the optimal kM from the set based on wAMD (kM). Therefore, the optimal

regularization parameter values for AdaLASSO and OAL have the smallest wAMD (kA) and wAMD (kM) values.
Simulation results show that the performance of different adaptive methods is not sensitive to the value of c

and there is a slight increasing trend in the bias and standard deviation as the value of c increases. Therefore, in
the following, we only show the simulation results for c ¼ 0:5.

3.4 Simulation results

The simulation results based on 1000 replications are displayed in Table 1 for NDE, Table 2 for NIE, and Table 3

for TE. Additional graphs used to visualize simulation results are available in Web Appendix C in the Supporting

Information.
First, we observe that the four benchmark models yield fairly close relative bias, standard deviation, and MSE

of the estimated odds ratio. Across all benchmark models, the outcome benchmark model yields the smallest

standard deviation and MSE of all the estimated NDE, NIE, and TE odds ratios. Adding outcome-related

variables into the propensity score model improve the efficiency of the causal estimators, which is a common

phenomenon found in the causal inference literature.19

Comparing OAL with AdaLASSO, i.e. OAL (deviance) vs. AdaLASSO (deviance) or OAL (wAMD) vs.

AdaLASSO (wAMD), we found that by incorporating outcome information in the penalty weights, the standard

deviation of the estimated odds ratios is reduced in most cases, indicating more efficient estimators. It also leads to

smaller MSEs. This is again consistent with the finding from the benchmark models.
By comparing the criteria for choosing the tuning parameters, i.e. AdaLASSO (wAMD) vs. AdaLASSO

(deviance) or OAL (wAMD) vs. OAL (deviance), we found in Scenarios B and C, where the outcome-related

covariates are at least moderately related to the outcome variable, wAMD leads to much less biased estimates of

NDE and TE odds ratios. This indicates the bias of the causal estimates can be reduced if the balance in the

covariates is optimized.24–26

Overall, all regularization methods we implement here outperform the benchmark models where the relation-

ships among the variables are completely known. The underlying reason is that the propensity scores are nuisance

parameters and by over-fitting the propensity scores, we can correct for the randomness and obtain better causal

estimates. The phenomenon that the true propensity score model may perform worse than the estimated propen-

sity scores has been shown in the literature, both theoretically and empirically, e.g. Lunceford and Davidian27 and

Brookhart et al.19 In general, OAL (deviance) tends to outperform the other regularization methods.
In addition, we examine which variables are selected by different regularization methods. Under Scenario B, we

record the percentage of 1000 replications that each variable of X1 � X4 is chosen for both the treatment and

mediator propensity scores and the results are shown in Table 4. As shown in the table, LASSO and AdaLASSO

always choose the “true” variables (that is, X1 and X3 for the treatment propensity score model; X1 and X4 for the

M

A Y

X4

X3 X2

X1

Figure 1. Relations among different simulated variables.
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mediator propensity score model). On the other hand, OAL sometimes chooses the additional outcome-related

variable X2. In the last column of Table 4, we record the average number of selected covariates for the treatment

and mediator propensity scores, respectively. It is shown that the LASSO-based methods always select more

variables than the true set, and thus lead to over-fitting. In addition, we find the wAMD criterion tends to select

more covariates as we aim to achieve balance in all the available covariates X1 � X200. A separate research

problem is whether we should achieve balance in all the available covariates or a subset of the covariates by

variable selection. This requires further investigation. There is some preliminary study that shows by achieving

balance in the covariates that are related to the outcome, both finite bias and variance of the causal estimates can

be reduced,21 but to our best knowledge, no comprehensive simulations or theoretical investigations have been

conducted in the literature to answer this question.

4 Data analysis: Transthoracic echocardiography and mortality

TTE has been widely adopted in hospitals during the past 10 years and some research has been conducted to

examine the effectiveness of TTE on patients’ mortality. Feng et al.9 found that the use of TTE can significantly

reduce the 28-day mortality for ICU patients with sepsis and suggested that secondary analyses might be helpful

to conduct, in order to understand the underlying causal mechanism. We employ the proposed methods to study

whether the use of TTE affects patients’ mortality indirectly. More specifically, we are interested in knowing

whether the use of TTE would affect 28-day mortality by changing how the doctors treat the patients. Our

analysis is based on the same data set used in the article of Feng et al.9 and this data set is extracted from the

MIMIC-III database introduced in Section 1.
In this data set, patients who had TTE performed less than 24 h before their ICU admission or during their

ICU stay are considered as the treatment group and the remaining patients are considered as the control group.

