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Abstract

There are numerous fields of science in which multistate models are used, including biomedical 

research and health economics. In biomedical studies, these stochastic continuous-time models 

are used to describe the time-to-event life history of an individual through a flexible framework 

for longitudinal data. The multistate framework can describe more than one possible time-to-

event outcome for a single individual. The standard estimation quantities in multistate models 

are transition probabilities and transition rates which can be mapped through the Kolmogorov-

Chapman forward equations from the Bayesian estimation perspective. Most multistate models 

assume the Markov property and time homogeneity; however, if these assumptions are violated, 

an extension to non-Markovian and time-varying transition rates is possible. This manuscript 

extends reviews in various types of multistate models, assumptions, methods of estimation and 

data features compatible with fitting multistate models. We highlight the contrast between the 

frequentist (maximum likelihood estimation) and the Bayesian estimation approaches in the 

multistate modeling framework and point out where the latter is advantageous. A partially 

observed and aggregated dataset from the Zimbabwe national ART program was used to illustrate 

the use of Kolmogorov-Chapman forward equations. The transition rates from a three-stage 

reversible multistate model based on viral load measurements in WinBUGS were reported.
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1 Introduction

A multistate model is defined as a continuous-time stochastic process which allows 

participants to move among a finite discrete number of compartments or states which could 

be clinical symptoms, biological markers, disease stages or disease recurrence in biomedical 

research (1,2). Multistate models are useful in infectious disease monitoring programs which 

aim to gain an in-depth understanding of the disease progression patterns. Commonly for 

these models, the disease state is partitioned into a finite number of intermediate states 

which may offer greater insight and understanding of the disease evolution (2).

Movement from one state to another is called a transition (event has occurred); states can be 

transient (if a transition can emerge from the state) or absorbing (if no transition can emerge 

from the state). Movement between transitions can be reversible or irreversible, and these 

movements contribute to the intricacy of the multistate model in addition to the number of 

states defined. The transition intensities (hazard rates) provide the transition specific hazards 

for movement from one discernible state to another. These transition intensity functions can 

also be used to compute the mean sojourn time (the average time spent in a pre-clinical state 

before a clinical outcome of interest occurs), the total length of stay in a state (total time 

spent in a state before making a transition), the number of transitions made from start to 

end of the study and the transition probabilities. (3). Also, the effect of covariates on each 

transition can be assessed to quantify the influence of the covariate on the different model 

transitions. The covariates effects may not be the same since the severity of the disease 

progression differ by each intermediate state. (4).

There are different types of multistate models which can be used to answer different 

research questions, Figure 1. The mortality model for survival analysis with only two 

states and one transition from “alive” state to “dead” state is the simplest multistate model, 

Figure 1(a). These mortality models are useful, mostly in answering etiological research 

questions(5). The hazard rates are usually estimated using a semi-parametric approach 

which has a less stringent assumption(6). The hazard function is assumed to be an arbitrary, 

unspecified, non-negative function of time(7). The incidence or hazard rate is estimated by 

assuming independence of survival times between distinct individuals in a sample and a 

constant hazard ratio regardless of ties, especially if the survival time is not discrete(6).

Another type of multistate model is the competing risks model which extends the mortality 

model depicting a scenario whereby an individual may experience one of the several 

failure outcomes (8,9), Figure 1(b). In such models, competing risk analysis is performed 

whereby the interest is in the occurrence of the primary outcome but other contesting events 

may preclude the occurrence of the primary outcome or significantly alter the chances 

of observing the primary outcome. Competing risk analysis may also be performed in 

situations where the different types of events may be relevant, but the analysis focuses 

on both time and occurrence of the first event(10). The reason why the competing risk 

analysis is considered to be appropriate over the Kaplan−Meier estimation in such situations 

described above is that the Kaplan−Meier estimation treats the competing events as censored 

observations which bring in bias since the independence assumption is violated. To be more 
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explicit, the censoring of the time to primary event by the competing risk event may not be 

independent of the unobserved time to the primary event. As a result, the baseline hazard 

may differ between these competing events.11 The competing risk models provide in-depth 

insight into the effect of interventions on separate outcomes observed. The competing 

risk models are useful in exploring the relationship between explanatory covariates and 

the absolute risk which is critical particularly in decision-making and prognostic research 

work(5).

Partitioning the “alive” state of the mortality model into two or more transient (intermediate) 

states yields another type of a multistate model known as the disease progressive multistate 
model of which the simplest is the three-state model (2), Figure 1(c). In biomedical research, 

illness-death models or disability models which are a special type of a disease progression 

model, are usually used in estimating disease incidence rates and the mortality transition 

intensities(12). The disability model is considered in irreversible models when the disease 

increases the risk of death. In scenarios whereby the absorbing state is not considered, the 

models are termed K-progressive models which follow a sequential process, for instance, 

health, mild, moderate and severe states with a possibility of reversible transitions (12). 

However, in some instances, the models might not allow reversible transitions like the 

fertility model which is used to describe the reproductive life history of a woman where each 

state is defined by the number of children born, Figure 1(d).

The application of multistate models is not limited to biomedical studies like the evaluation 

of disease progression patterns(13–15) but cuts across various life history data, including 

health economics. In health economics studies inclined to the monitoring of disease 

progression, issues on the cost-effectiveness of prevention strategies(16), treatment(17), and 

infectious disease diagnosis interventions like HIV (18) to inform various policy decision-

making processes in HIV control programs (19), can be addressed using multistate models.

