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Abstract: Mild cognitive impairment (MCI) is an early stage of cognitive decline or memory loss,
commonly found among the elderly. A phonemic verbal fluency (PVF) task is a standard cognitive
test that participants are asked to produce words starting with given letters, such as “F” in English and
“
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” /k/ in Thai. With state-of-the-art machine learning techniques, features extracted from the PVF
data have been widely used to detect MCI. The PVF features, including acoustic features, semantic
features, and word grouping, have been studied in many languages but not Thai. However, applying
the same PVF feature extraction methods used in English to Thai yields unpleasant results due to
different language characteristics. This study performs analytical feature extraction on Thai PVF data
to classify MCI patients. In particular, we propose novel approaches to extract features based on
phonemic clustering (ability to cluster words by phonemes) and switching (ability to shift between
clusters) for the Thai PVF data. The comparison results of the three classifiers revealed that the
support vector machine performed the best with an area under the receiver operating characteristic
curve (AUC) of 0.733 (N = 100). Furthermore, our implemented guidelines extracted efficient features,
which support the machine learning models regarding MCI detection on Thai PVF data.

Keywords: MoCA; mild cognitive impairment; phonemic verbal fluency; feature extraction;
silence-based feature; similarity-based feature; phonemic clustering; switching; classification

1. Introduction

Thailand entered an aging society in 2001 when the aging population over 65 was
around 7% of the country’s population. By 2050, its aging population is expected to reach
35.8%; i.e., ~20 million people [1]. In 2021, the share of population older than 65 years old in
Thailand accounted for 12.4%. According to prevalence studies, mild cognitive impairment
(MCI) was found in ~20% of the elderly [2–4]. This percentage is alarming to healthcare
professionals because MCI causes a cognitive change in people over 65 years of age that can
develop into Alzheimer’s disease (AD) or dementia [5]. Early detection of MCI is essential
for the elderly to manage their lifestyle, which may alleviate the impairments in brain
function [4]. However, a diagnosis of MCI can be time consuming and cost intensive due to

Sensors 2022, 22, 5813. https://doi.org/10.3390/s22155813 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155813
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5545-4339
https://orcid.org/0000-0002-8590-3107
https://orcid.org/0000-0002-4007-1124
https://doi.org/10.3390/s22155813
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155813?type=check_update&version=2


Sensors 2022, 22, 5813 2 of 17

the need for several clinical procedures. Using information and communication technology
will facilitate clinicians to overcome these limitations.

The Montreal cognitive assessment (MoCA) is a prominent screening assessment tool
to diagnose cognitive impairment [6–10]. MoCA is used to diagnose MCI by considering
patients’ performance in various cognitive functions using tests. Inevitably, MoCA has
some limitations. First, the original paper-and-pencil MoCA requires experts to conduct
the assessment with the participants. Second, it cannot be used for sightless or motor
disabilities. Third, the assessment result is stored manually only on paper, making it
difficult to further analyze the results.

A possible solution to mitigate the above limitations is to consider the analysis of
verbal fluency (VF). There are two categories of VF: semantic VF (SVF) and phonemic VF
(PVF). Many scholars have shown the success of MCI detection using VF [11–16]. SVF can
be obtained when patients are asked to say a word in certain categories (e.g., fruits, animals).
Meanwhile, for PVF, MoCA prompts patients to say words beginning with specific letters,
such as “F”, in 1 min. The score of a PVF test is calculated from the total number of correct
answers. A decline in VF or a low score is evidence of frontal lobe dysfunction, which
is related to the symptoms of MCI [17]. The number of generated words in Thai PVF
substantially differs between MCI and a healthy control (HC) [18]. Several studies have
suggested ways to extract features from PVF for MCI detection, which will be extended in
the related work.

Although the abovementioned analytical process performs well in English, it cannot be
applied to Thai. The main reason is that Thai has different grammatical rules and structures
compared with English [19], which could pose numerous problems, such as (1) the problem
of phonemic clustering in Thai, which requires subcategories to be rearranged; (2) the
homophone problem because Thai has several sets of letters that produce the same sound,
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In this study, we focused on detecting MCI using Thai PVF data from the digital
MoCA [10], which has validity as assessed by examining Spearman’s rank order coefficients
and the Cronbach alpha value [20]. To solve the language barriers, we planned to use
our proficiency in Thai language to develop a novel phonemic clustering and switching
algorithm. Furthermore, we proposed a novel method by combining various feature types
with feature selection using the chi-square test. In this way, we achieved a promising result
in detecting MCI using Thai PVF data and highlighted the feature’s importance for further
research investigation.

2. Related Work

VF tasks are employed for assessing neuropsychology because of their conciseness
and ease of use. Participants are asked to name as many words as possible in 1 min under a
given condition. SVF has the condition of requiring participants to identify things, such as
animals or fruits. Meanwhile, PVF has the condition of requiring participants to produce
words beginning with specific letters, such as F or P. Several scholars have analyzed variants
within VF tasks to observe the processes that influence cognitive impairment.

Troyer et al. [21] introduced two essential components in VF: clustering—the group-
ing of words within semantic or phonemic subcategories; and switching—the ability to
transition between clusters. Ryan et al. [22] compared cognitive decline between experi-
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enced boxers and beginners and proposed a cluster using a similarity score of phonemes
in VF. They showed that the number of fights was significantly related to shifting ability.
Mueller et al. [23] investigated the correlation between PVF and SVF using data from the
Wisconsin Registry for Alzheimer’s Prevention. They showed that persons with amnestic
MCI poorly have lower scores than the control group. Clustering is related to the tendency
for participants to produce words within the same category. Switching refers to participants’
conscious decision to shift from one category to another [24].

