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Breast cancer is a serious malignancy with a high incidence worldwide and a tendency
to relapse. We used integrated bioinformatics analysis to identify potential biomarkers in
breast carcinoma in the present study. Microarray data, 127breast tumor samples and 23
non-tumor samples, received from the Gene Expression Omnibus (GEO) dataset; 121 differ-
entially expressed genes (DEGs) were selected. Functional analysis using DAVID revealed
that these DEGs were highly gathered in endodermal cell differentiation and proteinaceous
extracellular matrix. Five bioactive compounds (prostaglandin J2, tanespimycin, semustine,
5182598, and flunarizine) were identified using Connectivity Map. We used Cytoscape soft-
ware and STRING dataset to structure a protein–protein interaction (PPI) network. The ex-
pression of CD24, MMP1, SDC1, and SPP1 was much higher in breast carcinoma tissue
than in Para cancerous tissues analyzed by Gene Expression Profiling Interactive Analy-
sis (GEPIA) and ONCOMINE. Overexpression ofCD24, MMP1, SDC1, and SPP1 indicated
the poor prognosis in breast carcinoma patients analyzed by Kaplan–Meier (KM) Plotter.
Immunohistochemistry microarray was used to further confirm that protein expression of
CD24, MMP1, SDC1, and SPP1 was much higher in tumor sections than in Para cancer-
ous tissues. Hub genes expression at the protein level was correlated tothe breast cancer
subtype and grade. Furthermore, immunity analysis showed that CD24, MMP1, SDC1, and
SPP1 were potentially associated with five immune cell types infiltration (CD8+ T cells, CD4+
T cells, neutrophils, macrophages,and dendritic cells) by TIMER. Thus, this study indicates
potential biomarkers that could have applications in the development of immune therapy for
breast cancer. However, further studies are required for verifying these results in vivo and
vitro.

Introduction
Breast cancer occurs frequently in non-skin carcinoma and leading to death in America females at the
second level, with 268600 new patients and 41760 deaths in 2019, accounting for up to 30% of all new
cancers and 15% of cancer deaths [1]. Risk factors for breast cancer include age, environment, smok-
ing, and inheritance; approximately 5–10% of cases are due to genes inherited from the patient’s parents,
such as BRAC1 and BRAC2 mutations [2,3]. There are four subtypes of breast cancer based on molecular
characteristics: luminal A, luminal B, triple negative and HER2 overexpressing. Besides the traditional
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treatment methods of surgery, chemotherapy and/or radiation therapy used for breast cancer, endotherapy can be
used in HR+ cases. Anti-HER-2 therapy is commonly used in HER2+ patients, and in the past several years, im-
munotherapy has been commonly used to treat triple-negative breast cancer [4].

Although the survival rate has improved quickly with the development of surgical techniques and exploration of
new targeted drugs, the effects of therapies for advanced breast cancer have remained poor, only 27% for a 5-year
survival rate [5]. Hence, investigation the mechanism of cancer progression and finding the potential prognostic
biomarkers is very important.

High-throughput microarray technology and bioinformatics analysis can be used to identify differences in gene
expression between cancerous and para- cancerous tissues, analyze the DEGs, and identify the pathways leading to
tumorigenesis and cancer progression.

To understand the molecular mechanisms associated with breast cancer progression, we performed bioinformatics
analysis using the GEO and The Cancer Genome Atlas (TCGA) databases to review all DEGs in breast cancer, for
identifying prognostic biomarkers and potential molecular targets. Then, tissue microarray analysis (TMA) was used
to validate the protein expression of hub genes. Our results indicated that MMP1, CD24, SDC1, and SPP1 are potential
novel prognostic biomarkers and candidate immunotherapy targets for breast cancer.

Materials and methods
Breast cancer data preparation
Microarray platform (GLP570)[6] was used to collect two independent breast cancer gene expression profiles,
GSE26910 [7] and GSE42568 [8], which contain 127 breast carcinoma samples and 23 non-cancer samples. These data
were analyzed using the Affymetrix Human Genome U133 Plus 2.0 Array [transcript (gene) version; Santa Clara, CA,
U.S.A.]. Furthermore, we used 1,105 samples in breast carcinoma and 113 samples in para-cancerous from TCGA
dataset for validation.

Identification of DEGs
After downloading the datasets from GEO, the GEO2R online tool was used to find the DEGs between breast cancer
tissue and non-tumor tissue. The conditions for screening of the DEGs were P<0.05 and |log (fold change)| > 2. An
online Venn diagram tool was used to identify up- and down-regulated genes in the two datasets.

Identification of potential drugs
CMap was used to identify possible drugs that could be used to inhibit tumor progression in breast cancer patients
based on targeting the discovered DEGs [9]. First, we arranged the lists of up- and down-regulated genes for both tu-
mor and non-tumor tissues and uploaded the genes to the CMap online tool. Next, an enrichment score, representing
the similarity in up- and down-regulated genes, were calculated for each drug. A positive enrichment score indicates
that the drug can exacerbate breast cancer progression, whereas a negative enrichment number means that the drug
may inhibit tumor formation.

Functional enrichment analysis
Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways correlated to the DEGs
were identified by DAVID online tool [10]. GO analysis describes genes in terms of the related molecular functions,
biological processes, and cellular components [11]. KEGG pathway analysis was used to check their reference path-
ways in the indicated genes [12].