There is an extensive review of multistate models in the literature. However, most review 

papers have focused on the frequentist or maximum likelihood estimation (MLE) approach 

within the multistate model framework(1,2,4). None of these reviews has discussed in detail 

the Bayesian estimation (BE) approach within the multistate model framework of which BE 

approach is equally a robust method in statistical modelling. Therefore, this article aims to 

extend previous reviews on multistate models with primary emphasis on BE in multistate 

models. An illustration on the use of Kolmogorov−Chapman forward equations application 

on partially observed aggregated viral load data is provided.

The rest of the manuscript is structured as follows: Section 2 will introduce the theoretical 

aspects of the MLE approach and BE approach based on the Kolmogorov � Chapman 

forward equations. This section will integrate the different assumptions within multistate 

models’ framework, data features and contrast between MLE and BE methods. Section 3 

will provide a detailed application on the use of Kolmogorov-Chapman forward equations 

on partially observed aggregated viral load data. The data in context were extracted from the 

Zimbabwe national ART programme through the electronic patient management database 

(ePMS); hence, a sample of patients with viral load measurements measured within a year 

was used. For this illustration, a three-stage reversible multistate model was considered, 
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with states defined based on viral load measurements, and a schematic presentation of the 

diagram is shown in Figure 2.

Section 4 is left for discussion and conclusion of the manuscript. The appendix section 

provides additional supporting information for Section 2 in addition to the Windows version 

of Bayesian inference Using Gibbs Sampling (WinBUGS) code used.

2 Modelling approaches

2.1 The Maximum Likelihood Estimation (MLE) Approach

The frequentist approach has been well documented in the literature(1,2). This method 

strongly relies on the dataset for parameter estimation. In the frequentist approach, the 

statistical inference and estimation of the transition rates are based on the MLE. To have 

some in-depth understanding of this modelling approach, detailed theoretical steps behind 

the estimation of transition rates have been outlined. With reference to the three-stage 

multistate model shown in Figure 2, the aim is to estimate the four transition parameters 

shown in the diagram. For the MLE approach, the first step is to get the product of the 

distribution function of the parameters. Considering an exponential distribution function for 

the transition rate

f γjk tj = γjk tj
njk exp −γjk tj

njk! for j ≠ k (1)

where γjk is the transition rate from state j to state k. The number of the observed 

movements between the states is represented by njk, and tj is the total observed waiting 

time in the state j for j = 1,2. The likelihood function is:

L γjk tj = ∏
j ≠ k

γjk tj
njkexp −γjk tj

njk! for j, k = 1, 2, 3

= γ12 t1 n12exp −γ12 t1
n12! × γ13 t1 n13exp −γ13 t1

n13!

× γ21 t2 n21exp −γ21 t2
n21! × γ23 t2 n23exp −γ23 t2

n23!

(2)

Treating the factorial part in the equation as constant, taking logs both sides and re-arranging 

these terms yields

InL γjk tj ∝ n12ln γ12 t1 + n13ln γ13 t1 − γ12 t1 + γ13 t1
+n21ln γ21 t2 + n23ln γ23 t2 − γ21 t2 + γ23 t2

(3)

The summation of transition rates from the same state is defined at the flow rate, λj, which 

defines the probability of transition from state j. This means:
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λj = ∑
j ≠ k

γjk (4)

Let ρi,jk be the conditional probability that the next destination is state k given that the 

transition from state j to k occurs, the flow rate can be defined in terms of the conditional 

probability as:

γjk =
λjρik for j ≠ k
−λj for j = k since ρjj = ρkk = 1 (5)

Substituting equation (4) expressions into equation (3), that is, λ1 (t1) = [γ12 (t1) + γ13 (t1)] 

and λ2 (t2) = [γ21 (t2) + γ23 (t2)] yields:

InL γjk tj = n12ln γ12 t1 + n13ln γ13 t1 − λ1 t1 + n21ln γ21 t2 + n23ln
γ23 t2 − λ2 t2 (6)

Differentiating equation (3) with respect to each transition rate and time (γjk (tj)) in the 

equation, for instance, with respect to γ12 (t1) transition rate, yields:

∂InL γ12 t1
∂ γ12 t1

= ∂
∂ γ12 t1

n12ln γ12 t1 − γ12 t1 = n12
γ12 t1

− 1 (7)

Equating the solution of equation (7) to zero and making the transition rate parameter the 

subject of formula yields a maximum likelihood estimate of the transition rate, that is,

γ12 = n12
t1

(8)

Similarly, the other maximum likelihood estimates for the other transition rates would be:

γ13 = n13
t1

; γ21 = n21
t2

and γ23 = n23
t2

(9)

From this theoretical work, if one knows the number of transitions from state j to k which 

is njk ; and the total exposure time in state j which is tj, then the transition rates can be 

estimated using equations (8) and (9). Similarly, if the waiting time in a particular state is 

unknown, that is, tj, the transition rate γjk and the number of transitions njk can give an 

estimate of the time is a specified state by re-arranging the same equations.

Due to the evolution of computational technology, multistate models from the MLE 

perspective are commonly implemented in R software(20) using the msm package(21). 

