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Abstract: Influenza A viruses (IAV) have been repeatedly demonstrated to circulate in wild suid
populations. In this study, serum samples were collected from 2618 free-ranging wild boars in
a protected area of Northern Italy between 2007 and 2014, and firstly screened by enzyme-linked
immunosorbent assay (ELISA) for the presence of antibodies against IAV. The ELISA-positive samples
were further tested by hemagglutination inhibition (HI) assays performed using antigen strains
representative of the four major swine IAV (sIAV) lineages circulating in Italy: avian-like swine
H1N1, pandemic-like swine H1N1, human-like swine H1N2 and human-like swine H3N2. An overall
seroprevalence of 5.5% (145/2618) was detected by ELISA, with 56.7% (80/141) of screened sera
tests positive by HI assay. Antibodies against H1N1 subtypes were the most prevalent beginning in
2009—with the highest detection in the first quarter of the year—until 2013, although at a low level.
In addition, antibodies to H3N2 subtype were found during six years (2007, 2009, 2010, 2011, 2012
and 2014) whereas H1N2 antibodies were detected in 2012 only. Of the HI-positive samples, 30%
showed reactivity to both H1N1 and H3N2 subtypes. These results provide additional insight into
the circulation dynamics of IAV in wild suid populations, suggesting the occurrence of sIAV spillover
events from pigs to wild boars.

Keywords: influenza A virus; ecology; Sus scrofa; wild boar; Italy; antibodies; enzyme-linked
immunosorbent assay; hemagglutination inhibition assay; serological investigation

1. Introduction

Influenza A viruses (IAV) can infect a large variety of animal species, including
humans, pigs, horses, sea mammals and birds, and ecological interactions occurring world-
wide among susceptible hosts enhance the virus’s ability for cross-species transmission [1].
Scientific evidence shows that the aquatic birds of the world enable the perpetuation of IAV,
classified to date into 16 haemagglutinin (H1–H16) and 9 neuraminidase (N1–N9) antigenic
subtypes of avian influenza viruses (AIV) [2]. Occasional transmissions of IAV from the
natural avian reservoir to different susceptible species of birds and mammals can lead to
variable degrees of virus adaptation in colonized hosts, ranging from sporadic cases to the
sustained circulation of species-adapted IAV lineages, for example, in poultry, humans,
pigs, horses and dogs [2].
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Pigs harbor established lineages of swine influenza viruses (sIAV) and, due to the
expression of dual receptors for avian and mammalian IAV, enable the adaptation of AIV
to mammals as well as the reassortment of IAV genes of different species, representing a
perfect “mixing vessel” [3,4] involved in the generation of influenza viruses potentially
pandemic for humans [5,6]. A number of AIV, including H3N3, H4N6, H5N2 and H9N2
antigenic subtypes, have been isolated from swine [2], whereas established lineages of
sIAV belonging to the H1N1, H1N2 and H3N2 subtypes and their reassortants have been
repeatedly reported in pig populations reared worldwide [7,8]. Due to the evolutionary
complexity of sIAVs, recently, the H1 genetic sublineages were classified according to an
alphanumerical nomenclature [9]. In the context of ecological interactions taking place
at this human–animal interface, the frequent bidirectional transmission of host-adapted
IAV occurring between pigs and humans has allowed the human pandemic A/H1N1 2009
(H1N1pdm) virus to infect pig herds and to generate novel reassortants with co-circulating
lineages of sIAV [10,11].

Interestingly, from an ecological perspective, domesticated pigs (Sus scrofa domesticus)
and their wild ancestor, the wild boar (Sus scrofa), coexist and share interbreeding poten-
tial [12] as well as susceptibility to most pathogens, including IAV [13]. Epidemiological
studies have repeatedly demonstrated the circulation of IAV and/or sIAV in Eurasian
populations of wild boar [13–29], showing variable seroprevalences ranging from 1.1% to
24.2% [13,21] and virological prevalences from 0.4% to 3.4% [15,19,29]. Indirect and direct
evidence of wild suid exposure to the A/H1N1 2009 (H1N1pdm) virus (including its reas-
sortants) has also been described [20,28–30]. It is noteworthy that, after the previous lack
of evidence of AIV transmission to wild boars [31] antibodies to H5N8 highly pathogenic
avian influenza (HPAI) viruses have been reported in wild boars in Germany [28].

Only a few studies are available about the presence in Italy of IAV infection in free-
living wild boars, all reported in the northern region of Emilia Romagna [19,27,29] in the
Po Valley, which is the main representative area for swine production (63% of Italian pig
production, with 5,271,455 of 8,407,968 animals as of December 2021) [32]. Four major sIAV
lineages circulate in Eurasian [8] and Italian pigs [33,34]: avian-like swine H1N1 (H1N1av),
pandemic-like swine H1N1 (H1N1pdm), human-like reassortant swine H1N2 (H1huN2)
and human-like reassortant swine H3N2.