PPI network construction
STRING was used for construction a PPI network and molecular function network for the DEGs [13]. After collecting
data for the PPI network, visualized the network by Cytoscape, distinguished whether the highly connected modules
were molecular complexes or clusters by the plugin Molecular Complex Detection (MCODE).

Selection of hub genes
We checked the 32 selected genes expression in tumor tissues and non-tumor tissues based on TCGA data by GEPIA
[14]. The DEGs with significantly differential expression between the two tissue types were selected for further anal-
ysis. KM Plotter can analysis the effect of 54675 genes on patient survival in 18674 cancer samples, mainly based on
the GEO, TCGA, and EGA databases [15]. The associations of the DEGs verified by GEPIA with survival rates of
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breast cancer patients were explored by KM Plotter; the DEGs for which higher expression indicated significantly
worse survival were selected as hub genes. P<0.05 looked as statistical significance. ONCOMINE dataset, confirmed
the focus genes expression between cancer and para cancerous tissues in breast cancer [16].

Gene set enrichment analysis (GSEA)
We separated breast carcinoma tissues in two groups through the hub genes median expression on TCGA dataset.
GSEA[17] was used to identify potential functions for hub genes. KEGG pathways associated with the up- and
down-regulated genes were selected. The cut-off condition was considered for adjusted P<0.05.

Associations of immune cell infiltration with hub gene expression
TIMER used for systematically analyzing the relation between immune infiltration and hub gene expression [18].
Hub gene expression, the correlations with the infiltration of immune cells were evaluated by “Gene module”.

Immunohistochemistry validation
A total of 657 breast carcinoma samples and paired para-cancerous samples were collected from 2013 to 2018 at
Tenth Hospital of Tongji University, China. Pathologic diagnoses and classifications were made according to the UICC
Classification of Malignant Tumors.

Tissue cores were obtained from the formalin-fixed paraffin-embedded (FFPE) blocks; the diagnosis of breast
tumor was based on review by a pathologist after coloration with Hematoxylin and Eosin. TMA analysis (Shanghai
Outdo Biotech, Shanghai, China) checked by 2-mm tissue cores two areas of the tumor in each patients(invasive
margin and tumor bulk). Ethical approval for this study was obtained from The Human Research Ethics Committee
of Tenth Hospital of Tongji University. All patients provided informed consent.

Antigen retrieval was conducted by microwave pre-treatment in EDTA buffer (pH 9.0) for 20 min; then, endoge-
nous peroxidase was removed using 3% H2O2, after that blocking for 20 min with avidin. Furthermore, rabbit poly-
clonal antibodies against MMP1 (ab52631, Abcam, UK; dilution 1:60) incubated on the slides overnight at 4 ◦C,
CD24 (ab31622, Abcam, U.K.; dilution 1:100), SDC1 (ab7280, Abcam, U.K.; dilution 1:500), and SPP1 (ab214050,
Abcam, U.K.; dilution 1:500) for 24 h, before being incubated with secondary antibodies at room temperature for 30
min. Tissue sections were incubated with 3,3′-diaminobenzidine for 10 min, then counterstained, dehydrated, and
mounted.

Reading slides by a Nano-Zoomer 2.0-HT slide scanner (Hamamatsu Photonics K.K., Hamamatsu, Japan), ana-
lyzing the images by the NDP. Captured images in TMA slides. The tissue immunostaining was read independently
by two trained pathologists. The criteria for immunohistochemistry evaluation were as follows. 0, negative; 1, weak;
2, medium; and 3, strong scored as the staining intensity; 0, 0%; 1, 1–25%; 2, 26–50%; 3, 51–75%; and 4, 76–100%
scored as the staining extent, which counted by the percentage of positively stained areas in relation to the whole can-
cer area. Sum of the extent score and the intensity score as the final expressed results, which was graded as follows:
−, score 0–2; +, score 3 or 4; ++, score 5 or 6; or +++, score 7. Here, − and 1+ represent low expression; and 2+ and
3+ represent high expression.

Results
DEGs in breast cancer
GSE26910 and GSE42568 datasets were obtained in the GEO database, containing 127 breast carcinoma tissues and
23 non-tumor samples. There were 325 DEGs (130 up-regulated and 195 down-regulated) obtained from GSE26910,
and 1170 DEGs (459 up-regulated and 711 down-regulated) from GSE42568 between tumor and non-tumor tissues.
These results are shown as volcano plots in Figure 1A,B. Furthermore, the DEGs were analyzed by Venn diagram;
121 DEGs (31 up-regulated and 90 down-regulated) were found in the two datasets, as shown in Figure 1C,D and
Supplementary Table S1.

DEGs enrichment analysis
DAVID online was used to further analyze the functions of the overlapping two GEO datasets DEGs in breast cancer
tissues. The up-regulated DEGs were mainly enriched in endodermal cell differentiation, collagen catabolic pro-
cess, and cell adhesion (biological processes); proteinaceous extracellular matrix (ECM; cellular component); and
lipid binding (molecular function). Down-regulated DEGs were mainly enriched in negative regulation of cell pro-
liferation, extracellular region, and lipid binding. In the KEGG pathway analysis, DEGs were mainly enriched in
ECM–receptor interaction and TNF signaling pathway (Tables 1 and 2).
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Figure 1. DEGs in breast cancer and non-cancer tissues

(A) Volcano plot, represented DEGs in breast cancer tissues and non-tumor samples in GSE26910 dataset. (B)Volcano plot, rep-

resented DEGs in breast cancer tissues and non-tumor tissues in GSE42568 dataset. Red dots, indicate genes highly induced

in breast cancer; green dots indicate genes greatly reduced in breast cancer, blue dots indicate non-DEGs. (C)Venn diagram

represented the downregulated overlapping DEGs from GSE26910 and GSE42568 datasets. (D) Venn diagram represented the

upregulated overlapping DEGs from GSE26910 and GSE42568 datasets.