The msm package can fit continuous-time Markov models (homogeneous time or non-

homogenous time using the piecewise constant models) and hidden Markov multistate 
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models with misclassification error using individual-level data(3). Within the msm package, 

covariates can be included, survival graphs for each transition can be obtained, all data 

censoring types can be handled, the total length of stay in each state can be estimated, 

and model diagnostics can be done(3). In these models, the likelihood ratio test (LRT) is 

used to choose a better fit model between time-homogeneous and time non-homogeneous 

(piecewise constant) models(1). The goodness-of-fit (GOF) of the model is assessed by 

comparing the observed and the predicted number of individuals in each state at a specified 

time in a graph(1). The other test normally applied to all multistate Markov model processes, 

including those models with an absorbing state is the Pearson-type test which tests if the 

transition rates depend on several predictors(1). Additional information on other software 

packages which can handle multistate models is provided in Appendix 1.

2.2 The Bayesian Estimation (BE) Approach

The BE approach is a flexible method whose posterior transition estimates are based on the 

mapping of the prior distribution. The prior distribution constitutes the existing and new 

belief information for unknown parameters and the likelihood function of the observed data 

(22). This yields posterior estimates which are much more coherent compared to the MLE 

approach. Many different models can be fitted within the BE framework; however, the result 

validation is typically done through the prior sensitivity approach as many different priors 

can be tried (23). The nuisance priors within the BE modelling are always marginalised 

out of the joint posterior distributions, which is a straightforward way to deal with such 

parameters, and this is hardly done in the MLE approach (23).

In this section, we provide the theoretical aspects of BE regarding the Kolmogorov-

Chapman forward equations. In general, the transition rates and transition probabilities 

are mapped using the Kolmogorov-Chapman forward equation, which has the following 

solution:

P t = exp Q t = ∑
n = 0

∞ tn

n!Qn = ∑
n = 0

∞ Q t n

n! (10)

where P(t) is the transition probability matrix, Q(t) is the transition rate matrix,  defines the 

number of observed transitions and t defines the time. Let γjk be the transition rate elements 

within the 3x3 matrix, let the flow rate from a defined state j be λj, for instance, (λ1 = γ12 + 

γ13) as previously described. Therefore, the transition rate matrix is defined as:

Q t =
− γ12 + γ13 γ12 γ13

γ21 − γ21 + γ23 γ23
0 0 0

=
−λ1 γ12 γ13
γ21 −λ2 γ23
0 0 0

.

whose row totals sum to 0. Since state 3 is the absorbing state, the last row entries are 

equal to zero. With the Q (t) matrix, the Kolmogorov-Chapman forward equations solutions 

defined in equation (10) can be used to map the P (t) matrix which has the transition 

probability πjk (t) elements, that is,
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P t =
π11 t π12 t π13 t
π21 t π22 t π23 t

0 0 1

where the row totals add to 1. To fully define each transition probability πjk (t) component 

of the matrix, we modified slightly the solutions given elsewhere (24) to get comparable 

estimates to those obtained in R using msm library, assuming one has individually observed 

data. We considered this as a sensitivity approach to validate proper transcription of 

the code in WinBUGS. Let ℎ = λ1 − λ2
2 + 4γ12γ21 for λ1 = γ12 + γ13 and λ2 = γ21 

+ γ23 and e1 = exp − 1
2 λ1 + λ2 − ℎ × 2 × t and e2 = exp − 1

2 λ1 + λ2 + ℎ × 2 × t . Then the 

Kolmogorov-Chapman solution for each transition probability πjk (t) element simplifies to:

π11 t = e1 × −λ1 + λ2 + ℎ + e2 λ1 − λ2 + ℎ
2ℎ

π12 t = −λ1 + λ2 + ℎ × λ1 − λ2 + ℎ × e1 − e2
4ℎγ21

π13 t = 1 − π11 t − π12 t

π21 t = γ21 e1 − e2
ℎ

π22 t = e1 × λ1 − λ2 + ℎ + e2 × −λ1 + λ2 + ℎ
2ℎ

π23 t = 1 − π21 t − π22 t

(11)

Let njk be the number of transitions from state j to k for j ≠ k. If the data is partially observed 

over two points and intermediate transitions are unknown, then njk is equal to the number 

of individuals since each individual contributes a single transition. In some instances, the 

data summaries or aggregated data may be available; and no individual information is 

available, then this modelling approach becomes relevant to use. The likelihood function 

of the number of transitions (njk) can assume a multinomial distribution with probability 

parameters:

nj, 1, nj, 2, …, nj, m ∼ Multinomial πj, 1, πj, 2, …, πj, m; nj (12)

Since this is a full BE approach, the next step is to assign the prior information for 

the unknown transition rates parameters. These priors can either be informative or non-

informative. Non-informative priors have little impact on the posterior distribution making 

the data (likelihood distribution) contribute more to the posterior estimates. Normally, 

non-informative priors are attained by using dispersed variance parameters or very small 

shape parameter values for the exponential rate parameter. Informative priors express exact 

and definite information about the unknown parameters being estimated. For such, prior 

information may be drawn from existing literature; however, the use of informative priors 

always ignites the prior subjectivity debate in BE. In this study, we assigned non-informative 

the priors for the unknown transition rate parameters (γ12, γ13, γ21 and γ23) to get 
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comparable estimates to the MLE. Since the transition rates are from an exponential family 

distribution, we considered an exponential distribution with a small parameter value β = 

0.001. The exponential probability density function is expressed as:

P γjk ∝ βexp −βγjk (13)

We further performed a sensitivity analysis of the exponential priors to assess if the 

choice of the prior distribution does not influence the transition rates estimated. A Weibull 

distribution prior with a scale of 0.001 and shape of 0.1; and a Gamma distribution prior 

with shape and scale of 0.1 were used to define the unknown transition rates priors. Since 

the shape and scale parameter values for Weibull and Gamma distributions were specified, 

we did not have any hyper-priors to specify further.