Word similarity is an effective strategy for detecting cognitive impairment. Leven-
shtein et al. [25] introduced the Levenshtein distance (LD) to evaluate word similarity by
edit distance. LD is the number of operations (e.g., insertions, deletions, and substitutions)
required for transforming one word into another. Orthographic similarity, calculated from
comparing letters in words, is commonly used in psycholinguistics; it involves lexical access
in word memory [24–26]. Semantic similarity is based on word meaning or definition; it
affects letter fluency performance, such as the degradation of nonverbal conceptual infor-
mation [27]. Lindsay et al. [28] proposed alternative similarity metrics (e.g., LD, weighted
phonetic similarity, weighted position in words, and semantic distance between words, clus-
tering, and switching) with a two-fold evaluating argument. They showed that weighted
phonemic edit distance had the best result for assessment in PVF. Further, similarity-based
features have been reported to help improve model accuracy by 29% for PVF [29].

Spontaneous speech is a sensitive parameter to identify cognitive impairment in
VF. Hoffmann et al. [30] proposed four temporal parameters of spontaneous speech by
Hungarian native speakers. Their examination included the hesitation ratio, articulation
rate, speech tempo, and grammatical errors. They showed that the hesitation ratio is the
best parameter for identifying AD. However, measuring these parameters can be time
consuming. T’oth et al. [31] performed automatic feature extraction using automatic speech
recognition (ASR) for laborious processes. Their method, which could be used as a screening
tool for MCI, yielded an F1-score of 85.3. Using silence-based features (e.g., silence segment,
filled pauses, and silence duration) with a machine learning technique has yielded an F1-score of
78.8% for detecting MCI [15]. Recently, Campbell et al. [32] proposed an algorithm based on
analyzing the temporal patterns of silence in VF tasks using the “AcceXible” and “ADReSS”
databases. Their results showed that the silence-based feature had the best accuracy in the
VF tasks. Several studies within the same scope have indicated that silenced-based features
are the biomarkers for detecting cognitive impairment [13].

In conclusion, the abovementioned features (silenced-based features, similarity-based
features, and clustering) are related to cognitive decline in MCI. These features have
different capabilities and implications in discrimination. We found the possibility to
integrate them with state-of-the-art machine learning techniques in MoCA application for
medical benefits and some improvement. However, some features may be unsuitable for
Thai, which we investigate in this study.

3. Materials and Methods

In this section, we provide an overview of our experiment. Our experiment includes
data collection, feature extraction, classification, feature selection, and results (Figure 1).
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Figure 1. Our machine learning framework.

3.1. Data Collection

Participants were assessed via MoCA application for their cognition (Figure 2) [10].
Voice data were recorded in .m4a file format at 44.1 kHz, 32 bits, via an iPad’s microphone.
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“please tell me as many words as possible that begin with the letter “
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” /k/ in one minute” when
staff press the speaker button. (B) Space for staff to take notes. (C) Red letters show the timer. PVF,
phonemic verbal fluency; MoCA, Montreal cognitive assessment.

In this paper, we used data from a PVF task in which participants were asked to
name as many words as possible in 1 min from a given letter, “
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” /k/. Participants were
categorized into two groups by the MoCA score: the HC group, with an MoCA score of
25 or above, and the MCI group, with an MoCA score of less than 25. The participants’
demographics are presented in Table 1. All participants were Thai native speakers and
provided consent before the assessment began.

Table 1. Participant demographics.

MCI (N = 41) HC (N = 59)

Male 7 10
Female 34 49

Word count (mean) 3–15 (9.61) 2–24 (10.10)
MoCA Score (mean) 10–24 (21.59) 25–29 (27)

MCI, mild cognitive impairment; HC, healthy control; MoCA, Montreal cognitive assessment.
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3.2. Feature Extraction

Feature extraction is the process of extracting useful information from data, such as
audio and transcribed files. Figure 1 represents the diagram of our extracting process.
Table 2 shows the features we used and their description.

Table 2. Feature lists.

Feature Description

Silence-based features
Total silence Total length of silence during the test.
Total voiced Total length of voiced during the test.
Number of silence segments Total number of silence segments.
Number of voice segments Total number of voice segments.
Average silence between word Total silence divided by the number of silence segments.
Q1 Silence Total silence in the first 30 s of the audio file.
Q2 Silence Total silence in the last 30 s of the audio file.
Silence before first word Silence length before the participant speaks the first word.
Different silence between Q1 and Q2 Total silence in the first 30 s minus the last 30 s.

Similarity-based features
Orthographic similarity Average orthographic similarity value of all words.
Levenshtein distance Average Levenshtein distance ratio of all words.
Semantic similarity Average semantic similarity value of all words.

Cluster features
Phonemic clustering Group of words by phonemic categories.
Switching Total number of the transition between clusters.

3.2.1. Silenced-Based Features

After recording the participant’s voice, voice activity detection was used to detect
the presence or absence of human speech for further calculation of voice features, such
as the average silence between words and total silence. In this study, the silent and voice
segments were measured using the Pydub Python package [33]. Further, background noise
and irrelevant conversation were removed before processing. All the calculation methods
for the silence-based features consisted of the basic mathematics described in Table 2.

3.2.2. Similarity-Based Features

The similarity in the word list was computed based on its orthography or semantics
by comparing the target word with the next word. The comparison was continued until the
last member of the list, and then the average similarity was calculated from the summation
divided by the list length. In this study, we computed semantic similarity using the
PyThaiNLP Python package [34]. In addition, LD was computed according to the method
reported in the original research article [25]. The orthography similarity has a slightly
modified calculation method, which is explained in the Section 3.2.3.