Table 1 GO analysis of DEGs in breast cancer

Expression Category Term Count % P-value FDR

Up-regulated GOTERM BP DIRECT GO:0035987∼endodermal cell differentiation 4 9.15 1.32E-05 0.017315

GOTERM BP DIRECT GO:0030574∼collagen catabolic process 3 5.86 2.05E-04 0.268194

GOTERM BP DIRECT GO:0007155∼cell adhesion 5 1.14 2.44E-04 0.319249

GOTERM BP DIRECT GO:0002063∼chondrocyte development 3 6.86 2.82E-04 0.368791

GOTERM BP DIRECT GO:0001502∼cartilage condensation 3 6.86 4.20E-04 0.548872

GOTERM CC DIRECT GO:0005578∼proteinaceous extracellular matrix 8 18.30 1.35E-08 1.30E-05

GOTERM MF DIRECT GO:0008289∼lipid binding 6 4.84 4.06E-04 0.516306

GOTERM MF DIRECT GO:0001077∼transcriptional activator activity,
RNA polymerase II core promoter proximal
region sequence-specific binding

7 5.65 4.35E-04 0.056502

Down-
regulation

GOTERM BP DIRECT GO:0008285∼negative regulation of cell proliferation 10 8.07 6.54E-05 0.101387

GOTERM BP DIRECT GO:0006869∼lipid transport 5 4.04 3.69E-04 0.570794

GOTERM BP DIRECT GO:0050873∼brown fat cell differentiation 4 3.23 3.87E-04 0.597749

GOTERM BP DIRECT GO:0045429∼positive regulation of nitric oxide
biosynthetic process

4 3.23 9.29E-04 1.430151

GOTERM CC DIRECT GO:0005576∼extracellular region 21 1.70 1.50E-05 0.016859

GOTERM CC DIRECT GO:0005615∼extracellular space 19 1.54 1.67E-05 0.018833

GOTERM MF DIRECT GO:0008289∼lipid binding 6 4.84 4.06E-04 0.516306

GOTERM MF DIRECT GO:0001077∼transcriptional activator activity,
RNA polymerase II core promoter proximal
region sequence-specific binding

7 5.65 4.35E-04 0.553146

Abbreviations: BP, biological process; CC, cell component; MF, molecular function.
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Table 2 KEGG pathway analysis of DEGs in breast cancer

Pathway ID Category Count % P-value Genes

bta04512 ECM–receptor interaction 7 4.18 1.85E-05 SDC1, CD36, COMP, ITGA7, COL11A1, FN1, SPP1

bta04668 TNF signaling pathway 6 3.60 6.31E-04 FOS, PTGS2, MMP9, CXCL2, CXCL10

bta05200 Pathways in cancer 9 5.37 0.003734 EGFR, FOS, EDNRB, BMP2, PTGS2, MMP9, ZBTB16, MMP1,
FN1

bta05144 Malaria 4 2.39 0.004793 SDC1, CD36, COMP, HBB

bta03320 PPAR signaling pathway 4 2.39 0.01037 CD36, FABP4, ADIPOQ, MMP1

bta05205 Proteoglycans in cancer 6 3.58 0.009768 EGFR, SDC1, GPC3, ERBB3, MMP9, FN1

bta04510 Focal adhesion 6 3.58 0.010782 EGFR, COMP, ITGA7, COL11A1, FN1, SPP1

Table 3 CMap results

Rank CMap name Mean n Enrichment P-value

1 Quinpirole 0.717 15 0.945 0

2 15-δ prostaglandin J2 −0.442 62 −0.583 0

3 Tanespimycin −0.294 4 −0.378 0

4 Semustine −0.637 2 −0.903 0.00016

5 5182598 −0.713 4 −0.988 0.00036

6 Flunarizine −0.624 4 −0.882 0.00048

7 Propafenone −0.588 4 −0.863 0.00064

8 Securinine −0.641 4 −0.842 0.00109

9 Altizide 0.45 2 0.83 0.00127

10 5224221 −0.7 4 −0.975 0.00135

11 Scopolamine 0.382 6 0.824 0.00151

12 Lanatoside C −0.542 4 −0.696 0.00193

13 Pridinol −0.54 4 −0.816 0.00209

14 Mesoridazine −0.53 3 −0.816 0.00209

15 Sulfaquinoxaline 0.589 15 0.888 0.00264

Identification of small molecular drugs
CMap was used to identify small molecular drugs according to the up- and down-regulated DEGs. Prostaglandin
J2, tanespimycin, semustine, 5182598, and flunarizine were the five small molecules most significantly negatively
correlated with the DEGs in breast cancer. Thus, these molecules are potentially targeted drugs for breast cancer
(Table 3).