The Deviance Information Criterion (DIC) (25) was used to determine which model was 

a better fit after varying the prior information. To calculate the DIC value, the Markov 

chain Monte Carlo (MCMC) samples and the likelihood function of the observed data are 

required. The DIC is defined as:

DIC = D θ + 2pD = Dθ + pD (14)

where θ is the vector of all transition rate parameters, D(θ) is the deviance of the model 

evaluated at the posterior mean estimate θ after averaging all MCMC samples of θ, Dθ is 

the average of Bayesian deviance or the posterior mean, Dθ, for all MCMC samples of θ. 

The unstandardized Bayesian deviance is defined by Dθ = −2log (f (X | θ)) where f (x | θ) is 

the likelihood function of the observed data X given the parameter θ. The quantity pD is the 

effective number of parameters, and is defined as pD = Dθ − D(θ), where θ is the average of 

MCMC samples of θ. The model with the least DIC value is the preferred model.

The posterior distribution fitted is given by equation (15) below, which reflects a joint 

distribution of the multinomial likelihood and the exponential prior distributions.

P πjk, γjk/nj ∝
Γ ∑

j
nj + 1

∏jΓ nj + 1 ∏
j = 1

m
πjknj × βexp −βγjk (15)

Therefore, in this regard, the BE can be viewed as being a complete, unambiguous, 

prescriptive and coherent method of estimation as it combined both the likelihood 

information and the prior information to get the posterior estimates.

2.3 Multistate models assumptions

The model assumptions behind these modelling approaches in these two packages overlap 

as both can assume the Markov process (assessed using the markovchain library in R), 

time homogenous transition rates (normally default set in most analysis packages) (26), and 
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right censoring of observations. A flow chart for multistate model assumptions, methods of 

estimation, possible censoring patterns and covariates types is shown in Figure 3.

Multistate models can either be fitted assuming discrete-time or continuous-time. In 

discrete-time models, the movements between states occur at a fixed time, and the transition 

probabilities are usually reported. In contrast, in the stochastic continuous-time models, the 

transitions can occur at any time point, and these model inferences are usually based on the 

estimation of hazard rates or transition intensities (27). These transition rates describe the 

instantaneous rates at which the continuous-time multistate model transitions between states. 

In biomedical studies of naturally occurring phenomena, the continuous-time model 

reflects reality since the transitions occur at random.

Different assumptions can be made on multistate models about the dependency of the hazard 

rates (transition intensities) on time. The Markov property assumes that the transition to a 

future state is only dependent on the present state occupied not the ones before; hence, the 

model has a “memory loss”. This type of model is usually used because of its simplicity 

(28). Alternatively, multistate models can assume a semi-Markov process meaning that the 

next future transition depends on both the currently occupied state and also the time of 

entry into the current state. The semi-Markov model is considered flexible in most cases; 

however, there are some drawbacks in using this model. Firstly, the semi-Markov model 

contains many parameters which make the model much more problematic to fit and the 

distribution of the sojourn times in each state is a requirement which in most instances 

might be unavailable(4,15,29,30). Lastly, multistate models can assume a non-Markovian 

process. This model is dependent arbitrarily on the previously occupied states; hence, there 

is no “memory loss” in the model. The implementation of non-Markovian models has been 

challenging until the introduction of the “Markov-free” estimators for transition probabilities 

in the last decade(1).

Another assumption normally made in the multistate model is that of time homogeneity. 
In a time-homogeneous model, the transition intensities are assumed to be constant over 

time; that is, the rates are independent of time(1,29,31). In such models, the Kolmogorov 

differential equations can be solved explicitly using the decomposition of the transition 

matrix into both eigenvalues and eigenvectors(27). Models which assume time homogeneity 

are used more often possibly due to well-developed software at disposal and their less 

intimidating theoretical framework. However, if time homogeneity assumption is violated, 

an inhomogeneous time model is used which assume that the transition intensities change 

with time(31).

2.4 Multistate models data features and contrasts between BE and MLE

Multistate models can be characterised by the way the data have been captured in a research 

process. Censoring is a crucial feature in time-to-event data analysis(32).In observational 

studies, follow-up studies often end before the outcome occurs, leading to right-censoring of 

observation times(33). At the same time, left-censoring occurs when the study begins after 

the event has occurred, but the event times are unknown(32). Frequently, non-informative 

censoring occurs when participants are followed up intermittently such that the period 

between visits is missing. This means that the transition times are not precisely observed, 
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and the states occupied between follow-up time points are unknown. These non-informative 

censoring observations are considered to be interval-censored(32). A special case of interval 

censoring is grouped survival data, in which the intervals for the subjects are completely 

identical or non-overlapping. Grouped survival data have been documented to be simpler 

to analyse (34). The mechanisms which give rise to censoring are essential in statistical 

inference within the multistate framework, and these data features need to be taken into 

account during analysis to avoid getting biased estimates since their likelihood functions will 

be different(35).