3.2.3. Orthographic Similarity in Thai

The orthographic similarity assigns a number between 0 and 1, indicating the similarity
of words, where 1 means that words are similar, whereas 0 is dissimilar [26]. We employed
the original method to calculate the similarity in Thai words, but the vowel in Thai can be
written above or below the letter. Thus, the calculation procedure was slightly modified, as
shown in Figure 3.
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4 Word with only 1 syllable and others 
“เกดิ” /kə̀ət/ “born”, “แก”่ /kɛ̀ɛ/ “old”, “เก็บ” 
/kèp/ “to store” 

IPA, International Phonetic Alphabet. 

3.2.5. Switching in Thai 

Switching is the ability to transition between word clusters [21,35]. Switching de-
pends on frontal lobe functions, such as the searching strategy, shifting, and cognitive 

flexibility. A switching-based feature is calculated by counting the number of transitions 
between the phonemic clusters (Figure 4). 

Figure 3. Illustration for orthographic similarity. (A) Words are placed at the same index to compare
their letters. For calculating the maximum value, each letter in the shorter word is compared with the
longest in every index. The quotient is 1/k, where k denotes the overlapped number of words index.
The maximum quotients in each letter of the shorter word are summarized and divided by the longer
word’s length. (B) The shorter word is shifted by one index; repeat the calculation of the maximum
value. (C) Finding the maximum from the values obtained from every lag.

3.2.4. Phonemic Clustering for Thai PVF

Phonemic clustering is the word production inside the phoneme [21,35]. Clustering
depends on temporal lobe functions, such as word storage and working memory. Therefore,
we decided to group words according to Thai characteristics [19]. We started by anticipating
the possibilities that a word will generate in the letter fluency task “
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Table 1. Participant demographics. 

 MCI (n = 41) HC (n = 59) 

Male 7 10 

Female 34 49 

Word count (mean) 3–15 (9.61) 2–24 (10.10) 

MoCA Score (mean) 10–24 (21.59) 25–29 (27) 

MCI, mild cognitive impairment; HC, healthy control; MoCA, Montreal cognitive assessment. 

  

” /k/. After knowing
all the possibilities, we decided to group words into four different categories, as represented
in Table 3. The Thai language is a tonal language, and the way it is written and pronounced
are different from others. Accordingly, the algorithm for classifying words into clusters
needs to be redesigned, as explained in detail in Appendix A.

Table 3. The clusters in Thai.
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words, add 1 to the switching score if the words are in different clusters. The process is 
repeated until the last word. Notably, Figure 4 has a switching score of 5 and a clustering 
score of 4. 
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3.2.5. Switching in Thai

Switching is the ability to transition between word clusters [21,35]. Switching depends
on frontal lobe functions, such as the searching strategy, shifting, and cognitive flexibility.
A switching-based feature is calculated by counting the number of transitions between the
phonemic clusters (Figure 4).
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Figure 4. Illustration for switching.

For the workflow, the word at the first position is determined as the fourth cluster
(C4), and the next word is determined as the second cluster (C2). After comparing adjacent
words, add 1 to the switching score if the words are in different clusters. The process is
repeated until the last word. Notably, Figure 4 has a switching score of 5 and a clustering
score of 4.

3.3. Classification

Classification is the process of class prediction from given data, where the classes
refer to the targets or labels. This work investigated two class labels: the MCI and HC
groups, labeled 1 and 0, respectively. We employed extreme gradient boosting (XGBoost),
support vector machine (SVM), and random forest (RF) as the classifiers. We also applied
the 10-fold cross-validation technique to reduce data biases.

In this study, we used the scikit-learn Python library [36], which is an open-source and
efficient tool for predictive data analysis.

3.4. Feature Selection

Feature selection was used for model simplification, training time reduction, and model
accuracy increment [37]. In this paper, we selected features according to the chi-square value (χ2)
via the Chi2 algorithm [38]. The χ2 test indicates a relationship between each feature and the
class label, which is MCI. Typically, it can be assumed that the lower the χ2, the more correlated
it is with the class label. The formula for calculating the χ2 value is

χ2
c = ∑

(Oi − Ei)
2

Ei
(1)

where Oi is the observed value of the feature, and Ei is the expected value of class label,
which is MCI.

3.5. Evaluation

Six standard measures were used to evaluate the model performance: Accuracy
measures the percentage of correct prediction, as shown in (2).

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision defines the percentage of MCI that the model correctly predicted (3), whereas
recall is the ratio that requires a closer look at false positives (4).

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)
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For a simple comparison of these two values, the F1-score, the harmonic mean of
precision and recall, is considered (5).

F1-score =
2 × Precision × Recall

Precision + Recall
(5)

where true positive (TP) is the actual MCI that the model predicted as MCI, false positive
(FP) is the normal that the model predicted as MCI, true negative (TN) is the normal that
the model predicted as normal, and the false negative (FN) is the actual MCI that the model
predicted as normal.

The area under the receiver operating characteristic curve (AUC) is an effective method
for summarizing the diagnostic accuracy across all possible decision thresholds [39]. Typ-
ically, AUC ranges from 0 to 1, an AUC of 0.5 implies random prediction, 0.7–0.8 is
considered acceptable, 0.8–0.9 is considered excellent, and >0.9 is considered outstanding.
This study emphasizes an AUC interpretation in light of research evidence suitable for
disease classification [39,40].

4. Results
4.1. Classification Results

All features were trained and tested into three classifiers (XGBoost, SVM, and RF) with
10-fold cross-validation. Tables 4–6 show the classification results for each set of features. It
can be observed that the best classifier is SVM, with an AUC of 0.733 with nine features,
whereas the other statistical values are inconsistent. This result can be attributed to the
numerous true negatives in the prediction process, as can be seen with the specificity of
0.883. The set of seven features, more consistent for practical use, provides an acceptable
result at an AUC of 0.729. Meanwhile, the acceptable result for the SVM features is between
5 and 7. RF reveals the most accurate prediction, with an AUC of 0.683 with 11 features.
Meanwhile, XGBoost provide the best result at 0.671 with 13 features. These results confirm
our hypothesis that the Thai PVF can distinguish MCI patients and HC individuals.