PPI network and module analysis
We identified protein connections between the overlapping DEGs in STRING online database; connection score was
0.2. Next, Cystoscope was used to establish a PPI network consisting of 32 nodes and 134 edges (Figure 2A). MCODE
was then used to find two clusters: cluster 1 contained 32 nodes and 134 edges, with a score of 8.645; cluster 2 contained
3 nodes with 3 edges, with a score of 3 (Figure 2B,C).

Hub genes survival analysis
GEPIA online tool was used for checking the hub genes expression in breast cancer and non-tumor tissues by TCGA
dataset. CD24, MMP1, MMP9, SDC1, COMP, GOLM1, POSTN, FN1, SPP1, CXCL10, WISP1, ERBB3, COL10A1,
KRT19 and MMP11 were upregulated in breast cancer tissues compared with normal tissues (Figure 3A). FOSB,
FOS, PTGS2, EGFR, EFEMP1, KLF4, CXCL2, GPC3, ITGA7, CHRDL1, CD36, PDK4, BMP2, ATF3, ADIPOQ, and
ADAMTS1 expression was much lower in tumor tissues than in normal tissues (Supplementary Figure S1).

KM Plotter was used to check the prognostic value of the 33 DEGs. Higher MMP1, SDC1, SPP1, and CD24 expres-
sion was correlated with worse overall survival (OS) and relapse-free survival (RFS) in breast cancer patients (Figure
3B,C). Other genes showed no significant correlation with survival (Supplementary Figure S2). Hence, we focused
on these four genes in the subsequent analysis.

In the luminal A subtype, higher MMP1 and CD24 expression levels were correlated with worse OS. In the luminal
B subtype, SDC1 and SPP1 expression was significantly correlated with prognosis of breast cancer patients. MMP1
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Figure 2. PPI network and module analysis

(A) PPI network. (B) Top module cluster analyzed by MCODE. (C) Top two module clusters analyzed by MCODE.

Figure 3. Survival analysis for hub genes

(A) 15 hub genes expressed much higher in breast cancer tissues than normal breast tissues by GEPIA. (B)9 hub genes was

correlated with OS in breast cancer patients. (C) MMP1, CD24, SDC1, and SPP1 was expression correlated with RFS in breast

cancer patients. Abbreviation: OS, overall survival; RFS, relapse-free survival.

*,P<0.01.
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Figure 4. OS curves for MMP1, CD24, SDC1, and SPP1 expression in breast cancer subtypes

(A) Luminal A; (B) luminal B; (C) triple-negative; (D) HER2+.

and SDC1 expression was correlated with prognosis in the triple-negative subtype. In HER-2+ breast cancer, MMP1,
SDC1, SPP1, and CD24 expression showed no significant association with prognosis (Figure 4A–D). None of the four
genes had any significant correlation with tumor stages I–IV, as shown in Supplementary Figure S3.

GSEA
To find the potential function of the four genes according to the TCGA breast cancer dataset, we evaluated the KEGG
pathways involved in the highly expressed samples by GSEA. The most enriched KEGG pathways were chemokine
signaling pathway, cytokine receptor interaction, natural killer cell-mediated cytotoxicity, and T cell receptor signaling
pathway (Figure 5).
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Figure 5. GSEA was applied to identify enriched biological processes for the four key genes (MMP1, CD24, SDC1 and SPP1)

with highly expressed samples

Immune infiltration and hub genes
Immune cell infiltration was analyzed with respect to its associations with MMP1, SDC1, SPP1, and CD24 expres-
sion. MMP1 expression was positively associated with infiltration of CD4+ T cells (rho = 0.105, P=1.13e-03), CD8+
T cells (rho = 0.154, P=1.35e-05), macrophages (rho = 0.179, P=1.62e-8), neutrophils (rho = 0.299, P=3.92e-21),
and dendritic cells (DCs; rho = 0.325, P=6.58e-25). CD24 expression was positively correlated with infiltration of
CD8+ T cells (rho = 0.095, P=2.97e-03) and neutrophils (rho = 0.068, P=3.47e-02). SDC1 expression was signif-
icantly positive associated with CD8+ T cells (rho = 0.171, P=6.16e-08), macrophages (rho = 0.189, P=2.17e-09),
neutrophils (rho = 0.12, P=2.1e-4), and DCs (rho = 0.169, P=1.69e-07). SPP1 expression higher, the infiltration
of CD4+ T cells (rho = 0.098, P=2.26e-03), CD8+ T cells (rho = 0.077, P=1.58e-02), macrophages (rho = 0.407,
P=1.78e-40), DC (rho = 0.339, P=5.24e-27), and neutrophils (rho = 0.371, P=2.51e-32) was much more (Figure
6).

TIMER survival model can be used for analyzing the clinical relevance of one or more tumor immune subsets. In the
multivariable Cox proportional hazard model, in BRCA, stage 3 (P=0.000), stage 4 (P=0.000), CD24 (P=0.002), and
MMP1 (P=0.042) were significantly correlated with survival. Then, we performed subtype analysis; the BRCA-basal
group comprised 118 patients with the following associations with survival: stage (P=0.000), purity (P=0.000),
CD4+ T cells infiltration (P=0.000), DC infiltration (P=0.001), SDC1 expression (P=0.025), and SPP1 expression
(P=0.037). In the BRCA-luminal group, 591 patients were analyzed; stage (P=0.000), DC infiltration (P=0.008),
SDC1 expression (P=0.014), CD24 expression (P=0.028), and MMP1 expression (P=0.001) were correlated with
survival. However, in the BRAC-HER2 group, no clinically relevant associations with survival were found among the
65 patients (Tables 4-7).