To better understand the epidemiological role played by free-living wild boar popula-
tions in the circulation dynamics of these sIAV subtypes, we have carried out an eight-year
serological investigation in a free-ranging wild boar population under selective control in
the Gessi Bolognesi e Calanchi dell’Abbadessa Regional Park, an anthropized protected
area of the Emilia–Romagna region of Northern Italy.

2. Materials and Methods
2.1. Study Area

The Regional Park of Gessi Bolognesi e Calanchi dell’Abbadessa (park headquarters
44◦25′52.1′′ N, 11◦24′08.0′′ E) is a Natura 2000 site (Sites of Community Importance–Special
Protection Area, SCI–SPA IT4050001) located in a hilly area within the municipalities of
Bologna, Ozzano dell’Emilia, Pianoro and San Lazzaro di Savena in the Emilia Romagna
Region of Northern Italy (with some altitudes ranging from 64 to 375 m a.s.l.). Over
10,000 residents live in this unfenced protected area, which covers 4844 hectares charac-
terized by natural chalk outcrops and erosion furrows, and including wooded, bush and
grass zones as well as a large area of usable agricultural land (Figure 1) [35]. A wild boar
population management and control plan is implemented in the study area [36].
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released into the wild (n = 161) according to authorized activities carried out to preserve 
animal welfare. 

In addition, 27 of the released wild boars, which had been previously captured by 
cage traps and individually identified by ear-tag number, were recaptured one or more 
times at least 2 weeks after the previous sampling, allowing us to assess possible 
seroconversions. 

Blood clots collected from wild boars were kept at 4 °C and centrifuged within 24 h 
of collection, and sera were stored at −20 °C until tested. 

During sampling, wild boars were sexed and aged (in months) according to 
morphology and tooth development [37] as follows: 0 mo. < age class 1 ≤ 6 mo.; 6 mo. < 
age class 2 ≤ 14 mo.; 14 mo. < age class 3 ≤ 24 mo.; age class 4 > 24 mo.). Moreover, for 
interpreting young wild boar seroreactivity, possibly related to maternal passive 
immunity (usually disappearing in pigs by age 4–14 weeks) [38,39] or elicited by active 
serologic response, class 1 was further categorized into the following subclasses: 0 mo. < 
1st subclass 1 ≤ 3 mo., and 3 mo. < 2nd subclass 1 ≤ 6 mo. 

2.3. Serological Methods 
Serum samples were screened for the presence of anti-nucleoprotein (NP) antibodies 

using a validated homemade ELISA test (NP-ELISA) [19,40] with a sensitivity of 94.5% 
(95% confidence interval [CI] 91.6–96.7) and a specificity of 99.2% (95% CI 98.4–99.7) 
performed according to de Boer et al. [41], and positive sera were further tested by 
hemagglutination inhibition (HI) assay [42]. In brief, sera were treated with potassium 
periodate-trypsin as described previously [43] and adsorbed onto turkey erythrocytes. HI 

Figure 1. Protected area of Northern Italy where 2645 wild boar (Sus scrofa) sera were examined by
serological assays to assess influenza A virus circulation between 2007 and 2014.

2.2. Sample Collection

During the management and control plan implemented in the Gessi Bolognesi e
Calanchi dell’Abbadessa Regional Park, between 20 February 2007 and 30 September 2014,
serum samples were collected from wild boars trapped and shot (n = 2457) or released into
the wild (n = 161) according to authorized activities carried out to preserve animal welfare.

In addition, 27 of the released wild boars, which had been previously captured by cage
traps and individually identified by ear-tag number, were recaptured one or more times at
least 2 weeks after the previous sampling, allowing us to assess possible seroconversions.

Blood clots collected from wild boars were kept at 4 ◦C and centrifuged within 24 h of
collection, and sera were stored at −20 ◦C until tested.

During sampling, wild boars were sexed and aged (in months) according to mor-
phology and tooth development [37] as follows: 0 mo. < age class 1 ≤ 6 mo.; 6 mo. < age
class 2 ≤ 14 mo.; 14 mo. < age class 3 ≤ 24 mo.; age class 4 > 24 mo. Moreover, for in-
terpreting young wild boar seroreactivity, possibly related to maternal passive immunity
(usually disappearing in pigs by age 4–14 weeks) [38,39] or elicited by active serologic
response, class 1 was further categorized into the following subclasses: 0 mo. < 1st subclass
1 ≤ 3 mo., and 3 mo. < 2nd subclass 1 ≤ 6 mo.