Table 1. Performance measures of natural direct effect odds ratio estimators.

Scenario A Relative bias (in %) SD MSE

LASSO 11.922 1.699 3.171

AdaLASSO (deviance) �2.375 1.653 2.742

AdaLASSO (wAMD) 9.667 2.007 4.210

OAL (deviance) �2.553 1.504 2.273

OAL (wAMD) 8.843 1.907 3.790

Benchmark (True) �6.598 1.816 3.382

Benchmark (Outcome) �10.864 1.380 2.139

Benchmark (TrueþOutcome) �6.670 1.816 3.383

Benchmark (Full) �6.237 1.835 3.440

Scenario B Relative bias (in %) SD MSE

LASSO 2.298 1.360 1.857

AdaLASSO (deviance) �13.191 1.305 2.052

AdaLASSO (wAMD) �1.795 1.647 2.716

OAL (deviance) �13.941 1.186 1.795

OAL (wAMD) �3.337 1.566 2.471

Benchmark (True) �23.052 1.346 2.877

Benchmark (Outcome) �26.377 0.967 2.331

Benchmark (TrueþOutcome) �23.187 1.323 2.829

Benchmark (Full) �22.948 1.325 2.812

Scenario C Relative bias (in %) SD MSE

LASSO �10.953 1.084 1.414

AdaLASSO (deviance) �24.810 1.018 2.272

AdaLASSO (wAMD) �13.611 1.333 2.146

OAL (deviance) �26.250 0.909 2.210

OAL (wAMD) �15.832 1.257 2.081

Benchmark (True) �35.270 1.039 3.577

Benchmark (Outcome) �38.227 0.714 3.445

Benchmark (TrueþOutcome) �35.634 0.996 3.542

Benchmark (Full) �35.405 0.996 3.508
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Moreover, 28-day mortality from the date of ICU admission is the binary outcome variable. There are 39

variables in the covariate space, including demographics, interventions, comorbidities, vital signs, laboratory

results, and admission information. Regularization methods discussed in this paper are used to select important

variables from the covariate space, for both treatment and mediator propensity score models.
The data set contains 6361 patients and 3262 of them are in the treatment group, whereas 3099 of them are in

the control group. In our data analysis, we focus on the four potential mediators with no missing values:

ventilation-free days, vasopressor-free days, the use of dobutamine, and the maximum dose of norepinephrine,

which are mentioned as secondary outcomes in Feng et al..9 We first use the mediation package in R28 to conduct

an exploratory data analysis. The estimated natural direct, indirect, and total effects (on the linear scale) by the

bootstrap approach are summarized in Table 5. According to Table 5, vasopressor-free days, the use of dobut-

amine, and the maximum dose of norepinephrine have significant total effects and indirect effects. Since

ventilation-free days do not have a significant indirect effect, we removed it from the list of potential mediators.

Moreover, we found that the maximum dose of norepinephrine has a significant interaction between the treatment

and the mediator using the test.TMint function in the mediation package. We did not observe a significant

interaction term for the other three potential mediators.
It is worth noticing that more than half of the values are missing for several covariates including CVP values

and laboratory results for BNP, troponin, and creatinine kinase. In Feng et al.,9 indicators are created to indicate

whether patients are missing these covariates and we use the same set of indicators in our data analysis as well.

Given that there are a large number of other variables that contain missing values, using imputation might create

a tremendous amount of uncertainty. Therefore, we handle the other missing values using complete case analysis

and patients who have any other covariates missing are excluded in our analysis; our reduced sample has 3021

patients with no missingness. In addition, six dummy variables are created to indicate which day of the week

Table 2. Performance measures of natural indirect effect odds ratio estimators.