Table 4. Classification results for the random forest classifier.

N Acc. F1-Score Precision Recall Specificity AUC

1 0.584 ± 0.16 0.565 ± 0.18 0.497 ± 0.24 0.535 ± 0.24 0.627 ± 0.22 0.636 ± 0.20
2 0.584 ± 0.16 0.565 ± 0.18 0.497 ± 0.24 0.535 ± 0.24 0.627 ± 0.22 0.636 ± 0.20
3 0.584 ± 0.18 0.561 ± 0.19 0.504 ± 0.26 0.530 ± 0.27 0.623 ± 0.24 0.629 ± 0.21
4 0.574 ± 0.19 0.556 ± 0.19 0.473 ± 0.21 0.510 ± 0.28 0.623 ± 0.19 0.649 ± 0.20
5 0.534 ± 0.20 0.501 ± 0.22 0.415 ± 0.29 0.375 ± 0.28 0.643 ± 0.19 0.660 ± 0.23
6 0.594 ± 0.20 0.563 ± 0.22 0.440 ± 0.26 0.450 ± 0.29 0.697 ± 0.18 0.653 ± 0.22
7 0.590 ± 0.18 0.558 ± 0.20 0.448 ± 0.26 0.500 ± 0.32 0.642 ± 0.17 0.646 ± 0.22
8 0.640 ± 0.23 * 0.616 ± 0.25 * 0.506 ± 0.30 0.575 ± 0.37 * 0.683 ± 0.17 0.667 ± 0.23
9 0.610 ± 0.20 0.579 ± 0.23 0.452 ± 0.28 0.550 ± 0.38 0.647 ± 0.15 0.650 ± 0.19
10 0.580 ± 0.19 0.552 ± 0.21 0.450 ± 0.28 0.455 ± 0.30 0.663 ± 0.15 0.671 ± 0.21
11 0.620 ± 0.21 0.600 ± 0.23 0.512 ± 0.30 * 0.530 ± 0.33 0.683 ± 0.17 0.683 ± 0.24 *
12 0.570 ± 0.18 0.545 ± 0.19 0.457 ± 0.24 0.455 ± 0.27 0.647 ± 0.15 0.642 ± 0.23
13 0.600 ± 0.17 0.565 ± 0.19 0.482 ± 0.27 0.430 ± 0.26 0.717 ± 0.15 * 0.642 ± 0.25
14 0.580 ± 0.19 0.542 ± 0.22 0.435 ± 0.32 0.430 ± 0.32 0.683 ± 0.17 0.617 ± 0.22

* The maximum value of each feature set; AUC, area under the receiver operating characteristic curve; Acc.,
accuracy; N, number of selected features, which has highest p-value by chi-square test.
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Table 5. Classification results for the support vector machine classifier.

N Acc. F1-Score Precision Recall Specificity AUC

1 0.570 ± 0.15 0.557 ± 0.15 0.494 ± 0.14 0.610 ± 0.23* 0.543 ± 0.21 0.665 ± 0.23
2 0.570 ± 0.15 0.557 ± 0.15 0.494 ± 0.14 0.610 ± 0.23* 0.543 ± 0.21 0.669 ± 0.23
3 0.580 ± 0.17 0.563 ± 0.17 0.490 ± 0.17 0.540 ± 0.27 0.613 ± 0.18 0.672 ± 0.25
4 0.610 ± 0.19 0.588 ± 0.20 0.515 ± 0.25 0.505 ± 0.28 0.683 ± 0.17 0.680 ± 0.23
5 0.610 ± 0.21 0.576 ± 0.22 0.523 ± 0.29 0.430 ± 0.28 0.733 ± 0.20 0.717 ± 0.21
6 0.650 ± 0.22 * 0.626 ± 0.24 * 0.567 ± 0.28 0.525 ± 0.31 0.733 ± 0.20 0.721 ± 0.21
7 0.650 ± 0.21 * 0.624 ± 0.22 0.583 ± 0.28 * 0.505 ± 0.28 0.750 ± 0.20 0.729 ± 0.20
8 0.590 ± 0.18 0.551 ± 0.18 0.539 ± 0.29 0.365 ± 0.20 0.750 ± 0.20 0.725 ± 0.21
9 0.530 ± 0.11 0.362 ± 0.09 0.200 ± 0.40 0.025 ± 0.08 0.883 ± 0.17 0.733 ± 0.20 *
10 0.540 ± 0.11 0.366 ± 0.09 0.250 ± 0.43 0.025 ± 0.07 0.900 ± 0.17 0.733 ± 0.20
11 0.550 ± 0.07 0.356 ± 0.03 0.000 ± 0.00 0.000 ± 0.00 0.933 ± 0.11 0.733 ± 0.20
12 0.560 ± 0.07 0.358 ± 0.03 0.000 ± 0.00 0.000 ± 0.00 0.950 ± 0.11 * 0.725 ± 0.21
13 0.560 ± 0.07 0.358 ± 0.03 0.000 ± 0.00 0.000 ± 0.00 0.950 ± 0.11 * 0.725 ± 0.21
14 0.560 ± 0.07 0.358 ± 0.03 0.000 ± 0.00 0.000 ± 0.00 0.950 ± 0.11 * 0.725 ± 0.21

* The maximum value of each feature set; AUC, area under the receiver operating characteristic curve; Acc.,
accuracy; N, number of selected features, which has highest p-value by chi-square test.

Table 6. Classification results for the XGBoost classifier.

