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This study aimed to explore the potential molecular pathways and targets of

Alzheimer’s disease leading to osteoporosis using bioinformatics tools. The

Alzheimer’s and osteoporosis microarray gene expression data were retrieved

from the Gene Expression Omnibus, and di�erentially expressed genes in the

bloodmicroenvironment related to Alzheimer’s disease and osteoporosis were

identified. The intersection of the three datasets (GSE97760, GSE168813, and

GSE62402) was used to obtain 21 co-expressed targets in the peripheral blood

samples in patients with Alzheimer’s disease and osteoporosis. Based on the

degree algorithm, the top 10 potential core target genes related to these

diseases were identified, which included CLEC4D, PROK2, SIGLEC7, PDGFB,

PTCRA, ECH1, etc. Two di�erentially expressedmRNAs, Prokineticin 2 (PROK2)

and three colony-stimulating factor 3 (CSF3), were screened in the GSE62402

dataset associated with osteoporosis. Protein–protein rigid docking with

ZDOCK revealed that PROK2 and CSF3 could form a stable protein docking

model. The interaction of PROK2 andCSF3, core genes related to osteoporosis

inflammation, plays an important role in the mechanism of osteoporosis

in patients with Alzheimer’s. Therefore, abnormalities or alterations in the

inflammatory pathways in the peripheral blood samples of Alzheimer’s patients

may a�ect the course of osteoporosis.

KEYWORDS

Alzheimer’s disease, osteoporosis,PROK2,CSF3, bio-informatics analysis, biomarkers,

neurovascular

Introduction

Osteoporosis (OP) is a bone metabolic disease that is common and highly prevalent

in the elderly population (1). The prevalence of OP in the elderly increases with age

(2). OP reduces bone strength and increases the risk of fracture in these patients (3, 4).

Globally, osteoporotic fractures are an economic burden on society and the patients’
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families. They are also associated with high disability and

mortality rates in elderly patients, which raise serious concerns

about their health in today’s aging society (5–8).

Alzheimer’s disease (AD), which is yet another concern

in the elderly, has been found to have a high incidence in

the elderly along with OP. Previous studies have shown a

prevalence of osteoporosis of 27% in patients with Alzheimer’s

disease, compared to 16% in residents without dementia (9).

Beta-amyloid, APOE4, vitamin K, and vitamin D may be

important proteins that interconnect AD and OP (10). Vitamin

deficiency significantly increases AD risk. Interestingly, vitamin

levels within a certain range positively correlate with cognitive

performance (11–13). Also, alterations in vitamin D levels in

the serum in middle-aged and elderly populations are associated

with decreased bone mineral density (14). The AD mouse

model, APP/PS1 transgenic mice, had significantly different

bone microarchitecture and bone density parameters compared

to wild-type mice and was more susceptible to OP (15). In vitro

and in vivo studies in AD transgenic mouse models showed an

enhanced amyloid beta (Aβ) peptide expression in bone tissue.

Furthermore, an increase in Aβ peptide levels induces changes

in bone mineral density, affecting the balance between bone

formation and bone resorption, leading to OP (16). In addition,

the Wnt/β-catenin signaling pathway plays an important role in

AD andOP pathogenesis due to its role in inflammation (17, 18).

Therefore, it is tempting to postulate a correlation between AD

and OP. Patients with AD are cognitively impaired and prone to

physical injuries. It is important to understand howAD regulates

OP in patients to prevent OP occurrence and its treatment in

patients with AD.

With the advancement in bioinformatics and high-

throughput sequencing, it is now possible to screen the

differentially expressed genes (DEGs) using microarray gene

expression profiling (19–23). Publicly available databases

and repositories that store information on gene expression,

microarrays, and clinical samples can help understand the

underlying mechanism of the disease and screen potential

molecular targets quickly and efficiently before their use in

clinical settings (24–26). This study aimed to investigate the

molecular mechanism of OP in patients with AD using data

retrieved from the Gene Expression Omnibus (GEO) database.

The potential molecular pathways and biological processes

associated with OP in patients with AD were explored using

bioinformatics tools. Finally, we identified key targets for

preventing and treating OP in patients with AD. This will

provide valuable insights into understanding the pathogenesis

and progression of OP in patients with AD.