2.3. Serological Methods

Serum samples were screened for the presence of anti-nucleoprotein (NP) antibodies
using a validated homemade ELISA test (NP-ELISA) [19,40] with a sensitivity of 94.5% (95%
confidence interval [CI] 91.6–96.7) and a specificity of 99.2% (95% CI 98.4–99.7) performed
according to de Boer et al. [41], and positive sera were further tested by hemagglutination
inhibition (HI) assay [42]. In brief, sera were treated with potassium periodate-trypsin as
described previously [43] and adsorbed onto turkey erythrocytes. HI tests were performed
using four hemagglutinating units of virus and 0.5% turkey erythrocytes. The HI assay
cut-off was set to 1:20 [19]. Sera were examined against IAV strains representative of the
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following H1N1, H1N2, H3N2 antigenic subtypes circulating in Italian pig farms in the late
1990s and in early 2000s: A/swine/Italy/1513/1998/H1N1av (hereinafter named H1N1/98),
A/swine/Italy/1521/1998/H1huN2 (named H1N2/98), A/swine/Italy/1523/1998/H3N2
(named H3N2/98), A/swine/Italy/311368/2013/H1N1av (named H1N1/13), A/swine/Italy/
282866/2013/H1N1pdm (named H1N1pdm/13), A/swine/Italy/284922/2009/H1huN2
(named H1N2/09), and A/swine/Italy/311349/2013/H3N2 (named H3N2/13).

In order to assess possible seroconversions in the recaptured wild boars, detection of
antibodies in previously negative samples or a minimum four-fold increase in titer were
considered suggestive of IAV infection occurring during the study period.

2.4. Statistical Methods

Fisher’s exact test and chi-square test were performed to test the wild boar population
for statistically significant differences in IAV seroprevalences when comparing sampling
years, and sexes and age classes/subclasses within each year (EPISTAT 3.3, Epistat Services,
Richardson, TX, USA). For both tests, the significance threshold was set at a p-value < 0.05.
For the entire study period, geometric means of HI reciprocal titers (GMT) were also
calculated for each IAV strain used in the HI assay. In calculating GMT, an HI reciprocal
titer < 20 was assigned a value of 10.

2.5. Animal Rights Statement

No specific ethical approval was required for this study, as biological samples were
collected from free-living wild boars trapped and/or shot by wildlife control operators in
compliance with the Italian Protected Areas Law 394/1991 and Italian Hunting Law 157/92.
In particular, sampling activities were scheduled in the Wild Boar Management and Control
Plan implemented in the protected area Gessi Bolognesi e Calanchi dell’Abbadessa Regional
Park in the 2005–2009 and 2010–2014 periods according to Park Executive Committee
deliberations upon technical evaluation of ISPRA (Italian Institute for Environmental
Protection and Research). During this study, all wild boars were handled and sampled in
accordance with standardized procedures [44].

3. Results
3.1. Study Populations

As inferred from Table 1, 29.7%, 24.4%, 20.7%, 16.5% and 8.6% of the 2618 wild boars
under study—consisting of 1233 females, 1239 males and 146 unsexed animals—grouped,
respectively, into age classes 1, 2, 3, 4 and unspecified.

The number of sampled animals ranged from a minimum value of 76 in 2008 to a
maximum value of 480 in 2011 during the eight-year study period, with at least 9 months
sampling for each year (Figure A1). Twenty-seven wild boars were also recaptured one or
more times.

Table 1. Overall results from wild boars (Sus scrofa) tested for the occurrence of influenza A virus
exposure in an anthropized area of Northern Italy (2007–2014).

Sampling
Year

Sample
Size

No. of Seropositive/Wild Boars Tested by NP-ELISA
NP-ELISA

Seroprevalence%
Age Class * Sex

1 ˆ 2 3 4 U F M U

2007 469 30/188 5/88 4/62 3/16 9/115 20/175 23/199 8/95 10.9 (51/469)
2008 76 0/13 0/27 0/13 0/3 0/20 0/32 0/42 0/2 0/76
2009 289 3/67 23/89 16/83 4/27 5/23 22/144 26/135 3/10 17.6 (51/289)
2010 217 1/82 0/36 5/78 1/17 1/4 5/98 2/112 1/7 3.7 (8/217)
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Table 1. Cont.

Sampling
Year

Sample
Size

No. of Seropositive/Wild Boars Tested by NP-ELISA
NP-ELISA

Seroprevalence%
Age Class * Sex

1 ˆ 2 3 4 U F M U

2011 480 2/160 0/120 5/124 2/67 0/9 6/234 3/238 0/8 1.9 (9/480)
2012 386 13/146 1/119 5/60 1/56 0/5 8/179 12/199 0/8 5.2 (20/386)
2013 354 0/53 1/88 0/71 1/98 0/44 1/191 1/151 0/12 0.6 (2/354)
2014 347 0/69 0/72 0/52 4/148 0/6 1/180 3/163 0/4 1.1 (4/347)

Total 2618 778 639 543 432 226 1233 1239 146 5.5 (145/2618)

* Age classes: 0 mo. < age class 1 ≤ 6 mo.; 6 mo. < age class 2 ≤ 14 mo.; 14 mo. < age class 3 ≤ 24 mo.;
age class 4 > 24 mo.; U, undetermined. ˆ for statistical analysis, as shown in Table S1, age class 1 was further
categorized into: 0 mo. < 1st subclass 1≤ 3 mo., and 3 mo. < 2nd subclass 1≤ 6 mo. Bolded overall seroprevalence
values indicate a significantly higher percentage using p-value of <0.05. See Serological Results section for
statistical results details. Recaptured wild boars are not included in this table.