N Acc. F1-Score Precision Recall Specificity AUC

1 0.620 ± 0.15 0.594 ± 0.17 0.521 ± 0.24 0.605 ± 0.28 * 0.633 ± 0.22 0.640 ± 0.21
2 0.620 ± 0.15 0.594 ± 0.17 0.521 ± 0.24 0.605 ± 0.28 * 0.633 ± 0.22 0.640 ± 0.21
3 0.590 ± 0.17 0.558 ± 0.19 0.475 ± 0.24 0.480 ± 0.27 0.663 ± 0.19 0.626 ± 0.17
4 0.560 ± 0.14 0.515 ± 0.15 0.438 ± 0.21 0.390 ± 0.23 0.680 ± 0.20 0.659 ± 0.13
5 0.550 ± 0.17 0.497 ± 0.20 0.343 ± 0.28 0.400 ± 0.34 0.647 ± 0.19 0.550 ± 0.23
6 0.570 ± 0.17 0.540 ± 0.19 0.447 ± 0.24 0.480 ± 0.27 0.630 ± 0.21 0.638 ± 0.19
7 0.560 ± 0.17 0.526 ± 0.19 0.433 ± 0.22 0.450 ± 0.29 0.630 ± 0.19 0.617 ± 0.17
8 0.590 ± 0.20 0.564 ± 0.21 0.489 ± 0.23 0.500 ± 0.30 0.650 ± 0.22 0.621 ± 0.21
9 0.570 ± 0.13 0.536 ± 0.16 0.420 ± 0.22 0.455 ± 0.28 0.647 ± 0.13 0.638 ± 0.18

10 0.580 ± 0.14 0.550 ± 0.16 0.437 ± 0.22 0.480 ± 0.27 0.647 ± 0.13 0.642 ± 0.17
11 0.630 ± 0.11 * 0.603 ± 0.13 * 0.522 ± 0.16 * 0.530 ± 0.26 0.697 ± 0.09 0.642 ± 0.23
12 0.630 ± 0.18 * 0.585 ± 0.22 0.522 ± 0.35 * 0.455 ± 0.34 0.747 ± 0.15 * 0.650 ± 0.25
13 0.620 ± 0.17 0.592 ± 0.17 0.512 ± 0.24 0.505 ± 0.25 0.697 ± 0.14 0.671 ± 0.18 *
14 0.630 ± 0.13 * 0.601 ± 0.16 0.513 ± 0.23 0.505 ± 0.25 0.713 ± 0.10 0.629 ± 0.23

* The maximum value of each feature set; AUC, area under the receiver operating characteristic curve; Acc.,
accuracy; N, number of selected features, which has highest p-value by chi-square test.

4.2. Feature Importance

In this section, we computed the prediction value of each feature using Shapley addi-
tive explanations (SHAP), an algorithm for ranking the features that impact the classification
results [41].

Figure 5 shows two excellent features for the RF classifier: the average silence between
the words and the number of silence segments. Low values of the average silence between
words affected the model from −0.16 to 0.00, whereas medium-to-high values affected
the model from 0.00 to 0.01. In contrast, high values of the number of silence segments
affected our model from −0.14 to 0.00, whereas low-to-medium values had an effect from
0.00 to 0.05.
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Figure 6 illustrates two excellent features for XGBoost: the average silence between
words and switching. High values of the average silence between words affected our model
from 0 to 1, whereas low values affect from 2 to 0. In contrast, high values of switching
affected our model from −1.2 to 0, whereas low values had an effect from 0 to 1.
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Figure 7 shows that switching and the different silence between Q1 and Q2 had a good
prediction power. A high switching value affected our model from −1.2 to 0, whereas low
values had an effect from 0 to 1. Similarly, medium-to-high and low values of the different
silence between Q1 and Q2 affected the model from −0.2 to 0.0 and 0 to 0.4, respectively.
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In summary, the SHAP algorithm shows the impact on the model using the concept of
game theory, which helps to interpret the feature’s value and understand the model decision.
Figures 5–7 represent feature ranking in each classifier; the average silence between words
and switching is ranked at the top in every classifier. Moreover, these results are consistent
with the chi-square test during the feature-selection process (see Figure 8). The chi-square
test reveals the p-value based on the dependent hypothesis between the feature and class;
it shows seven features with a low p-value to convey the idea. Accordingly, this stack of
five-to-seven features reasonably yields the maximum accuracy in SVM.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 17 
 

 

 

Figure 7. Feature importance explained by the SHAP value for the SVM classifier. 

 

Figure 8. The p-values obtained from the chi-square test of the feature-selection process. 

5. Discussion 

The goals of the present study were to use the data from the Thai PVF task for MCI 

detection and develop the guidelines for clustering in the feature extraction for Thai PVF. 
Using state-of-the-art machine learning techniques with optimal feature extraction pro-
duced acceptable results for MCI detection (Tables 4–6). 

5.1. Feature Analysis 

Our findings provide three pieces of evidence that are consistent with previous re-
search. First, the prediction value of the silenced-based feature for MCI detection is high 

[30]. The average silence between words is ranked at the top of the SHAP values. Silence 
might be accounted for by impaired processes of lexical access and word-finding difficul-
ties. MCI tends to have extended silence before saying the next word, whereas silence in 

Figure 8. The p-values obtained from the chi-square test of the feature-selection process.

5. Discussion

The goals of the present study were to use the data from the Thai PVF task for MCI
detection and develop the guidelines for clustering in the feature extraction for Thai
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PVF. Using state-of-the-art machine learning techniques with optimal feature extraction
produced acceptable results for MCI detection (Tables 4–6).