Scenario A Relative bias (in %) SD MSE

LASSO �11.586 0.105 0.038

AdaLASSO (deviance) �1.205 0.137 0.019

AdaLASSO (wAMD) �4.249 0.149 0.026

OAL (deviance) 2.075 0.152 0.024

OAL (wAMD) 2.595 0.164 0.028

Benchmark (True) �2.107 0.141 0.021

Benchmark (Outcome) �2.364 0.129 0.018

Benchmark (TrueþOutcome) �2.112 0.142 0.021

Benchmark (Full) �2.233 0.154 0.025

Scenario B Relative bias (in %) SD MSE

LASSO �12.883 0.100 0.043

AdaLASSO (deviance) �3.335 0.130 0.019

AdaLASSO (wAMD) �6.328 0.137 0.027

OAL (deviance) �2.333 0.129 0.018

OAL (wAMD) �5.344 0.145 0.027

Benchmark (True) �4.698 0.127 0.021

Benchmark (Outcome) �4.885 0.117 0.018

Benchmark (TrueþOutcome) �4.727 0.127 0.021

Benchmark (Full) �4.824 0.137 0.023

Scenario C Relative bias (in %) SD MSE

LASSO �14.446 0.088 0.050

AdaLASSO (deviance) �6.710 0.113 0.022

AdaLASSO (wAMD) �9.542 0.115 0.032

OAL (deviance) �6.365 0.110 0.020

OAL (wAMD) �8.686 0.119 0.029

Benchmark (True) �8.090 0.112 0.026

Benchmark (Outcome) �8.237 0.101 0.024

Benchmark (TrueþOutcome) �8.115 0.111 0.026

Benchmark (Full) �8.226 0.118 0.028
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patients are admitted to ICU for the sake of computation efficiency. For mediators, the vasopressor-free days and

the maximum dose of norepinephrine are dichotomized at their median for the applicability of the proposed

method. For example, we replace each patient’s maximum dose of norepinephrine with 1 if the patient’s maximum

dose of norepinephrine exceeds the median and 0, otherwise.
After handling the missing data issues and creating dummy variables, we then estimated the NDE and NIE log

odds ratios using MSMs with different regularization methods for each of the three mediators: ventilation-free

days, vasopressor-free days, and the maximum dose of norepinephrine. Here, we assume the potential mediators

Table 3. Performance measures of total effect odds ratio estimators.

Scenario A Relative bias (in %) SD MSE

LASSO �1.064 2.209 4.880

AdaLASSO (deviance) �3.760 2.383 5.733

AdaLASSO (wAMD) 5.000 2.841 8.165

OAL (deviance) �0.594 2.296 5.268

OAL (wAMD) 5.693 2.716 7.499

Benchmark (True) �8.325 2.645 7.268

Benchmark (Outcome) �12.788 2.047 4.848

Benchmark (TrueþOutcome) �8.391 2.650 7.299

Benchmark (Full) �8.176 2.652 7.297

Scenario B Relative bias (in %) SD MSE

LASSO �10.854 1.832 3.829

AdaLASSO (deviance) �16.269 1.806 4.330

AdaLASSO (wAMD) �8.200 2.301 5.562

OAL (deviance) �15.836 1.800 4.254

OAL (wAMD) �8.859 2.155 4.959

Benchmark (True) �26.638 1.912 6.525

Benchmark (Outcome) �29.984 1.384 5.555

Benchmark (TrueþOutcome) �26.784 1.886 6.459

Benchmark (Full) �26.685 1.873 6.388

Scenario C Relative bias (in %) SD MSE

LASSO �23.829 1.361 4.150

AdaLASSO (deviance) �29.900 1.394 5.562

AdaLASSO (wAMD) �21.989 1.743 4.994

OAL (deviance) �30.976 1.261 5.473

OAL (wAMD) �23.310 1.667 4.975

Benchmark (True) �40.431 1.424 8.647

Benchmark (Outcome) �43.306 0.986 8.567

Benchmark (TrueþOutcome) �40.770 1.373 8.615

Benchmark (Full) �40.642 1.373 8.574

Table 4. Variables selection results in scenario B.

Model X1 (%) X2 (%) X3 (%) X4 (%) # of X’s selected

LASSO Treatment PS 100 6.3 100 6.9 14.774

Mediator PS 100 8.0 7.9 100 17.685

AdaLASSO (deviance) Treatment PS 100 8.6 100 12.1 22.774

Mediator PS 100 12.0 8.4 100 23.821

AdaLASSO (wAMD) Treatment PS 100 50.2 100 50.1 100.757

Mediator PS 100 45.9 45.2 100 95.578

OAL (deviance) Treatment PS 100 30.3 98.2 7.8 15.985

Mediator PS 100 34.6 5.0 98.2 16.777

OAL (wAMD) Treatment PS 100 76.5 98.5 54.8 108.148

Mediator PS 99.7 75.0 49.7 97.5 107.687
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are conditionally independent given the treatment and baseline covariates, so natural direct and indirect effects
can be estimated separately for each mediator. The treatment and mediator propensity score models were fitted
using different regularization methods discussed in Sections 1 and 2, to compute weights for MSMs. NDE and
NIE log odds ratio estimates can then be obtained from those MSMs. All MSMs for the three mediators suggest
that the interaction term between the treatment and the mediator is not significant. Therefore, we only present
results of the MSMs without the interaction term in this section. Treatment and mediator propensity score models
with no variable selection were also fitted for comparison; we refer to these propensity score models as the full
models. Data analysis results of the different regularization methods for the three mediators are summarized in
Table 6. As in the simulation study, for AdaLASSO and OAL, we tried different values of the power parameter c
in the penalty weight. We only report results of the different regularization methods with the c value that leads to
the smallest standard error of the estimates.