Moreover, intermittent follow-up of participants leads to incomplete spaced data points or 

missing information as a result of incomplete disease history of participants. In intermittent 

follow-ups, participants are observed for a short time, not to completion of their disease 

history as other visits are missed, and the specific time of occurrence of an event is usually 

unknown. The missing data in longitudinal studies and programmatic data frequently occur 

with different missing mechanisms to define the process. Missing data may be missing 

completely at random (MCAR) if the probability of missingness is not dependent on the 

unobserved or observed data. Suppose a study is comparing time to change of viral load 

level after ART initiation and the follow-up viral load values were not measured on some 

individuals because they transferred to another health facility. These missing viral load 

values may be considered to be MCAR if the decision by participants to move is not related 

to any variables considered in the running study. Missing at random (MAR) occurs if the 

probability that data are missing does not depend on unobserved data but may depend on 

observed data. Suppose that individuals who leave the study (become loss to follow-up 

(LTFU) and never return) are those with severe illness (high viral load), it is unlikely that 

the missing viral load measurements are MCAR, but the missing may be due to severely 

immune-deterioration of the patients; hence, the data is MAR. In contrary, if the patients 

who are severely immune deteriorating do not have viral load follow-up measurements 

because of their severity, the missing viral load values would not be MAR but missing not 

at random (MNAR). For such missing data mechanism, the reason for missingness has to be 

accounted for in the model to obtain precise results.

In practice, it is a challenge to distinguish the MAR mechanism from MNAR mechanism; 

therefore, a sensitivity analysis is encouraged to compare estimated of analysis under various 

missing data models to verify the stability of the inference. The multistate model framework 

allows one to use the likelihood-based method for MAR or MNAR covariates, assuming 

a continuous-time Markov multistate model(36). Work by Kalbfleisch and Lawless equips 

one to fit a time-homogeneous Markov model with arbitrary transitions structure for such 

incomplete history data(36). However, if any covariates are missing, convergence problems 

are more likely with this method; hence, most studies prefer to work with fully observed 

complete case data.

Multistate models can handle various types of covariates depending on the modelling 

approach used and the software the model is implemented in. Both methods of estimation 

can handle parametric effects of fixed covariates or categorical variables to assess their 

influence on the estimated transition processes(37). The MLE multistate models fitted within 

R msm library assume that the functional form of the effects of predictive factors is linear 

Zingoni et al. Page 10

Stat Methods Med Res. Author manuscript; available in PMC 2022 April 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



by default (or log-linear) which might not be the case always. This precludes the assessment 

of non-linear effects on the transitions rates using the MLE models. The violation of this 

assumption may lead to inaccurate statistical conclusions, the increased bias in estimates 

and decreases statistical power for statistical significance tests in MLE(3). In contrast, the 

BE multistate models within BayesX using the bayesreg object (38) can handle non-linear 

covariates effects of continuous covariates using penalised splines through their flexible 

predictor component(37). Besides, BE multistate models can handle time-varying effects 

and nonparametric baseline effects using penalised splines, which MLE multistate models 

cannot do.

Another strength of the BE multistate models over MLE models is their ability to account 

for frailty (random-effects) terms to explain unobserved heterogeneity in the collected 

information either at the individual level or spatial level which R msm library cannot do 

(37). For instance, in HIV disease progression model, it is vital to account for individual-

level heterogeneity to estimate transition rates since patients respond differently to ART 

treatment, and these transitions may also vary by location. BE multistate models with spatial 

random effects were proposed by Kneib et al. (2008) with a demonstration on human sleep 

data(39). Their application to disease progression studies has been on the rise with recent 

work involving their application to HIV disease progression based on viral suppression and 

viral rebound model(40). This is one of the first papers to include the spatial effects within 

BE multistate models framework.

Moreover, in longitudinal studies with intermitted follow-up visits of participants, the 

number of visits may vary across participants. In such scenarios, the first visit (baseline) 

and the last observed visit assessment points (end of study) can be used. Such a data 

capturing process results in partially observed data which can be implemented within a 

multistate model framework. In such a scenario, only the initial state (baseline) and the last 

state (end of study) information in known but the intermediate experiences of an individual 

are unknown (or might not have been recorded). This happens typically in programme data 

where the data is usually reported and summarised in an aggregated format in national-level 

reports whereby detailed information of intermediate processes is usually missing or clinical 

trials whereby only the clinical endpoints are reported. Nonetheless, this data can be used 

within a multistate framework using the method proposed by Welton (2005) on handling 

partially observed aggregated data to estimate transition rates using Kolmogorov-Chapman 

forward equations(24). Such modelling approach of partially observed data provides a useful 

step in the research agenda as it forms the basis of future research formulation. This is 

one of the strengths of BE multistate models, which is not easily implemented in the MLE 

multistate models.