5.1. Feature Analysis

Our findings provide three pieces of evidence that are consistent with previous re-
search. First, the prediction value of the silenced-based feature for MCI detection is high [30].
The average silence between words is ranked at the top of the SHAP values. Silence might
be accounted for by impaired processes of lexical access and word-finding difficulties. MCI
tends to have extended silence before saying the next word, whereas silence in the PVF
task directly implicates the number of generated words. Figure 9 shows that MCI’s box and
HC’s box of the average silence between words are almost symmetric. The median indicates
that the data between HC and MCI are likely different. Second, the prediction value of
switching is high, but clustering is not (Figures 5 and 7). This finding agrees with the
original research that switching is more essential than clustering for optimal performance
on PVF, whereas switching and clustering were equally essential for SVF [21]. Switching
involves the transition between clusters. Alternatively, switching may be related to the
ability to initiate a search for a new strategy or subcategory. MCI seems to have a lower
value of switching compared with HC. Figure 9 shows that the median of the MCI box is
almost outside the HC box, suggesting that the two groups are different. Third, similarity-
based features seem to have no prediction value. Similarity-based features were ranked
almost last in terms of feature importance (Figures 5–7). Semantic similarity, which involves
producing a different vocabulary, reveals the best p-value in the chi-square test compared
with other similarity features. Figure 9 shows that the MCI box is sparse. Furthermore, the
median of the HC box is within the MCI box, indicating that this feature is inappropriate
for MCI detection. These results correspond to those of a previous study that the semantic
feature and LD had a worse silhouette coefficient than Troyer’s proposed method [28].
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5.2. Classification Analysis

In this study, three classifiers were chosen based on their algorithm’s basis and advan-
tages in a performance comparison. SVM is advantageous in high-dimensional data, and
it can customize kernel functions to transform data into a required form. RF is based on
several decision tree classifiers on various subsamples of a dataset and uses averaging to
improve the predictive accuracy [36]. XGBoost is based on the gradient boosting algorithms,
optimized and distributed to be highly efficient, flexible, and portable [42].

We found that SVM is the best classifier among the three. Furthermore, we obtained
slightly better results when increasing the number of significant features in the classification
process (Tables 4–6), which agrees with a previous study [15]. Additionally, we performed
fine-tuning to choose the optimal parameters in each classifier. From the result, we suggest
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that each classifier should be used for a task that it is good in. Therefore, SVM is suitable for
widespread use because it has the highest AUC, which is a threshold-free evaluation metric.
Meanwhile, RF performs stably even when increasing the number of features; the AUC
is between 0.617 and 0.683. XGBoost’s performance is similar to that of RF, with an AUC
between 0.617 and 0.671. Furthermore, in terms of training data and fine-tuning, XGBoost
is the fastest among the three classifiers.

5.3. Limitations and Future Work

Our proposed phonemic clustering and switching guidelines demonstrate the benefits
of MCI detection for Thai native speakers. This proposal fills the gap between the differ-
ences in language characteristics. Our algorithms are also simplified and do not require
high computing power, which is suitable for a mobile or small device. Accordingly, we
believe this guideline will aid in the cost-effective automation of MCI detection.

However, this study has some limitations. First, our data were obtained from only one
type of Thai PVF. Another Thai VF assessment (fruit categories, animal categories, and other
letters, such as /S/ “

Sensors 2022, 22, x FOR PEER REVIEW 13 of 17 
 

 

5.3. Limitations and Future Work 

Our proposed phonemic clustering and switching guidelines demonstrate the bene-

fits of MCI detection for Thai native speakers. This proposal fills the gap between the dif-
ferences in language characteristics. Our algorithms are also simplified and do not require 

high computing power, which is suitable for a mobile or small device. Accordingly, we 
believe this guideline will aid in the cost-effective automation of MCI detection. 

However, this study has some limitations. First, our data were obtained from only 

one type of Thai PVF. Another Thai VF assessment (fruit categories, animal categories, 

and other letters, such as /S/ “ส”) has not been investigated yet. Next is the small and 

unbalanced dataset. Unfortunately, we collected data for this research during the corona-

virus outbreak. Thus, there were insufficient participants to collect a large amount of data 
due to the lockdown policy. Finally, high-accuracy ASR for PVF is needed to handle a 

large amount of data. Several text-to-speech solutions perform well in typical situations; 
e.g., when speaking long sentences. However, when applied to an audio clip using PVF, 
unacceptable results were realized. Maybe the PVF does not have the context clues to help 

the computer speculate the next word. Further, PVF has so many short-speech styles that 
it is difficult to specify whether they are phonemes or tones. Besides, the Thai language 

has different word meanings using tones. For this reason, the more accurate the text-to-
speech solution, the more extensive data we can handle. 

For future research, we developed the digital MoCA to collect beneficial information 

during a test. We plan to use the data from other tasks (backward digit span, serial sevens, 
and memory test) obtained from the digital MoCA. We believe that selecting a significant 

feature from the various tasks will encourage the performance of MCI detection or other 
relevant diseases (dementia and AD). We also plan to use the Thai text-to-speech solution 
[10] that focuses on PVF in terms of being fully automated. 

6. Conclusions 

In this study, we focused on detecting MCI by using data from Thai PVF, which is 
essential due to the growth of the ageing population in Thailand. Our method gave an 

acceptable result of MCI detection by combining various feature types via chi-square fea-
ture selection with an AUC of 0.733. We examined the valuable feature of the machine 
learning model to distinguish between HC and MCI for Thai PVF. Moreover, we intro-

duced the guideline for phonemic clustering and the initial approach for measuring the 
similarity between words for Thai PVF, which is proven to be consistent with previous 

research. We believe that our findings will be helpful for further practical implementation 
and development. 

Author Contributions: Conceptualization, S.M.; data curation, S.H. and C.C.; formal analysis, S.M.; 
funding acquisition, P.P.; investigation, S.M.; methodology, S.M.; project administration, S.M. and 
P.P.; resources, P.P.; software, S.M.; supervision, P.P.; validation, S.M., D.W. and P.N.P.; visualiza-

tion, S.M.; writing—original draft preparation, S.M.; writing—review and editing, S.M. and P.P. All 
authors have read and agreed to the published version of the manuscript. 