Validation of hub gene expression in different samples
ONCOMINE, used for confirming the selected four DEGs in breast tumor and non-tumor tissues at the mRNA
level. MMP1, SDC1, SPP1, and CD24 mRNA declaration was much higher in tumor tissues than in non-tumor tissue
(Figure 7).

8 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 4 The Cox proportional hazard model of SDC1, SPP1, CD24, MMP1 and tumor-infiltrating immune cells in breast
carcinoma (TIMER)

BRCA Coef HR 95% CI-l 95% CI-u P-value

Stage 2 0.355 1.426 0.757 2.688 0.272

Stage 3 1.211 3.357 1.753 6.427 0.000*

Stage 4 2.418 11.218 5.036 24.991 0.000*

Purity 0.412 1.509 0.542 4.204 0.431

CD8-T cell −1.126 0.324 0.018 5.839 0.445

CD4-T cell 2.406 11.094 0.135 914.872 0.285

Macrophage 2.619 13.717 0.759 247.73 0.076

Neutrophil 0.986 2.68 0.008 897.384 0.74

Dendritic −1.445 0.236 0.028 2.002 0.186

SDC1 −0.031 0.969 0.793 1.185 0.762

SPP1 −0.035 0.966 0.837 1.114 0.633

CD24 0.189 1.208 1.07 1.363 0.002*

MMP1 0.108 1.114 1.004 1.237 0.042*

*,P<0.05.

Table 5 The Cox proportional hazard model of SDC1, SPP1, CD24, MMP1 and tumor-infiltrating immune cells in basal like
breast carcinoma (TIMER)

BRCA-basal Coef HR 95% CI-l 95% CI-u P-value

Stage 2 9.755 1724.45 5628.5 52833.27 0.000*

Stage 3 11.601 10916.83 36549.6 3.26*105 0.000*

Stage 4 13.302 59858.1 53221.18 6.73*106 0.000*

Purity 6.405 605.04 21.91 16710.19 0.000*

CD8-T cell −1.209 0.298 0.003 28.12 0.602

CD4-T cell 18.874 157415300 412998.97 5.999*1010 0.000*

Macrophage 4.015 55.4 0.141 21703.2 0.188

Neutrophil 1.417 4.13 0.023 737.4 0.592

Dendritic −2.981 0.051 0.008 0.311 0.001*

SDC1 0.623 1.865 1.082 3.214 0.025*

SPP1 0.352 1.522 1.022 1.98 0.037*

CD24 −0.339 0.712 0.466 1.09 0.118

MMP1 −0.137 0.872 0.794 1.095 0.237

*,P<0.05.

Table 6 The Cox proportional hazard model of SDC1, SPP1, CD24, MMP1 and tumor-infiltrating immune cells in luminal
breast carcinoma (TIMER)

BRCA-luminal Coef HR 95% CI-l 95% CI-u P-value

Stage 2 0.042 1.043 0.503 2.161 0.91

Stage 3 0.745 2.107 0.945 4.7 0.069

Stage 4 2.15 8.583 3.164 23.29 0.000*

Purity −0.384 0.681 0.164 2.835 0.598

CD8-T cell 1.523 4.587 0.047 451.93 0.515

CD4-T cell 2.937 18.865 0.011 31150.4 0.437

Macrophage 2.201 9.034 0.155 526.65 0.289

Neutrophil 8.566 5248.648 0.236 1.17*108 0.093

Dendritic −5.114 0.006 0.000 0.256 0.008*

SDC1 −0.343 0.71 0.54 0.933 0.014*

SPP1 −0.032 0.969 0.797 1.177 0.75

CD24 0.168 1.183 1.018 1.375 0.028*

MMP1 0.284 1.132 0.794 1.56 0.001*

*,P<0.05.
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Figure 6. Correlations of expression of four key genes (MMP1, CD24, SDC1, and SPP1) with immune cell infiltration

Table 7 The Cox proportional hazard model of SDC1, SPP1, CD24, MMP1 and tumor-infiltrating immune cells in HER2+
breast carcinoma (TIMER)

BRCA-HER2 Coef HR 95% CI-l 95% CI-u P value

Stage 2 15.68 6.45*106 0.000 Inf 0.999

Stage 3 19.574 3.168*108 0.000 Inf 0.999

Stage 4 20.431 7.466*108 0.000 Inf 0.999

Purity 4.751 115.7 0.525 2.548*104 0.084

CD8-T cell −2.266 0.104 0.000 8.899*107 0.829

CD4-T cell 14.213 1.487*106 0.000 3.54*1018 0.328

Macrophage 4.79 120.34 0.000 1.234*1013 0.711

Neutrophil −10.241 0.000 0.000 3.602*1012 0.608

Dendritic −0.139 0.87 0.000 1.299*105 0.982

SDC1 −1.066 0.345 0.135 0.881 0.026*

SPP1 −0.377 0.686 0.301 1.565 0.371

CD24 0.521 1.684 0.761 3.726 0.198

MMP1 0.123 1.131 0.559 2.288 0.732

*,P<0.05.