However, there is still under-utilised of BE approach in epidemiological studies though BE 

multistate models are much more flexible compared to MLE. BE multistate models can 

handle most of the data features like aggregated data which MLE multistate models cannot 

handle. The BE multistate models based on Kolmogorov-Chapman forward equations 

modelling approach using partially observed data forms the basis of this manuscript and 

the application details are outlined in the subsequent section.
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3 Use of Kolmogorov-Chapman forward equations in Bayesian multistate 

models

In this application, we implemented the Kolmogorov-Chapman forward equations explained 

in section 2.2 on partially observed aggregated data to estimate transition rates using data 

from the Zimbabwe National ART programme (41). Viral load data were aggregated over a 

year from ART patients whose information was linked to the ePMS (42).

Following the WHO guidelines, individuals who are initiated on ART are monitored over 

time using CD4 cell counts and viral load to assess the regimen efficacy over time (43). 

In this example, the main focus was on using viral load measurements taken at baseline of 

ART initiation and repeatedly after 6 months. We extracted patient’s information spanning 

over a one year cycle of follow-up. We assumed that if individuals are initiated on potent 

and effective ART regimen and are adhering on treatment, after a year, a significant 

improvement in the immune response can be observed(44). It is based on this dataset that 

motivated our choice of model for illustration, which falls under disease progression models 

in Figure 1C.

In this study, we have data for individuals who had viral load measurements at baseline 

(at ART initiation) and one year after ART initiation. The in-between viral load clinical 

information was unknown since the data was partially observed with only two-time points. 

Since the data came from a routine ART programme setting, it is important to acknowledge 

that the period in which the data was captured was when differential monitoring was 

done(45,46); hence, few ART patients had their viral load measurement taken, and 

participant selection bias cannot be overlooked. Therefore, our final sample size had 5,596 

participants with two observations taken at ART initiation (baseline) and after one year on 

ART.

For our illustration, a three-stage reversible multistate model, with states defined based 

on viral load measurements, was considered, and a schematic presentation of the 

diagram is shown in Figure 2. In this model, we assumed that individuals from state 

1 (VL<50copies/uL) with an undetectable viral load may die (state 3) via state 2 

(VL≥50copies/uL) which indicates a viral load rebound or detectable viral load, or 

directly from state 1 (VL<50copies/uL). Again individuals may move back to state 

1(VL<50copies/uL) once they are in state 2 (VL≥50copies/uL) after ART which shows a 

reversible transition. We also assumed a time-homogeneous Markov model and the data 

were aggregated having been observed over two-time points in a single year follow-up. 

Since the data was partially observed, this means, the initial state at ART initiation and the 

final states after one year were known, but the route to the last observed state was unknown. 

In other terms, the intermediate transitions (viral load patterns) which occurred between the 

initial state and the last observed states are unknown. That is, individuals with undetectable 

viral load (state 1) at time 0 who later died after a year may have died directly from the 

state 1 (undetectable viral load) or may have died via state 2 (viral load rebound). The used 

partially observed aggregated vial load data is displayed in Table 1.
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The total number of participants was 5,596 with 2,490 (44.5%) with an undetectable viral 

load (state 1) while 3,106 (55.5%) had a viral load rebound above 50copies/uL (state 2). At 

the end of one year, 165 (2.95%) participants had died of which 87 (53%) were initially in 

state 2 (viral load rebound) at baseline. Majority of the participants remained in their initial 

state; hence, assumed not to have made any transition out of their initially observed state.

Guided by the set of equations described in section 2.2, we implemented our model in 

WinBUGS software based on Gibbs sampling estimation. We estimated the transition rates 

using the partially observed aggregated data captured over a cycle of one year, as explained 

earlier. We set 15,000 MCMC simulations, a burn-in period of 1,000 simulations and 

thinning of 10. The code used is provided in Appendix 2, and this code may be viewed 

as a transcription of P(t) matrix each element fully defined (Equation 11), the likelihood 

function (equation 12) and different prior functions considered. A further sensitivity analysis 

to validate the transcription of the WinBUGS code was done using R msm package, and the 

used R code is provided in Appendix 2. The MLE and BE posterior estimates for transition 

rates are shown in Table 2.

Since the data were partially observed, there was uncertainty as to the exact route, an 

individual who reached state 3 (death) followed. However, there are four possibilities to 

describe this:

1. Participant arrived directly from state 1 having not visited state 2 during the 

follow-up period (state 1 to state 3).

2. Participant arrived directly from state 2 having not visited state 1 during the 

follow-up period (state 2 to state 3).

3. Participant arrived via state 2 from state 1 (state 1 to state 2 to state 3).

4. Participant arrived via state 1 from state 2 (state 2 to state 1 to state 3).

When we compared the model estimates from the MLE approach and the BE approach, 

both methods gave comparable transition estimates. However, the posterior transition from 

state 1 (VL<50copies/uL) to state 2 (VL≥50copies/uL) was 0.0633 (95% incredible interval 

(CI): 0.053-0.074). Movement from state 1 (VL<50copies/uL) to state 2 (VL≥50copies/uL) 

was 1.29 times (95%CI: 1.03-1.63) more likely than the transition from state 2 

(VL≥50copies/uL) to state 1(VL<50copies/uL). Similarly, participants initially in state 1 

(VL<50copies/uL) were 13% (1.1.31 95%CI: 0.81-1.59) more likely to die compared to 

those in state 2 (VL≥50copies/uL); however, this was not statistically significant. Those 

participants initially in state 1 (VL<50copies/uL) were 1.98 times (95%CI: 1.48-2.65) more 

likely to have a viral rebound compared to have died after 1 year while those participants 

initially in state 2 (VL≥50copies/uL) were 1.73 times (95%CI: 1.29-2.29) to have attained 

viral suppression to undetectable levels compared to have died. The correlations between 

the transition rates were positive, which means that the data on reaching state 3 (death) is 

compatible with an increase in each of the transition. This is also evident in the bivariate 

scatter plots for these four transitions in Figure 4.