Abbreviations: AD, Alzheimer’s disease; OP, Osteoporosis; PPI, Protein–

protein interaction; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes; DEGs, Di�erentially expressed genes.

Materials and methods

Target gene identification

The gene expression microarray data on “Alzheimer’s

disease” and “osteoporosis” were retrieved from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/). The data were

screened using the following criteria: (i) keywords “Alzheimer’s

disease,” “osteoporosis,” (ii) peripheral blood, and (iii) human.

The expressionmatrix data were corrected and normalized using

the Bioconductor R package (R version 4.0.4). The differentially

expressed mRNAs in the peripheral blood samples of patients

with “AD” and “OP,” that is, the differentially expressed genes

(DEGs) associated with AD and OP, were found in compared

to normal healthy adults. The DEGs between the two groups

were calculated using the linear models for the microarray

data (limma package), with the screening criteria of P < 0.05

and absolute value of fold change ≥ 1.41 (|log2 FC| ≥ 0.50).

We used the statistical tests built into the ggpubr package for

statistical testing.

Screening and co-expression of
di�erential genes in AD and OP and PPI
network construction

Using the Venn R package, Venn graphs were created by

intersecting AD-related and OP-related DEGs. The Search Tool

for the Retrieval of Interacting Genes/Proteins database (https://

string-db.org/) was used to construct the protein–protein

interaction (PPI) network and generate PPI relationship data.

The PPI network model was further visualized by Cytoscape

3.7.2. The PPI network was topologically analyzed according to

degree values to screen for the core target proteins.

Gene ontology functional analysis and
KEGG pathway enrichment

The clusterProfiler, an R package, was used to perform

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis on AD-OP-related

DEGs. The species was set to human for this analysis. The

signaling pathways were mapped using the “Pathview: an

R/Bioconductor package.”

Establishment of
OP-inflammatory-related gene
expression matrix

The gene expression matrix of the OP transcriptome profile

was established with the inflammatory response-related genes
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FIGURE 1

Disease target screening. (A) Heat map of di�erentially expressed genes in GSE97760; (B) heat map of di�erentially expressed genes in

GSE168813; (C) heat map of di�erentially expressed genes in GSE62402; (D) volcano map of di�erentially expressed genes in GSE97760; (E)

volcano map of di�erentially expressed genes in GSE168813; (F) volcano map of di�erentially expressed genes in GSE62402.

extracted from the Gene Set Enrichment Analysis (GSEA)

database as previous researches (27–29). The differentially

expressed mRNAs between the OP group and normal healthy

groups were calculated using the limma package. The “heatmap”

package was used to construct maps of gene expression and

cluster the DEGs.

Relative expression of core target genes

The microarray data of the OP-related gene expression

matrix were retrieved from GEO, and the expression of core

DEGs in each sample was derived based on the core targets

obtained from the pre-screening. The “ggpubr package” was

used to analyze the relative expression of the core targets in

the OP expression data. P < 0.05 was considered statistically

significant. A box plot of the relative expression of the core

targets was plotted (R version 4.0.4).

GO and KEGG enrichment analysis of
OP-inflammation-related genes

GO and KEGG pathway enrichment analysis of OP-

inflammation-related genes were done using the Scatterplot3d:

3D graphics, clusterProfiler in R package software, and Perl

software package.

Molecular docking to validate the
interactions between inflammatory
proteins

Rigid protein–protein docking (ZDOCK) was performed

between inflammatory proteins to study the reciprocal

relationships. The PDB format of the protein structural

domain was downloaded from the Protein Data Bank PDB

database (http://www.rcsb.org/). The protein structure was

imported into Discovery Studio 2019 software to dehydrate

and dephosphorylate the proteins. The upstream protein of the

inflammatory pathway was set as the receptor protein, and the

downstream protein was selected as the ligand–protein. The

angular step size was set to 15◦. The ZDOCK module was run

to identify the docking site and calculate the ZDOCK Score.

When molecular dynamics simulation (MDS) finds the docking

site, the two form a stable docking (30–33). The results of

protein–protein molecular docking are shown in 2D format.