Furthermore, a tissue microarray was used for verifying the protein levels of these four hub genes in breast cancer
and para cancerous tissues. High expression of MMP1 was found in 30.7% of cancer tissues but 1.2% of pan-cancer
tissues (P=0.00). The percentages of high protein expression of CD24, SDC1, and SPP1 were 28.6, 34.2, and 19.2%
in breast cancer tissue, compared with 1.5, 1.5, and 1.1% in pan-cancer tissue, respectively (P=0.00, P=0.00, and
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Figure 7. Evaluation of MMP1, CD24, SDC1, and SPP1 expression in breast cancer tissue and normal tissue

(A) MMP1, CD24, SDC1, and SPP1 expression was up-regulated in breast cancer tissue compared with normal tissue in the

Oncomine dataset. (B) MMP1, CD24, SDC1, and SPP1 protein expression was up-regulated in breast cancer tissue compared with

normal tissue according to tissue microarray analysis.

Table 8 MMP1, CD24, SDC1 and SPP1 protein expression in cancer and paracancerous tissues

Paracancerous tissue (%) Cancer tissue (%) χ2 P

SPP1 117.316 0.00

Low 644 (98.9) 531 (80.8)

High 7 (1.1) 126 (19.2)

SDC1 237.389 0.00

Low 641 (98.5) 432 (65.8)

High 10 (1.5) 225 (34.2)

CD24 186.649 0.00

Low 641 (98.5) 469 (71.4)

High 10 (1.5) 188 (28.6)

MMP1 211.385 0.00

Low 643 (98.8) 455 (69.3)

High 8 (1.2) 202 (30.7)

P=0.00) (Table 8, Figure 5B). The protein expression of MMP1, CD24, SDC1, and SPP1 was significantly correlated
with tumor grade and subtype but not with tumor stage (Tables 9-12). In the molecular correlation analysis, MMP1
protein was found to be significantly correlated with SPP1 protein expression (P=0.03) but not with that of SDC1
or CD24 (P=0.33 and P=0.74); CD24 protein expression was significantly correlated with SDC1 and SPP1 (P=0.00
and P=0.00) but not MMP1 protein expression (P=0.74); SDC1 protein expression was significantly correlated with
SDC1 and SPP1 (P=0.00, P=0.00) but not MMP1 protein expression (P=0.33); and SPP1 protein expression was
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Table 9 MMP1 expression in carcinoma tissue and the correlation with clinical factors

Characteristics MMP1 (low) MMP1 (high) P-value

Age (years)

≤50 0.12

>50 333 157

120 41

Grade 0.01*

0/I 6 6

II 207 113

III 197 65

Vascular invasion 0.76

N 378 167

Y 73 30

Stage 0.24

I 162 60

II 198 93

III 83 41

Subtype 0.00**

Luminal A 194 114

Luminal B 92 41

HER2-positive 64 14

Triple-negative 99 24

N 0.66

Negative 264 111

Positive 187 85

CD24 0.74

Low 328 51

High 123 145

SDC1 0.33

Low 303 124

High 148 72

SPP1 0.03*

Low 376 149

High 75 47

*,P<0.05; **,P<0.01.

significantly correlated with MMP1, CD24, and SDC1 protein expression (P=0.03, P=0.00, and P=0.00) (Tables
9-12).

Discussion
In this study, two microarray datasets GSE26910 and GSE42568 were collected from GEO database, and a total
of 121 DEGs between breast cancer and non-cancer tissues were identified, comprising 31 up-regulated and 90
down-regulated genes. Bioinformatics analysis was conducted based on these DEGs.

First, several target small molecules that could be used for inhibition of breast cancer development were identified.
Prostaglandin J2, the endogenous product of the cyclooxygenase pathway, mediated pro- and anti-inflammatory ef-
fects through receptor-dependent or -independent pathways. Moreover, 15-deoxy-δ (12,14)-prostaglandin J (2), one
of the main subtypes of prostaglandin J2, inhibited cancer growth through arresting cell growth in G2/M phase and
inducing apoptosis of breast cancer cells [20]. However, this requires further exploration through in vivo and clinical
studies. Tanespimycin, an inhibitor of heat shock protein 90, combination with trastuzumab showed higher anticancer
affection in metastatic breast cancer patients for HER2+ molecular subtype, compared with trastuzumab alone in a
phase II study [19]. However, tanespimycin had no effect in metastatic or locally advanced, unresectable breast cancer
in a phase II study involving three patients. Hence, further study of tanespimycin in unselected breast cancer patients
were not recommended [20]. However, tanespimycin is a potential targeted therapy drug in selected breast cancer
populations. Semustine, a 4-methyl derivative of lomustine, is widely used in glioma therapy [21]. The growth of
MCF-7 breast carcinoma cells was shown to be inhibited by semustine, but the mechanism and effects of semustine
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Table 10 CD24 expression in carcinoma tissue and the correlation with clinical factors