The transition probabilities are shown in Table 3 for the three-cycle times, 3 months, 6 

months and 1years cycles for both the BE approach and the MLE approach.
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Similarly, the transition probabilities were similar for both the MLE and the BE approaches. 

From these estimates, the probability of leaving the initial state increases as the cycle time 

increases, that is, for a transition from state 1 (VL<50copies/uL) to state 2 (VL≥50copies/

uL), the probability at 3 months cycle was smaller than the probability at 6 months cycles, 

and both were smaller than the probability at 1-year cycle: (π12(t = 3months) =0.0155<π12 

(t = 6months) =0.0302<π12 (t = 1year) =0.058). This pattern was similar across other 

transitions and was as anticipated for such types of models.

4 Discussion

In this manuscript, we have highlighted the usefulness of multistate models as they account 

for the time change, and individuals multiple outcomes can be estimated simultaneously in 

epidemiological studies compared to the traditional survival models. We have also discussed 

two methods of statistical inference with emphasis on the BE approach, which has not been 

fully utilised and reviewed in the literature. Various types of multistate models disposable 

to use in different science fields to answer different kinds of research questions from 

longitudinal time to event data have been outlined. Multistate model assumptions and data 

featured have also been highlighted. Finally, an application of the Kolmogorov-Chapman 

forward equation in estimating transition rates has been demonstrated using partially 

observed aggregated viral load data for the first time in HIV disease progression modelling. 

The application model estimates were comparable to existing epidemiological work on viral 

transitions patterns(40,44).

This manuscript put forward the advantage of using multistate modelling as this approach 

may bring out new and important biological insights in understanding the intermediate 

processed of a disease which ordinary regression models like Cox proportional hazard model 

may be ignoring. Multistate models’ transition processes are easy to understand as they can 

be drawn into schematic diagrams of mutually exclusive states which help to understand the 

model better. Prediction of an individual’s disease progression trajectories through time is 

another advantage of multistate models, and this is helpful for programme managers to make 

informed decisions which traditional survival models cannot do.

This manuscript further put forward the strengths of BE multistate models over MLE 

multistate models. It is undebatable that individual-level data is much for informative 

and provides more extensive flexibility in modelling. However, aggregated data usually is 

accessible on many public platforms and intermediate observation times during follow-up 

studies may not always be supported in most programs due to financial constraints. In such 

instances, partially observed aggregated data becomes readily available and disposable to 

everyone without requiring much stringent permission to use it. Moreover, clinical trials 

studies may also report partially observed time to clinical outcomes (endpoints) data without 

reporting any intermediate states (47). This motivated the example application provided 

in this manuscript, as it emphasised the use of BE multistate model in handling partially 

observed aggregated data using the Kolmogorov-Chapman forward equations on a new 

dataset on viral load measurement in HIV studies. Our application also put forward how 

partially observed data in principle can be used in an epidemiologically realist model(47). 

Handling of such aggregated data is precluded within MLE multistate models implemented 
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in R using msm package which only favours individual-level data. The ability of BE 

multistate models to handle aggregated data affirms how important aggregated data could 

be in instances where there is no individual-level data, and quick baseline information is 

required for a more informative hypothetical formulation for future researches.

The MLE approach generally relies on the available data defined through the maximum 

likelihood function; hence, it is generally affected by the small sample sizes of data(23). 

The small sample sizes may result in the inferential process to be internally logically 

inconsistent. In contrast, the BE approach integrates the likelihood function and the prior 

function, which contains existing information to give comprehensive posterior estimates of 

the transition rates, and this is an advantage of the BE approach. The addition of prior 

information in the BE approach allows the operating characteristics of the Bayesian methods 

in small sample sizes and overall, to be dependable. Bayesian methods tend to perform well 

with limited data, while frequentist MLE inference appeals to large sample theory and thus 

may break down with small sample sizes. This advantage is more evident if informative 

priors are used which have a strong impact on the posterior estimates compared to when 

non-informative priors are used since using non-informative priors mimic the MLE results.

Results interpretations of the MLE approach are customarily based on the repeated sampling 

property, which may be ambiguous; the probability of the hypothesis is non-applicable, 

unlike the BE approach which makes use of the probabilities for both the hypothesis and 

data, which is what is required precisely to make decisions (48). The direct probability 

statements in BE inference about the parameters is much more useful compared to the 

frequentist statistics. In other terms, BE inference provides fixed probability intervals for 

unknown quantities compared to the random intervals for fixed quantiles from the MLE 

inference. This makes the BE approach much more compelling than the MLE approach as it 

provides the kind of answers most researchers require. In most studies, the BE approach has 

proven to outperform the MLE approach (23).