Results

Screening for disease targets

Based on the keywords used and screening criteria set,

nine patients with AD and 10 normal healthy individuals from

the GSE97760 dataset retrieved from GEO were included in
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FIGURE 2

Venn diagram of di�erential co-expressed genes in Alzheimer’s disease and osteoporosis in the blood microenvironment.

the study. A total of 7,370 differentially expressed mRNAs,

of which 4,003 upregulated and 3,367 downregulated mRNAs,

were obtained. In the GSE168813 dataset, five patients with

AD and 10 normal healthy individuals were included in the

study. In this dataset, 499 differentially expressed mRNAs were

identified, of which 236 mRNAs were upregulated, and 263

mRNAs were downregulated. In the GSE62402 dataset, five OP

patients and five normal healthy individuals were included in the

study, and 110 differentially expressed mRNAs (94 upregulated

and 16 downregulated mRNAs) were obtained. The heat

map generated is shown in Figures 1A–C. The transcriptome

differential expression data were represented by constructing a

volcano map, as shown in Figures 1D–F.

Detection of AD-OP-related DEGs in
peripheral blood and construction of PPI
networks

Twenty-one AD-OP-related DEGs were obtained from

the intersection of the DEGs of the three microarray datasets

(Figure 2). The AD-OP-target gene network was constructed

by Cytoscape software (Figures 3A–C). Protein–protein

interaction of the AD-OP-related DEGs was constructed

using Cytoscape software. The top 10 potential core target

proteins (Figure 3D), including CLEC4D, PROK2, SIGLEC7,

PDGFB, PTCRA, and ECH1, were obtained using the

CytoHubba plugin in Cytoscape software based on degree

size screening (34).

Results of the GO and KEGG enrichment
analysis

The biological processes (BP) associated with the 21

AD-OP-related DEGs were regulation of calcium ion import,

endothelial cell proliferation, and inositol phosphate-mediated

signaling (Figure 4A). The related cell compositions (CC)

mainly included BLOC-1 complex, eukaryotic 48S preinitiation

complex, and eukaryotic translation initiation factor 3

complex (Figure 4B). The related molecular functions

(MF) mainly enriched were glutamate receptor binding,

superoxide-generating NADPH oxidase activator, and G

protein-coupled glutamate receptor binding (Figure 4C).

Figure 4D shows the GO enrichment features. KEGG pathway

enrichment analysis shows that pathways like transcriptional

dysregulation in cancer, ferroptosis, porphyrin metabolism,

and other immune-related signaling pathways (Figure 5A)

were associated with 21 AD-OP-related DEGs in peripheral

blood. Furthermore, AD-OP-related DEGs in peripheral blood

function were closely related to the ferroptosis signaling

pathway (Figure 5B).
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FIGURE 3

Screening for AD-OP-related DEGs in peripheral blood and construction of PPI networks. (A,B) GSE168813 di�erentially expressed gene

interaction network; (C) GSE62402 di�erentially expressed gene interaction network; (D) top 10 potential core target genes based on degree

values.

Establishment of OP-inflammatory
response-related gene expression matrix

The gene set related to the inflammatory response was

downloaded from GSEA. The OP-related GSE62402 dataset was

retrieved from GEO based on the pre-set filters. R software

was used to organize and analyze the metabolomics-related

expression matrix. According to the screening criteria set earlier,

two differentially expressed mRNAs were identified, PROK2

was upregulated, and CSF3 was downregulated. Figure 6 shows

a heat map of the OP-inflammatory response-related gene

expression matrix.

Relative expression of the core target
genes associated with OP inflammation

The core OP-inflammation-related genes PROK2 and CSF3

were obtained by comprehensive differential expression analysis.

The relative expression of PROK2 and CSF3 in OP was

analyzed. The relevant expression profile of PROK2 and CSF3

in OP patients was downloaded from GEO, analyzed by

the ggpubr package, and visualized using the box expression

map (Figures 7A,B). The results showed that PROK2 was

highly expressed in peripheral blood OP patients compared to

normal healthy individuals and the difference was statistically

significant (P < 0.01). Furthermore, compared to normal

healthy individuals, there was a significant reduction in CSF3

expression in peripheral blood of OP patients (P < 0.01).