Characteristics CD24 (low) CD24 (high) P-value

Age (years) 0.12

≤50 351 139

>50 122 37

Grade 0.00**

0/I 11 1

II 254 66

III 172 90

Vascular invasion 0.78

N 399 146

Y 74 29

Stage 0.36

I 167 56

II 210 81

III 96 35

Subtype 0.00**

Luminal A 256 52

Luminal B 102 31

HER2-positive 38 40

Triple-negative 77 48

N 0.70

Negative 272 103

Positive 201 71

MMP1 0.74

Low 328 123

High 145 51

SDC1 0.00**

Low 330 97

High 143 77

SPP1 0.00**

Low 400 125

High 73 49

**,P<0.01.

in vivo remain unclear [22]. A benzylisoquinoline alkaloid, 5182598, is considered to be an important anticancer
drug because it can repair damaged metabolic pathways in metastatic prostate carcinoma [23]; its effects on breast
cancer need to be further clarified. Flunarizine, a selective calcium entry blocker with calmodulin-binding proper-
ties and histamine H1-blocking activity has been reported to inhibit tumor cell growth in melanoma and lymphoma
through inhibiting the Wnt pathway [24]. Flunarizine mediated cell autophagy by degrading N-Ras induction to in-
hibit growth of basal-like tumor cells in vitro and in vivo, with low toxicity; thus, it should be the subject of further
investigation as a potential targeted therapy [25].

Second, upregulated DEGs mainly associated with endodermal cell differentiation and tumor behavior; generally,
tumors with immature differentiation are much more aggressive than those with more mature differentiation. In
breast cancer, stem cell activation and inhibition of cell differentiation are associated with tumorigenesis. Hypoxia is
correlated with tumor differentiation, and increased protein levels of HIF-1 and HIF-2 are linked to worse prognosis
of breast cancer patients [26]. Wnt/β-catenin pathway, a classic pathway in the formation of cancer stem cells, could
enhance tumor growth through inhibiting cell differentiation [27]. Cell component GO enrichment analysis showed
that the DEGs were mainly associated with the proteinaceous ECM. The ECM is an important factor in tumor growth,
migration, and vascular formation in human breast cancer [28]. Cancer-associated fibroblasts have been found in the
ECM and shown to have a role in breast cancer growth and chemoresistance. Hoang et al. found that ERK5, a member
of the MAPK family, regulated the ECM to induce tumor proliferation and migration in triple-negative breast cancer
[29]. Molecular function GO enrichment analysis indicated that the DEGs were mainly associated with lipid binding.
Abnormal lipid metabolism is closely linked with tumorigenesis [30]. FAC, a key enzyme in fatty acid biosynthesis,
acts as a metabolic oncogene in cancer growth. In breast cancer, HBXIP could modulate abnormal lipid metabolism
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Table 11 SDC1 expression in carcinoma tissue and the correlation with clinical factors

Characteristics SDC1 (low) SDC1 (high) P-value

Age (years) 0.86

≤50 322 168

>50 107 54

Grade 0.00**

0/I 11 1

II 228 92

III 152 110

Vascular invasion 0.07

N 359 186

Y 67 36

Stage 0.36

I 153 71

II 187 106

III 88 44

Subtype 0.00**

Luminal A 239 71

Luminal B 92 43

HER2-positive 30 50

Triple-negative 67 58

N 0.45

Negative 253 124

Positive 176 98

MMP1 0.33

Low 303 148

High 124 72

CD24 0.00**

Low 330 143

High 97 77

SPP1 0.00**

Low 371 156

High 58 66

**,P<0.01.

and tumor growth by activating FAS signaling [31]. The long-chain ω-3 fatty acids have an important role in inflam-
mation resolution, inhibiting breast cancer occurrence through production of lipid mediators. A meta-analysis of 16
cohort studies indicated that ω-3 intake was associated with a reduction in breast cancer risk [32]. The KEGG path-
way analysis for DEGs mainly focused on ECM–receptor interactions, which have important roles in tumor growth
and migration [33].

Third, four hub genes that could have important key functions in tumor growth in breast cancer, MMP1, SDC1,
CD24, and SPP1, were identified using GEO and TCGA public datasets as potential prognostic biomarkers. In breast
cancer tissue samples, MMP1, SDC1, CD24, and SPP1 showed higher protein expression compared with that in
tumor-adjacent tissues, and their expression was positively correlation with tumor subtype and grade. MMP1, a mem-
ber of the matrix metalloproteinase family, functions as an interstitial collagenase and fibroblast collagenase. Higher
MMP1 expression could predict worse disease-free survival (DFS) and OS in patients with invasive breast cancer,
but the mechanism underlying this association is not clear [34]. In the breast cancer xenograft model, reduction of
MMP-1 expression significantly inhibited breast cancer growth, brain metastasis, and lung metastasis through re-
ducing TGFa release and phosphor-EGFR expression [35]. In triple-negative breast cancer tissues, MMP1 protein
expression positively depended on lymph node metastasis; furthermore, in an in vitro study, knockdown of MMP1
inhibited cell proliferation in triple-negative breast cancer MBA-231 cells [36]. In MCF-7 breast cancer cells, MMP1
is activated by Slug and enhances multidrug resistance; knockdown of Slug reduced MMP1 expression in these cells,
further enhancing adriamycin resistance [37]; in immune analysis, in luminal breast cancer, MMP1 is negatively as-
sociated with tumor survival. Our results are almost consistent with those of previous studies. MMP1 has potential
as a prognostic biomarker and therapeutic target in breast cancer, but more in vivo and clinical studies are required.
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Table 12 SPP1 expression in carcinoma tissue and the correlation with clinical factors

Characteristics SPP1 (low) SPP1 (high) P-value

Age (years) 0.28

≤50 392 98

>50 135 26

Grade 0.00**

0/I 12 0

II 277 43

III 191 71

Vascular invasion 0.37

N 444 101

Y 80 23

Stage 0.36

I 182 42

II 236 57

III 109 23

Subtype 0.00**

Luminal A 273 37

Luminal B 109 26

HER2-positive 54 26

Triple-negative 90 35

N 0.29

Negative 300 77

Positive 227 47

MMP1 0.03*

Low 376 75

High 149 47

CD24 0.00**

Low 400 73

High 125 49

SDC1 0.00**

Low 371 58

High 156 66

*,P<0.05; **,P<0.01.