3.2. Serological Results

In the present study, 145/2618 captured wild boars (Table 1, Figure 2) and 3/27
recaptured wild boars tested IAV seropositive by NP-ELISA. Due to the limited volume of
7 NP-ELISA screened samples (Table S1), only 141 wild boars (including 138 captured and
3 recaptured animals) were further analyzed by HI assay (Table 2 and Table S1).

Microorganisms 2022, 10, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 2. Serological evidence of influenza A virus (IAV) exposure in wild boars (Sus scrofa) from 
an anthropized area of Northern Italy (2007–2014): (a) Wild boars screened for the presence of anti-
influenza A nucleoprotein (NP) antibodies by NP-ELISA. (b) NP-ELISA-positive wild boars 
examined by HI assay against sIAV subtypes representative of viruses circulating in Italian pig 
farms. Recaptured wild boars are not included in this figure. See Table 2 for details about the seven 
sIAV strains used. 

As detailed in Tables 2 and S1, the seven sIAV strains included: two Eurasian avian-
like swine H1N1/98 (lineage 1C.1-2-like) and H1N1/13 (lineage 1C.2.1), and pandemic-like 
swine H1N1pdm/13 (lineage 1A.3.3.2); two human-like reassortant swine H1N2/98 
(lineage 1B.1.2.2) and the H1N2/09 (lineage 1B.1.2.2); and two human-like reassortant 
H3N2/98 and H3N2/13. 

Taken together, the H1N1 HI-positive results detected beginning in February 2009—
with the highest detection in the first quarter of the year—until March 2013 (Table 2, 
Figure A1) showed a total (including seropositive recaptured wild boars) of 62, 61 and 58 
wild boars seropositive for the H1N1/98, H1N1/13 and H1N1pdm/13 strains, respectively, 
sequentially showing overall GMT (antibody level range) of 26.1 (20–1280), 22.0 (20–640) 
and 18.2 (20–320). In particular, high HI reactivity was observed for the two Eurasian 
avian-like H1N1 viruses, with a four-fold titer difference in three samples only (ID 2754, 
ID 2894 and ID 3044). However, serum samples that tested positive for Eurasian avian-
like H1N1 strains were also reactive to the H1N1pdm-like virus at a slightly lower level, 
except for samples ID 2608, ID 2612, ID 2628 and ID 3376, which showed ≥ four-fold 

Figure 2. Serological evidence of influenza A virus (IAV) exposure in wild boars (Sus scrofa) from
an anthropized area of Northern Italy (2007–2014): (a) Wild boars screened for the presence of
anti-influenza A nucleoprotein (NP) antibodies by NP-ELISA. (b) NP-ELISA-positive wild boars
examined by HI assay against sIAV subtypes representative of viruses circulating in Italian pig farms.
Recaptured wild boars are not included in this figure. See Table 2 for details about the seven sIAV
strains used.
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Table 2. Hemagglutination inhibition assay (HI) reciprocal titers obtained from 141 available wild
boar (WB) that had sera tested positive for influenza A virus nucleoprotein (NP) by NP-ELISA
(Northern Italy, 2007–2014). The HI assays were performed using the following strains of in-
activated influenza A viruses (IAV): H1N1/98, A/swine/Italy/1513/1998/H1N1av; H1N1/13,
A/swine/Italy/311368/2013/H1N1av; H1N1pdm/13, A/swine/Italy/282866/2013/H1N1pdm;
H1N2/98, A/swine/Italy/1521/1998/H1huN2; H1N2/2009, A/swine/Italy/284922/2009/H1huN2;
H3N2/98, A/swine/Italy/1523/1998/H3N2; and H3N2/13, A/swine/Italy/311349/2013/H3N2.

Sampling Date
(No./IAV pos./HI pos.)

HI Titers from WB-Tested IAV-Positive by NP-ELISA

WB
Serum ID

Age
Class * Sex H1N1/98 H1N1/13 H1N1pdm/13 H1N2/98 H1N2/09 H3N2/98 H3N2/13

9 March 2007 (1/1/1) 1984 U U - - - - - - 20

5 April 2007 (1/1/1) 2035 2 F - - - - - - 20

22 May 2007 (11/4/1) 2125 3 M - - - - - - 20

12 June 2007 (12/6/2) 2175 U U - - - - - - 40
2180 1 M - - - - - - 20

14 June 2007 (18/14/2) 2187 1 F - - - - - - 20
2197 U U - - - - - - 20

26 June 2007 (1/1/1) 2222 1 M - - - - - - 20

3 July 2007 (2/2/2) 2230 1 M - - - - - - 20
2231 1 F - - - - - - 20

26 February 2009 (7/6/6)

2600 2 M 320 160 80 - - - -
2601 2 F 160 80 40 - - - -
2602 1 M 40 80 40 - - - -
2603 1 F 80 40 40 - - - -
2604 1 M 40 40 20 - - - 20
2606 3 F 80 80 40 - - - 20