As much as BE approach is theoretically simpler, more robust, more flexible and easier to 

implement with minimum support as compared to the MLE approach (47); the adoption and 

utilisation of the BE approach have been hindered by the difficulties faced by researchers 

in implementing the Bayes models. The main hindrance of Bayesian models is the prior 

specification choices, which is normally subjective. This is quite a debatable issue in 

Bayesian modelling since the observed posterior estimates are heavily dependent on the 

prior specification, especially for informative prior choices. However, to override this 

argument, assigning diffuse (vague/non-informative) priors is encouraged, and results are 

comparable with the frequentist estimates(24,39). In other words, the BE models can be run 

with prior references which can mimic the MLE (non-informative priors) as compared to the 

use of informative priors (23). This point can be validated by our posterior transition rates 

estimates which were similar to those estimated through the MLE using R msm package 

since we used purely non-informative priors in our modelling approach. This similarity puts 

forwards that even if aggregated data is used, the findings are comparable to the MLE and 

decisions can be informed accordingly. Also, prior sensitivity analysis is encouraged as an 

excellent modelling courtesy to validate that the choice of the prior used did not influence 

the results obtained.
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Although, BE models are computationally intensive requiring much longer running time of 

more hours or days to converge compared to the MLE multistate model(40). Still, MLE 

models may fail to converge if the models are complex of which model convergence can be 

only achieved through the BE route. This leaves the issue of longer running times invalid 

since the BE approach will be the only route to consider in such instances. Moreover, 

multistate models, particularly those fitted in BayesX using the bayesreg object have a 

limitation of model comparison techniques since the DIC cannot be estimated in such 

models(48). This favours the MLE, which uses Akaike’s Information Criterion (AIC) and 

LRT for model comparison to validate the obtained estimates.

Moreover, as much as the BE multistate model on aggregated data using Kolmogorov-

Chapman differential equations in WinBUGS is useful in situations where individual-level 

data is not available, proper implementation of the model might be a constraint to other 

researchers as the modelling approach require technical expertise to achieve convergence 

in terms of correct model specification (transcription of the Kolmogorov-Chapman forward 

equations into a code). However, this hindrance can be solved by strengthening resource 

sharing between researchers through including codes in publications and other platforms. 

Another limitation of the BE multistate model in WinBUGS could be explicitly solving 

for the Kolmogorov’s forward equations solution to be able to transcribe the solutions 

into the model code. This exercise becomes hectic and tedious if the model has many 

model states, reversible transitions; hence, the model becomes complex. However, the 

WinBUGS Differential Interface (WinDiff) software can be used instead to mitigate such 

challenges(24).

As much as the use of Kolmogorov-Chapman forward equations on partially observed 

aggregated data could be helpful in epidemiological researches, it is important to note 

that this modelling approach has some limitations too. There are conditions under which 

an analysis of aggregated data (i.e., summary data over individuals) would be biased. 

Firstly, the method restricts attention to a situation whereby only two observations are 

made on an individual (at baseline and the end of study). One may think this approach 

violated the natural process of events in medical research as participants go through various 

intermediate processes between the stipulated times (one year cycle in this case) which 

are not incorporated in the model leading to biased estimates. However, by assuming 

that the observed states follow a multinomial distribution with respect to the initial state 

and the transition probability are depend on the total observation time lined through the 

Kolmogorov-Chapman forward equations leverages this problem. Also, with only a few 

observations, BE shows to be more sensitive to the prior distribution for parameters, and a 

lot of pressure for the posterior estimates is based on the correct prior choices.

Moreover, the other condition under which an analysis of aggregated data would be biased 

is that there is uncertainty as to the exact route, an individual who reached state 3 (death) 

followed. This uncertainty compromises the validity of the reported posterior estimates, 

which is what researchers in epidemiological studies are interested in. In our application, the 

fitted model assumed constant transition rates over time (time-homogeneous), an assumption 

well known to be unrealistic in many kinds of epidemiological researches. This assumption 

may result in biased estimates; hence, time-inhomogeneous transition rates should be 
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considered for unbiased estimates. Lastly, this method needs to be improved so that its 

covariates effects on the aggregated transition rates can be accounted for.

In conclusion, multistate modelling offers a flexible tool in studying disease progression and 

estimating transition rates using various forms of assumptions, estimation methods and data 

features. Multistate models bring out significant disease progression understandings which 

the traditional naïve regression models may ignore. Hence, multistate models should be used 

as a supplement to the traditional naïve regression models to gain additional information. As 

much as the frequentist (MLE) approach continues to dominate research, particularly in life 

sciences, it is restrictive in providing comprehensive estimates based on assumptions which 

reflect reality in disease progression models. Therefore, this research study recommends the 

use of BE models which can implement assumptions reflect natural processes of events and 

use the probability of the hypothesis and data which most epidemiologists prefer. The use of 

the Kolmogorov-Chapman forward equations on aggregated data also helps to open the way 

to a more formal and systematic use of available literature like national reports or clinical 

trials to inform Markov models in decision making. However, it is crucial to understand 

the model development process which might be challenging and make use of the sensitivity 

analysis approach as there could be a problem of the surfeit of posterior distributions due to 

prior variations to validate the results in BE approach.
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Figure 1. Schematic illustration of different types of multistate models.
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Figure 2. The schematic presentation of three states partially observed multistate model and 
the corresponding individual-specific transition intensities (State 1=Viral load <50 copies/mL 
(undetectable); State 2=Viral load ≥50 copies/mL(detectable))
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Figure 3. The multistate model assumptions, estimation types and possible covariates flow chart
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Figure 4. Bivariate scatter plots rates for the four transition rates parameters from the partially 
observed data
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