According to Table 6, all the estimated NDE log odds ratios obtained from the different regularization
methods are significant for all three potential mediators. All these estimated NDE log odds ratios have negative
signs indicating that the use of TTE can reduce the 28-day mortality directly. Moreover, the standard error of the
estimated NDE log odds ratios obtained from the regularization methods is smaller than the standard error
obtained from the full propensity score models with no variable selection conducted, which indicates that variable
selection in propensity score models can lead to efficiency improvement.

From Table 6, we observe that the estimated NIE log odds ratios are not significant for the use of dobutamine
and the estimated NIE log odds ratios are significant for vasopressor-free days and the maximum dose of

Table 5. Exploratory data analysis results of four potential mediators (p-value is the number in parentheses and * is used to indicate a
significant effect at a ¼ 0:05).

NDE NIE TE

Ventilation-free days �0.0001 (0.148) �0.0173 (0.148) �0.0175 (0.106)

Vasopressor-free days 0.0018 (0.730) �0.0473 (<0.001*) �0.0455 (0.010*)

Dobutamine use �0.0687 (<0.001*) 0.0021 (0.028*) �0.0666 (<0.001*)

Norepinephrine �0.0884 (<0.001*) 0.0113 (<0.001*) �0.0771 (<0.001*)

Table 6. Data analysis results of different regularization methods for three different mediators (p-value is the number in
parentheses; only NIE estimates of dobutamine are non-significant and all other NDE/NIE estimates in this table are significant
with a p-value< 0.001).

Vasopressor-free days NDE log odds ratio SE NIE log odds ratio SE

LASSO �0.512 0.0890 0.105 0.0026

AdaLASSO (deviance, c ¼ 0:5) �0.548 0.0896 0.138 0.0034

AdaLASSO (wAMD, c ¼ 0:5) �0.560 0.0914 0.152 0.0040

OAL (deviance, c ¼ 0:5) �0.549 0.0899 0.145 0.0036

OAL (wAMD, c¼ 2) �0.545 0.0921 0.151 0.0040

Full �0.562 0.0926 0.152 0.0040

Dobutamine NDE log odds ratio SE NIE log odds ratio SE

LASSO �0.416 0.0891 0.011 (0.086) 0.0061

AdaLASSO (deviance, c ¼ 0:5) �0.426 0.0899 0.016 (0.071) 0.0087

AdaLASSO (wAMD, c ¼ 0:5) �0.422 0.0915 0.014 (0.086) 0.0084

OAL (deviance, c ¼ 0:5) �0.428 0.0917 0.015 (0.110) 0.0092

OAL (wAMD, c ¼ 0:5) �0.423 0.0925 0.013 (0.120) 0.0084

Full �0.422 0.0926 0.012 (0.130) 0.0078

Norepinephrine NDE log odds ratio SE NIE log odds ratio SE

LASSO �0.445 0.0888 0.039 0.0109

AdaLASSO (deviance, c ¼ 0:5) �0.455 0.0895 0.043 0.0126

AdaLASSO (wAMD, c ¼ 0:5) �0.453 0.0911 0.044 0.0131

OAL (deviance, c ¼ 0:5) �0.457 0.0911 0.043 0.0127

OAL (wAMD, c¼ 1) �0.453 0.0921 0.042 0.0125

Full �0.457 0.0925 0.046 0.0136

Ye et al. 1423



norepinephrine. The positive signs for the estimated NIE log odds ratios for all three potential mediators indicate

that the use of TTE may increase 28-day mortality through an indirect pathway. There are two possible explanations

for the indirect pathway. The first explanation is that the use of TTE leads to an increase in the mediator level and

then the increased mediator level increases patients’ mortality. An alternative explanation is that TTE reduces

the mediator level and the reduced mediator level leads to a decrease in patients’ mortality. To find

which explanation is more plausible, we can implement MSMs with inverse probability weighting to assess the

causal relations between the potential mediator and mortality. In fact, according to the results of MSMs summarized

in Web Appendix D in the Supporting Information, the use of TTE increases patients’ mortality rate by increasing

the use of dobutamine or the maximum dose of norepinephrine; the use of TTE increases patients’ mortality rate by

reducing the vasopressor-free days. In particular, the positive NIE log odds ratio estimates for dobutamine and

norepinephrine seem to be reasonable since both have some adverse effects reported in the literature.29