27 February 2009
(1/1/1) 2608 2 M 320 320 80 - - - 20

4 March 2009 (5/4/4)

2611 2 M 40 40 20 - - - -
2612 2 M 160 160 40 - - - 20
2613 2 F 80 40 20 - - - 20
2614 2 M 20 20 - - - - 40

10 March 2009 (7/2/2) 2623 (§) 2 M 80 40 40 - - - 20
2624 2 F 80 40 40 - - 20 40

12 March 2009 (3/3/3)
2627 2 M 160 80 40 - - - 40
2628 4 F 640 640 160 - - - -
2629 2 M 40 20 20 - - 20 40

17 March 2009 (2/1/1) 2632 3 M 40 40 20 - - - -

18 March 2009 (1/1/1) 2634 2 M 40 20 40 - - - 20

20 March 2009 (1/1/1) 2635 3 F 40 40 20 - - - 40

24 March 2009 (4/3/3)
2637 3 F 80 40 40 - - - 40
2638 U F 40 40 40 - - - -
2640 2 M 80 40 20 - - - 20

2 April 2009 (2/1/1) 2646 3 F 40 40 20 - - - -

7 April 2009 (4/2/2) 2651 U U 20 20 20 - - - 80
2652 U U 40 40 20 - - - 20

8 April 2009 (2/2/2) 2654 2 M 40 40 - - - - 20
2656 2 M 40 40 40 - - - 20

21 April 2009 (2/1/1) 2660 3 F 80 80 40 - - - 20

24 April 2009 (4/1/1) 2669 U U 20 40 20 - - - 40

29 April 2009 (7/5/5)

2671 2 M 40 40 80 - - - -
2672 2 F 80 40 40 - - - -
2673 2 F 80 80 40 - - - -
2674 3 F 160 80 80 - - - -
2675 3 M 80 80 40 - - - -
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Table 2. Cont.

Sampling Date
(No./IAV pos./HI pos.)