Funding: The authors gratefully acknowledge the research and innovation support provided by 
Chulalongkorn University Technology Center and Thailand Science Research and Innovation Fund 
(TSRI) (CU_FRB640001_01_2); and Thailand Center of Excellence for Life Sciences, Ministry of 
Higher Education, Science, Research and Innovation, for supporting continuously Alzheimer’s pre-
vention program in the Cognitive Fitness Center, Chulalongkorn Hospital. 

Institutional Review Board Statement: This study was conducted in accordance with the Declara-
tion of Helsinki and approved by the Institutional Review Board (or Ethics Committee) No. 814/63 
Validity of electronic version of MoCA test Thai version and MoCA 2, 3 for studies involving hu-
mans. 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 
study. Written informed consent has been obtained from the patient(s) to publish this paper. 

”) has not been investigated yet. Next is the small and unbalanced
dataset. Unfortunately, we collected data for this research during the coronavirus outbreak.
Thus, there were insufficient participants to collect a large amount of data due to the
lockdown policy. Finally, high-accuracy ASR for PVF is needed to handle a large amount
of data. Several text-to-speech solutions perform well in typical situations; e.g., when
speaking long sentences. However, when applied to an audio clip using PVF, unacceptable
results were realized. Maybe the PVF does not have the context clues to help the computer
speculate the next word. Further, PVF has so many short-speech styles that it is difficult to
specify whether they are phonemes or tones. Besides, the Thai language has different word
meanings using tones. For this reason, the more accurate the text-to-speech solution, the
more extensive data we can handle.

For future research, we developed the digital MoCA to collect beneficial information
during a test. We plan to use the data from other tasks (backward digit span, serial
sevens, and memory test) obtained from the digital MoCA. We believe that selecting a
significant feature from the various tasks will encourage the performance of MCI detection
or other relevant diseases (dementia and AD). We also plan to use the Thai text-to-speech
solution [10] that focuses on PVF in terms of being fully automated.

6. Conclusions

In this study, we focused on detecting MCI by using data from Thai PVF, which is
essential due to the growth of the ageing population in Thailand. Our method gave an
acceptable result of MCI detection by combining various feature types via chi-square fea-
ture selection with an AUC of 0.733. We examined the valuable feature of the machine
learning model to distinguish between HC and MCI for Thai PVF. Moreover, we intro-
duced the guideline for phonemic clustering and the initial approach for measuring the
similarity between words for Thai PVF, which is proven to be consistent with previous
research. We believe that our findings will be helpful for further practical implementation
and development.

Author Contributions: Conceptualization, S.M.; data curation, S.H. and C.C.; formal analysis, S.M.;
funding acquisition, P.P.; investigation, S.M.; methodology, S.M.; project administration, S.M. and P.P.;
resources, P.P.; software, S.M.; supervision, P.P.; validation, S.M., D.W. and P.N.P.; visualization, S.M.;
writing—original draft preparation, S.M.; writing—review and editing, S.M. and P.P. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the research and innovation support provided by
Chulalongkorn University Technology Center and Thailand Science Research and Innovation Fund
(TSRI) (CU_FRB640001_01_2); and Thailand Center of Excellence for Life Sciences, Ministry of Higher
Education, Science, Research and Innovation, for supporting continuously Alzheimer’s prevention
program in the Cognitive Fitness Center, Chulalongkorn Hospital.



Sensors 2022, 22, 5813 14 of 17

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board (or Ethics Committee) No. 814/63 Validity
of electronic version of MoCA test Thai version and MoCA 2, 3 for studies involving humans.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent has been obtained from the patient(s) to publish this paper.

Data Availability Statement: The data that support the findings of this study are available on request
from the author, Hemrungrojn, S. The data are not publicly available due to ethic restrictions that
their containing information that could compromise the privacy of research participants.

Acknowledgments: The authors would like to thank the advisory team, Paphonwit Chaiwatanodom,
and Nattapon Asavamahakul from Chulalongkorn University Technology Center. We are grateful
to Pimarn Kantithammakorn, Tana Chanchiew, Alongkot Intaragumhang, Kanjana Pednok, Palita
Tearwattanarattikal, Pon-ek Tangmunchittham, Thanainan Li, Waris Lakthong, Panupatr Limprasert,
Pochara Youcharoen, Nattapong, Suksomcheewin, Chompoonik Taepaisitphongse, Chawalkorn
Paiboonsuk, and Wirot Treemongkolchok for the development of the MoCA application. Finally, we
also thank Ratiya Assawatinna, Kanokwan Chaiyasurayakan, and Kwunkao Pholphet, our special
team of psychologists from King Chulalongkorn Memorial Hospital.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Phonemic Clustering for Thai PVF

Appendix A.1. Cluster 1: Words Starting with

Sensors 2022, 22, x FOR PEER REVIEW  15  of  18 
 

 

Data Availability Statement: The data that support the findings of this study are available on re‐

quest from the author, Hemrungrojn, S. The data are not publicly available due to ethic restrictions 

that their containing information that could compromise the privacy of research participants. 