CD24 is a small and heavily glycosylated mucin-like glycosylphosphatidyl-inositol-linked cell surface protein, was
detected in several types of carcinomas but is rarely expressed in normal tissues [38]. In breast cancer, the effects of
CD24 on prognosis in terms of OS and DFS are controversial. Meta-analysis with breast cancer tissues indicated that
higher CD24 expression was associated with shorter OS and correlated with tumor stage and lymph node metastasis
[39]. Moreover, Jing et al. found that CD24 overexpressed in cancer tissues than in normal breast tissue commonly;
in addition, CD24 expression was closely correlated with SDC1 mRNA expression, indicating that it could serve as
a prognostic indicator for breast cancer [40]. In our study, CD24 protein expression was positively correlated with
tumor grade, subtype and SDC1 expression, with higher expression of CD24 in breast cancer tissues compared with
tumor-adjacent tissues. CD24 could thus be a prognostic biomarker and therapeutic target in breast cancer, but more
in vitro and in vivo studies are needed to clarify its potential.

SDC1, a heparin cell surface proteoglycan that functions as a growth factors and chemokines co-receptor, which
strongly correlated to the tumor aggressiveness and clinical results [41]. In breast cancer, higher expression of SDC1 is
correlated to worse OS and positively correlated with grade. Cui et al. used the database to identify SDC1 as positively
associated with PLAU expression and a potential prognostic marker and target in breast cancer [42]; however, the
clinical effects and prognostic value were controversial. Knockdown of SDC1 could increase cell adhesion and motility
dependent on integrin expression and IL6 secretion [43]. SDC1 is positively correlated with tumor subtype and grade
according to our study and could thus become a prognostic biomarker. In basal breast cancer, SDC1, CD4+ T cells,
and DCs were negatively correlated with tumor survival; however, the associated molecular mechanism needs to be
further verified.
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SPP1 is a protein overexpressed in breast tumors. Higher plasma levels of OPN with shorter OS in patients through
inducing the tumor burden[44]. In our study, SPP1 expressed much higher in breast cancer tissue than in para can-
cerous tissues. SPP1 expression was correlated with the Luminal B breast cancer tissue.

Fourth, the higher expression of MMP1, CD24, SDC1 and SPP1 enriched in NK cell-mediated cytotoxicity and T
cell receptor signaling pathway according to GSEA analysis indicated that immune cell infiltration might be correlated
with expression of hub genes. High expression of MMP1 was positively correlated with infiltration of CD4+ T cells,
CD8+ T cells, DC, neutrophils, and macrophages. In dermatofibrosarcoma protuberance tumor tissues, MMP1 was
found to be prominent in tumor-associated macrophages [45]. CD24 expression was positively correlated with CD8+
T cell and neutrophil infiltration. In ovarian and triple-negative breast cancers, CD24 signaling could serve as a target
for cancer immunotherapy through enhancing tumor-associated macrophage expression of Siglec-10 [46]. CD24
can aggravate acute liver injury via expression of IFN-γ on CD4+ T cells [47]. CD24 has potential as an immune
therapy target in breast cancer, but further in vitro and in vivo studies are needed to clarify this. SDC1 expression was
significantly positively correlated with infiltration of CD8+ T cells, macrophages, DC, and neutrophils. In pancreatic
cancer, SDC1 regulates micropinocytosis to enhance tumor growth [48]. More studies are needed to explore whether
SDC1 could be used as an immune therapy target in breast cancer. SPP1 was positively linked with infiltration of
CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and DC. In lung cancer, SPP1 enhanced PD-L1 expression
and mediated macrophage polarization to facilitate immune escape [49]. SPP1 could have an important role as an
immune therapy target in breast cancer.

In our results , high expression of MMP1, CD24, SDC1, and SPP1 correlated to the development of breast cancer,
worse OS and immune cell infiltration, indicating that MMP1, CD24, SDC1, and SPP1 might be as the potential prog-
nostic biomarkers and immunotherapy targets for breast tumor. We verified the results in several different datasets,
including our own clinical datasets. However, there were some limitations of our study. First, there was a lack of in
vitro and in vivo studies to verify the results, some other datasets were not used for verification the hub genes and
immunity, like ArrayExpress database, InSilicoDB and METABRIC [50,51]. Second, further study of the roles of the
four hub genes in different subtypes of breast cancer is required. Third, the survival results of our own clinical datasets
not be analyzed. Finally, the molecular status of the four hub genes with respect to mutation and methylation was not
checked in this study. Hence, further study is required to determine whether MMP1, CD24, SDC1, and SPP1 could
be used as biomarkers or immune therapy targets in breast cancer.
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