HI Titers from WB-Tested IAV-Positive by NP-ELISA

WB
Serum ID

Age
Class * Sex H1N1/98 H1N1/13 H1N1pdm/13 H1N2/98 H1N2/09 H3N2/98 H3N2/13

7 May 2009 (3/1/1) 2690 4 F 40 20 - - - - -

12 May 2009 (2/1/1) 2707 3 M 20 20 20 - - - 40

19 May 2009 (4/1/1) 2711 2 M 80 40 40 - - - -

30 June 2009 (8/1/1) 2754 2 M 320 80 40 - - - -

2 July 2009 (8/2/2) 2756 3 M 80 40 40 - - - -
2757 2 F 160 80 80 - - - -

16 July 2009 (2/1/1) 2781 3 F 80 80 40 - - - -

30 September 2009
(1/1/1) 2809 4 M 160 80 160 - - - -

20 October 2009 (12/3/3)
2829 3 F 320 160 80 - - - 20
2832 3 F 160 80 40 - - - -
2833 3 F 160 80 40 - - - -

11 December 2009
(8/1/1) 2894 3 M 320 80 40 - - - -

7 May 2010 (3/1/1) 2940 (§) 3 M 640 640 320 - - - -

18 May 2010 (3/2/2) 2955 (§) 4 M 160 80 40 - - - -
2957 U U 160 80 40 - - - 20

19 May 2010 (6/1/1) 2959 3 F 160 160 160 - - - -

31 May 2010 (3/1/1) 3002 3 F 160 160 80 - - - -

4 June 2010 (14/2/2) 3007 3 F 640 320 320 - - - -
3019 1 F 40 20 20 - - - -

18 June 2010 (9/1/1) 3044 3 M 1280 320 320 - - - -

27 July 2010 (1/1/1) 3092 4 M 40 40 20 - - - -

3 September 2010
(1/1/1) 3104 3 F 80 40 40 - - - 40

6 June 2011 (2/1/1) 3303 3 M - - - - - - 20

14 June 2011 (4/1/1) 3322 3 F 20 - - - - - -

15 July 2011 (3/1/1) 3361 1 F - - - - - - 20

23 July 2011 (2/1/1) 3376 3 F 320 160 40 - - - -

7 October 2011 (2/1/1) 3507 4 F 80 40 40 - - - -

11 November 2011
(1/1/1) 3576 4 M 80 20 20 - - - -

1 June 2012 (1/1/1) 3803 4 F 160 80 40 - - - -

21 June 2012 (2/1/1) 3806 3 M - - - - 40 20 80

20 September 2012
(10/2/1) 3852 3 F - - - - 20 - -

26 September 2012
(6/1/1) 3874 3 M - - - - - - 20

5 October 2012 (3/2/2) 3903 1 M - - - - 20 - -
3904 1 M - - - - 20 - -

4 March 2013 (4/1/1) 4091 4 F 20 20 20 - - - -

12 June 2014 (6/2/1) 4716 4 M - - - - - - 20

No., wild boar number; pos., positive; ID, identification; F, female; M, male; U, undetermined; *, Age class (in months):
0 mo. < age class 1 ≤ 6 mo.; 6 mo. < age class 2 ≤ 14 mo.; 14 mo. < age class 3 ≤ 24 mo.; age class 4 >24 mo.; U,
undetermined; -, negative (<20 HI reciprocal titer); (§), recaptured wild boars showing seroconversions.

Overall, 5.5% of 2618 wild boars tested positive for IAV, with the lowest (0.6%) and
highest (17.6%) NP-ELISA seroprevalence values during 2013 and 2009, respectively. No
IAV antibodies were detected in the 76 samples collected in 2008 (Table 1, Figure 2a).
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Significantly higher IAV seroprevalence values were found in 2007 vs. 2008 and 2010–2013;
in 2009 vs. 2007, 2008 and 2010–2014; in 2010 vs. 2013 and 2014; and in 2012 vs. 2011, 2013
and 2014.

No sex-related differences in proportions of IAV seropositive wild boars were detected
during any year. With regard to age-related differences, in 2007, the 1st subclass 1 showed
significantly higher IAV seroprevalence when compared with the 2nd subclass 1, class
2, and class 3 (Table 1), whereas in 2009, this 1st subclass showed significantly lower
seroprevalence than the remaining classes 2, 3 and 4. Significantly higher seroprevalence
was also detected in the 2nd subclass 1 vs. class 2 in 2012; in class 3 vs. class 2 in 2011 and
2012; and in class 4 vs. 2nd subclass 1 in 2007.

For the 2012 samples, the NP-ELISA results included in the present study were previ-
ously obtained by Delogu et al. [27], whereas HI assays were performed again using the
viruses reported below. In particular, HI-positive results were obtained from 80 out of 141
available IAV positive sera, using as antigens seven IAV strains representative of H1N1,
H1N2 and H3N2 antigenic subtypes circulating in Italian pig farms in the late 1990s and in
the first two decades of the 2000s. Specifically, HI seroreactivity to the following antigenic
subtypes of swine isolates of influenza viruses were detected: H1N1 in 2009, 2010, 2011,
2012 and 2013 (45/47, 8/8, 4/8, 1/18 and 1/2, respectively); H1N2 in 2012 (4/18); H3N2 in
2007, 2009, 2010, 2011, 2012 and 2014 (10/51, 21/47, 2/8, 2/8, 2/18 and 1/4, respectively)
(Figure 2b). Overall, 56.7% of sera tested IAV-positive were found to be HI-positive for at
least one sIAV strain; however, variable percentages were observed during the entire study
period, ranging from 100% (e.g., 15/15 and 12/12 in March and April 2009, respectively)
to 7.7% (e.g., 1/13 in May 2007) (Figure A1). This discrepancy between NP-ELISA and HI
results, as has been previously described [19,27,28], could be related to different types of
antibodies targeting either the conserved NP or the variable hemagglutinin of IAV, and
possibly differing in development and decline [41]. In addition, sIAV not represented in
our panel of HI antigens could have accounted for seropositivity detected only by the
NP-ELISA and not by HI assay [19,27,28]. Finally, the high sensitivity of NP-ELISA (94.5%)
used to screen a large set of serum samples at a threshold dilution of 1:10 [40] could also
have accounted for the lack of detection of low antibody levels by HI assay (1:20 threshold
dilution) [42].

As detailed in Tables 2 and S1, the seven sIAV strains included: two Eurasian avian-
like swine H1N1/98 (lineage 1C.1-2-like) and H1N1/13 (lineage 1C.2.1), and pandemic-like
swine H1N1pdm/13 (lineage 1A.3.3.2); two human-like reassortant swine H1N2/98 (lineage
1B.1.2.2) and the H1N2/09 (lineage 1B.1.2.2); and two human-like reassortant H3N2/98 and
H3N2/13.

Taken together, the H1N1 HI-positive results detected beginning in February 2009—with
the highest detection in the first quarter of the year—until March 2013 (Table 2, Figure A1)
showed a total (including seropositive recaptured wild boars) of 62, 61 and 58 wild boars
seropositive for the H1N1/98, H1N1/13 and H1N1pdm/13 strains, respectively, sequentially
showing overall GMT (antibody level range) of 26.1 (20–1280), 22.0 (20–640) and 18.2 (20–320).
In particular, high HI reactivity was observed for the two Eurasian avian-like H1N1 viruses,
with a four-fold titer difference in three samples only (ID 2754, ID 2894 and ID 3044). However,
serum samples that tested positive for Eurasian avian-like H1N1 strains were also reactive
to the H1N1pdm-like virus at a slightly lower level, except for samples ID 2608, ID 2612,
ID 2628 and ID 3376, which showed ≥ four-fold differences in lower titers. Although the
cross-reactivity between these antigens might influence the interpretation of results [28,45,46],
the high HI seroreactivity of Eurasian avian-like H1N1 strains detected in early 2009 might
impact possible subsequent infections with H1N1pdm-like viruses [47].