Acknowledgments:  The  authors  would  like  to  thank  the  advisory  team,  Paphonwit 

Chaiwatanodom, and Nattapon Asavamahakul from Chulalongkorn University Technology Cen‐

ter. We are grateful to Pimarn Kantithammakorn, Tana Chanchiew, Alongkot Intaragumhang, Kan‐

jana Pednok, Palita Tearwattanarattikal, Pon‐ek Tangmunchittham, Thanainan Li, Waris Lakthong, 

Panupatr Limprasert, Pochara Youcharoen, Nattapong, Suksomcheewin, Chompoonik Taepaisit‐

phongse, Chawalkorn Paiboonsuk, and Wirot Treemongkolchok for the development of the MoCA 

application.  Finally,  we  also  thank  Ratiya  Assawatinna,  Kanokwan  Chaiyasurayakan,  and 

Kwunkao Pholphet, our special team of psychologists from King Chulalongkorn Memorial Hospi‐

tal. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A. Phonemic Clustering for Thai PVF 

Appendix A.1. Cluster 1: Words Starting with “การ” /kaːn/ or “กะ” /kàʔ/ or “กระ” /kràʔ/ 
In the Thai language, we sometimes describe the actions or appearances of people, 

animals, and  things by adding  the prefix “การ”  /kaːn/  in  front of a verb. For example, 

“เรยีน”  /riːan/  is  the verb;  it means “learning”  in English. When  the prefix  is added  to 

“การเรยีน” /kaːn riːan/, it means “learning” or “to study.” Another comparable case is to 

use  the prefix “ะ”  /?/  (e.g., “กะ”  /kàʔ/, “กระ”  /kràʔ/), which can be used  to create more 

words and meanings. For example, “กะท”ิ /kàʔ thíʔ/ means “coconut milk,” and “กระโดด” 
/kràʔ dòːt/ implies “jump” in English. We noticed that whenever participants started to 

say word with these prefixes, they usually will continue to search word in the same kind 

of prefix.�Thus, we arranged these prefixes word in cluster 1. 

    

Sensors 2022, 22, x FOR PEER REVIEW  16  of  20 
 

 

 

Appendix A.1. Cluster 1: Words Starting with “การ” /kaːn/ or “กะ” /kàʔ/ or “กระ” /kràʔ/ 
In the Thai language, we sometimes describe the actions or appearances of people, 

animals, and  things by adding  the prefix “การ”  /kaːn/  in  front of a verb. For example, 

“เรยีน”  /riːan/  is  the verb;  it means “learning”  in English. When  the prefix  is added  to 

“การเรยีน” /kaːn riːan/, it means “learning” or “to study.” Another comparable case is to 

use  the prefix “ะ”  /?/  (e.g., “กะ”  /kàʔ/, “กระ”  /kràʔ/), which can be used  to create more 

words and meanings. For example, “กะท”ิ /kàʔ thíʔ/ means “coconut milk,” and “กระโดด” 
/kràʔ dòːt/ implies “jump” in English. We noticed that whenever participants started to 

say word with these prefixes, they usually will continue to search word in the same kind 

of prefix. Thus, we arranged these prefixes word in cluster 1.    

Appendix A.2. Cluster 2: Consonant Blends

Sensors 2022, 22, x FOR PEER REVIEW  15  of  18 
 

 

Data Availability Statement: The data that support the findings of this study are available on re‐

quest from the author, Hemrungrojn, S. The data are not publicly available due to ethic restrictions 

that their containing information that could compromise the privacy of research participants. 

Acknowledgments:  The  authors  would  like  to  thank  the  advisory  team,  Paphonwit 

Chaiwatanodom, and Nattapon Asavamahakul from Chulalongkorn University Technology Cen‐

ter. We are grateful to Pimarn Kantithammakorn, Tana Chanchiew, Alongkot Intaragumhang, Kan‐

jana Pednok, Palita Tearwattanarattikal, Pon‐ek Tangmunchittham, Thanainan Li, Waris Lakthong, 

Panupatr Limprasert, Pochara Youcharoen, Nattapong, Suksomcheewin, Chompoonik Taepaisit‐

phongse, Chawalkorn Paiboonsuk, and Wirot Treemongkolchok for the development of the MoCA 

application.  Finally,  we  also  thank  Ratiya  Assawatinna,  Kanokwan  Chaiyasurayakan,  and 

Kwunkao Pholphet, our special team of psychologists from King Chulalongkorn Memorial Hospi‐

tal. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A. Phonemic Clustering for Thai PVF 

Appendix A.1. Cluster 1: Words Starting with “การ” /kaːn/ or “กะ” /kàʔ/ or “กระ” /kràʔ/ 
In the Thai language, we sometimes describe the actions or appearances of people, 

animals, and  things by adding  the prefix “การ”  /kaːn/  in  front of a verb. For example, 

“เรยีน”  /riːan/  is  the verb;  it means “learning”  in English. When  the prefix  is added  to 

“การเรยีน” /kaːn riːan/, it means “learning” or “to study.” Another comparable case is to 

use  the prefix “ะ”  /?/  (e.g., “กะ”  /kàʔ/, “กระ”  /kràʔ/), which can be used  to create more 

words and meanings. For example, “กะท”ิ /kàʔ thíʔ/ means “coconut milk,” and “กระโดด” 
/kràʔ dòːt/ implies “jump” in English. We noticed that whenever participants started to 

say word with these prefixes, they usually will continue to search word in the same kind 

of prefix.�Thus, we arranged these prefixes word in cluster 1.�

Appendix A.2. Cluster 2: Consonant Blends 

Consonant blends arise from two consonants written at the beginning of a syllable. 

We can see consonant blends written in the front or in the middle of words due to various 

styles of vowels in Thai. For example, “กล” /kl/ is written in the front of “กลาง” /klaːŋ/, 

which means the “middle.” “กร” /kr/ is written at the second index of “เกรยีงไกร” /kriːaŋ 
kraj/, which means “majestic.” Therefore, we decided to use three types of adjacent letters 

“กร” /kr/, “กล” /kl/, and “กว” /kw/ as the conditions to identify the input words for the 

cluster 2. 

Appendix A.3. Cluster 3: Homonym 

The Thai language also has homonyms, which are the same as in English. Thai hom‐

onyms arise from words with the same pronunciation but different in meaning. For ex‐
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