In Figure 2, matrix plots are used to show which covariates are selected in both the treatment and mediator

propensity score models for dobutamine. If the cell of a given covariate is red, then the covariate is excluded from

the propensity score model; if the cell of a given covariate is yellow, then the covariate is included in the propensity

score model. We observe that the wAMD-based methods select more covariates in both the treatment and

mediator propensity score models, compared to the deviance-based methods. In terms of estimating the NDE

log odds ratio, the wAMD-based methods are less efficient since the propensity score models include too many

covariates. Moreover, compared to AdaLASSO, OAL tends to select more covariates in the treatment propensity

score model and thus is less efficient when estimating NDE and NIE log odds ratios. Matrix plots for the other

two mediators are included in Web Appendix D in the Supporting Information.
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Covariates Selected in Mediator Propensity Score Models

Variable Selection Methods
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Figure 2. Matrix plots of covariates selected in propensity score models for the use of dobutamine (indices at X-axis represent
LASSO, AdaLASSO (deviance, c ¼ 0:5), AdaLASSO (wAMD, c ¼ 0:5), OAL (deviance, c ¼ 0:5), OAL (wAMD, c ¼ 0:5), respectively).
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In conclusion, data analysis results of all 3 potential mediators suggest that the use of TTE can affect the 28-

day mortality via a direct pathway and via an indirect pathway. It is worth noticing that when the power

parameter c ¼ 0:5, the outcome-adaptive LASSO method achieves the smallest standard error compared to
other power parameter values. This result is consistent with our simulation results described in Section 3.4.

Furthermore, for vasopressor-free days and maximum dose of norepinephrine, LASSO-based methods improve

the efficiency of both the NDE and NIE log odds ratio estimators significantly, compared to the case where no

variable selection is conducted for both the treatment and mediator propensity score models.

5 Concluding remarks

In this paper, the idea of outcome adaptive LASSO introduced by Shortreed and Ertefaie4 is implemented and
extended from a traditional causal inference setting to a mediation setting. By examining both oracle and regu-

larized models, we observe that the efficiency of both NDE and TE odds ratio estimators can be improved

significantly by incorporating outcome information into the propensity score models. Smaller relative bias is

obtained by wAMD-based methods, which indicates bias reduction might be achieved by covariate balancing. In
conclusion, based on our simulation results, estimating NDE and NIE odds ratios with propensity score models

regularized by OAL (deviance) would be the best choice across all regularization methods, since this method yields

the smallest MSEs. One limitation of the simulation study is that the logistic regression models we fit match the

data-generating models. The setting is limited with respect to the number of covariates related to the treatment,
mediator, and outcome variables, as well as to the zero relationship of the 196 out of the 200 covariates. The issue

of model misspecification is not considered in our simulation study.
In the data illustration, the underlying mechanism of how TTE affects mortality is fully examined by the MSM

approach. While previous studies show the use of TTE can reduce mortality rate, an interesting phenomenon is

observed where the use of TTE can increase mortality by increasing either dobutamine use or norepinephrine

dose; TTE can also increase mortality by reducing vasopressor-free days, according to our findings in Section 3.3.
While we focus on a binary treatment and a binary mediator variable in this article, the proposed methodology

can be extended to other types of treatments and mediators. For example, if both the treatment and the mediator

are continuous, the form of the inverse weights in equation (2) will remain the same but the conditional (marginal)

probabilities should be replaced by the conditional (marginal) densities. While it appears to be a natural extension,
the estimation of the conditional densities can be challenging because of the “curse of dimensionality”. Under the

normality assumption, we can transform the estimation of the conditional density to the estimation of the con-

ditional mean.2,30 For example, instead of estimating fðAijXiÞ where fð�j�Þ refers to the conditional density, we can

first estimate EðA ¼ AijX ¼ XiÞ and then use normal density to approximate the desired conditional density. To
estimate the conditional mean, the traditional LASSO or AdaLASSO for regression can be used for this task.

Our methodological development and simulation results are based on a simple setting with only one mediator.

However, it is possible that the indirect effect is carried by multiple mediators simultaneously and the mediators

may interact with each other. This is often observed in real-world settings, such as in electronic health records.
Advanced variable selection methods need to be developed to select the right subset of mediators and to estimate

the mediator propensity score models. Regularization methods illustrated in this paper can be extended to this

setting with multiple mediators.
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