Compared to results obtained with older and more recent antigen strains, both the
recent H1N2 and H3N2 lineages revealed higher HI titers, appearing to be more efficient at
detecting antibody levels in seropositive wild boars. With regard to the H1N2 strains, only
4 of 18 IAV seropositive wild boars sampled in 2012 were HI-positive for the H1N2/09
strain between 21 June and 5 October, with overall GMT (antibody level range) of 10.2
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(20–40). Finally, considering the H3N2 HI-positive results detected from 9 March 2007
to 12 June 2014, a total of 3 and 39 wild boars were seropositive for the H3N2/98 and
H3N2/13 strains, respectively, with overall GMT (antibody level range) of 10.1 (20–20) and
13.0 (20–80).

With regard to individual multiple-seropositivity to different subtypes, 24 wild boars
tested HI-positive for both H1N1 and H3N2 subtypes, whereas only one wild boar was
seropositive against H1N2 and H3N2 strains (Table 2).

Twenty-seven wild boars, individually identified by ear-tag number, were recaptured
one or more times at least 2 weeks after the previous sampling, allowing us to assess
seroconversions in three wild boars. The first one was found to be IAV seronegative on
1 July 2008 and tested H1N1 and H3N2 positive on 10 March 2009 (male of class 2, ID
2623). The other two wild boars were IAV seronegative on 4 June 2008 and 18 July 2007 but
showed seroconversions to H1N1 viruses on 7 May 2010 (male of class 3, ID 2940) and 18
May 2010 (male of class 4, ID 2955) (Table 2). The remaining 24 wild boars recaptured one
(n = 18) or two (n = 6) times between 15 May 2007 and 14 September 2014 always tested
IAV seronegative.

4. Discussion

Their high prolificacy and resilience to multiple environmental and climatic contexts
combined with the reforestation of hilly/mountainous environments and indiscriminate
release actions underlie the wild boar demographic expansion in Italy. The consequent
impacts to the environment, biodiversity and human activities are normally mitigated by
targeted control strategies, including the removal of individuals (capture and/or selective
shooting) [37].

This study, carried out during the Wild Boar Management and Control Plan imple-
mented in the protected area Gessi Bolognesi e Calanchi dell’Abbadessa Regional Park, was
designed to evaluate eco–epidemiological aspects of IAV infection in a free-living Sus scrofa
population found in 2012 to be IAV seropositive and variably reactive to sIAV subtypes
circulating in Italian pig farms [27]. Indeed, four major sIAV lineages were circulating in
Italian pigs: H1N1av, H1N1pdm, H1huN2 and H3N2 [48,49], and the possibility that pigs
are a source of sIAV for wild boars has been hypothesized [19,27,29].

From an ecologic perspective, domesticated pigs (Sus scrofa domesticus) and wild boars
(Sus scrofa domesticus) share interbreeding potential and susceptibility to most pathogens,
including sIAVs [20], and the Gessi Bolognesi e Calanchi della Abbadessa Park study
area may provide wildlife–livestock ecological interfaces, enabling sIAV spillover events.
Indeed, some free-range swine farms were present in the Ozzano dell’Emilia, Pianoro and
San Lazzaro di Savena municipalities during the study period [50] and clear evidence
of pig–wild boar interbreeding was observed in a young individual captured during the
control plan implemented in this park (Figure 3).

Moreover, from an epidemiological perspective, this unfenced study area, character-
ized by a remarkable contiguity between woodland and open cultivated areas (Figure 1),
provides refuge and food for these ungulates, whose unrestricted movement and natural
aggregation could enhance IAV infection, transmission, spread and endemization.

To better understand the IAV circulation dynamics in wild boars from the Gessi Bolognesi
e Calanchi dell’Abbadessa Regional Park area, we screened by NP-ELISA sera collected from
captured (n = 2618) and recaptured (n = 27) wild boars between 2007 and 2014, and then, IAV-
positive sera were tested by HI assay using seven antigens including sIAV strains circulating
in Italy before 2000 and between 2009 and 2013 (Table 2 and Table S1).
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Overall, 5.5% of 2618 wild boars tested positive for IAV, with the lowest (0%) and
highest (17.6%) NP-ELISA seroprevalence values during 2008 and 2009, respectively (Table 1,
Figure 2a). Antibodies to IAV were found during all years except 2008 (Table 1), when
logistical problems in collecting sera led to a very small sample size (n = 76), which might
not have permitted the detection of IAV seroprevalence lower than 5% for an estimated
population density of wild boars of around 7.2 animals/km2 (95% confidence level) [51].

As shown in the Results section, significantly higher seroprevalences between sampling
years were found at a variable level. However, annual (Figure 2) and monthly (Figure A1,
Table 2) distributions of seropositive wild boars revealed at least three possible estimated
peaks of infection based on NP-ELISA and/or HI results, similar to the results shown by Pepin
et al. [52] in wild pig populations from 15 U.S. states. In our study, the first estimated peak
(from April to July 2007) for an H3N2 infection occurred at the beginning of 2007, the second
peak (from February to July 2009) for H1N1 and/or H3N2 infections in late 2008/early 2009,
and the third peak (from June to November 2012) for an H1N2 infection in spring/summer
2012. In particular, the second estimated peak was likely related to the recent introduction of
the avian-like H1N1 subtype that may have spread in an immunological naive population
by infecting almost all age classes (Table 2 and Table S1). Moreover, antibody detection in
three wilds boars (ID 2602, ID 2603 and ID 2604) belonging to the 2nd subclass of age class 1
(without potential maternal immunity) further suggests recent H1N1 virus introduction in
this wild boar population. In particular, one of these animals (ID 2604) also tested HI-positive
for the H3N2/13 strain (Table 2 and Table S1).

During the study period, we observed a high H1N1 seroreactivity, followed by a
decreasing trend in the available IAV-positive samples, amounting to 95.7% (45/47) in
2009, 100% (8/8) in 2010, 50% (4/8) in 2011, 5.6% (1/18) in 2012, 50% (1/2) in 2013 and
finally 0% (0/4) in 2014 (Table 1). As previously stated in the Results section, apart from
cross-reactivity between H1N1 subtypes [28,45,47], HI reactivity revealed in the present
study likely accounts for antibodies to the avian-like swine H1N1 lineage appearing before
the H1N1pdm emergence in pigs in late 2009 [53] and as also reported in European wild
boars in Spain [14], Germany [15,18,28], Croatia [17] and Italy [19,27]. With regard to the
H3N2 subtypes, we found HI seroreactivity in IAV-positive samples amounting to 19.6%
(10/51) in 2007, 44.7% (21/47) in 2009, 25.0% (2/8) in 2010, 25% (2/8) in 2011, 11.1% (2/18)
in 2012 and 25% (1/4) in 2014 (Figure 2). In Europe, antibodies to human-like swine H3N2
have been found in wild boars in Germany [15,28]. Finally, H1N2/09 seroreactivity was
only found in 2012 (4/18 IAV-positive samples), and detection of antibodies in two wild
boars (ID 3903, ID 3904) belonging to the 2nd subclass of age class 1 accounts for a recent
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infection with this human-like virus (Table 2 and Table S1). Accordingly, only sporadic
evidence of H1N2 seroprevalence was reported in European wild boars [28]. Furthermore,
sIAV seroconversion found in three recaptured wild boars in March 2009 and May 2010
corroborates the sustained circulation of H1N1 viruses and the lower circulation of H3N2
viruses in the wild boar population, as revealed by the antibody levels detected in 2009
(Figures 2 and A1).

Overall, seropositive results obtained for avian-like swine H1N1, human-like swine
H1N2 and human-like swine H3N2 reflect the periodic introduction of sIAV circulating
in pig populations from Northern Italy [48,49]. Notably, recent data showed significant
genetic differentiation in sIAV from pigs reared in the Emilia–Romagna region and simulta-
neous circulation of the same viral genotypes in pigs and wild boars in overlapping years,
suggesting the hypothesis of continuous introduction of viral strains of sIAV from domestic
to wild suid population [29].

5. Conclusions

From an ecological perspective, domesticated pigs (Sus scrofa domesticus) and their
wild ancestor, the wild boar (Sus scrofa), coexist and share interbreeding potential [12] as
well as susceptibility to most pathogens, including IAV [13].

Providing new insights into wild boar antibody responses to sIAVs, our findings show
that periodic introductions of sIAV may occur in the wild boar population sampled in
a protected area. In particular, our serological investigation revealed epidemic trends of
H3N2 infection in 2007, H1N1 and/or H3N2 infection in 2009, and H1N2 infection in 2012.

Therefore, serological and virological monitoring of wild boar populations should be
implemented to evaluate IAV exposure and to identify spillover events at the livestock–
wildlife interface and potential emergence of zoonotic viruses.
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Figure A1. Serological investigations of influenza A virus (IAV) in free-living wild boar population
(Northern Italy, 2007–2014). IAV seropositivity (obtained by NP-ELISA) and seroreactivity for at least
one of the H1N1av, H1N1pdm, H1huN2 and H3N2 sIAV antigens used in the HI assay are categorized
by year and month. *, one recaptured wild boar showing H1N1 and H3N2 seroconversion; *, two
recaptured wild boars showing H1N1 seroconversion. See Table 2 for details.
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