GO and KEGG enrichment analysis results
of OP-inflammation-related genes

Enrichment analysis of the two OP-inflammatory response-

related genes enriched BP, such as the regulation of actin

cytoskeleton reorganization, smooth muscle contraction, and

granulocyte differentiation. Their molecular functions enriched

were growth factor receptor binding, growth factor activity,

and cytokine activity (Figures 8A–D). The KEGG pathway

enrichment analysis found that their functions are mainly

associated with malaria, IL-17 signaling pathway, hematopoietic

cell lineage, JAK-STAT signaling pathway, and COVID-19

(Figures 8E,F).

Molecular docking of inflammatory
proteins

The 3D structures of the 1IMT structural domain

of PROK2 protein and the 2D9Q structural domain of

CSF3 protein were downloaded from the PDB database
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FIGURE 4

Results of the GO enrichment analysis for AD-OP-related DEGs. (A) Chord diagram of biological processes functional analysis; (B) chord diagram

of cell component functional analysis; (C) chord diagram of molecular function functional analysis; (D) histogram of GO enrichment analysis.

FIGURE 5

Results of KEGG enrichment analysis. (A) KEGG enrichment analysis bubble chart; (B) ferroptosis signaling pathway.
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FIGURE 6

Heat map for clustering of inflammatory response-related genes in OP.

and exported in PDB format. The ZDOCK module of

Discovery Studio 2019 software was used to rigidly dock

PROK2 protein to CSF3 protein. The ZDOCK Score values

and their best pose interaction were calculated, as shown

in Table 1. The ZDOCK Score of the 1IMT domain of

PROK2 protein and the 2D9Q docking model of CSF3

protein was −85.085. The 1IMT domain of PROK2 proteins

forms hydrogen bond links with amino acid sites such

as B:ARG167:NH1—A:ASP109:OD1, B:ARG167:NH2—

A:ASP112:OD1, B:ARG288:NH2—A:GLU19:OE1,

A:HOH177:O—A:PRO65:O, and other amino acid sites,

whereas A:LYS16:NZ—B:ASP197:O D1, A:LYS16:NZ—

B:ASP200:OD1, B:ARG167:NH1—A:ASP112:OD2,

B:ARG288:NH1—A:GLU19:OE2, A:LEU15—B:LEU291,

and other amino acid sites form electrostatic interactions

and water transport bonds. Comprehensive analysis revealed

that proteins PROK2 and CSF3 formed a stable protein

docking model. Figure 9 demonstrates two-dimensional

molecular docking constructed using Discovery Studio

2019 software.

Discussion

Gene expression microarray datasets on Alzheimer’s disease

and osteoporosis patients’ peripheral blood samples were

retrieved from the GEO database. The results revealed that

two dysregulated proteins, PROK2 and CSF3, were associated

with the occurrence of OP in patients with AD. Using

rigid protein–protein docking by ZDOCK confirmed that

the two proteins form a stable protein docking model,

suggesting that the interaction between the two proteins

plays an important role in the occurrence of OP in patients

with AD.

Prokineticin 2 (PROK2) is expressed throughout

the central nervous system (35). As a new family of

chemokine-like molecules, they are involved in various

physiological and pathological processes, including nerve

and blood vessel regeneration, pain, inflammation, and

neuroinflammation (36–38). A study confirmed that

PROK2 mediates harmful brain injuries (39). In AD,

PROK2 maintains a state of neuroinflammation and
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FIGURE 7

Relative expression levels of core targets involved in OP inflammation. (A) PROK2 relative expression; (B) CSF3 relative expression.

FIGURE 8

GO and KEGG enrichment analysis of OP-inflammation-related genes. (A) BP enrichment bubble diagram; (B) BP enrichment arc diagram; (C)

MF enrichment bubble diagram; (D) MF enrichment arc diagram; (E) KEGG enrichment bubble diagram; (F) KEGG enrichment arc diagram.

causes neurotoxicity (35). Studies show the involvement

of PROK2 in Aβ-induced toxicity, as Aβ peptides increase

PROK2 expression in AD, representing a new class of

pathological markers in AD animal models (40–42).

Consistent with the previous studies, our results show

that PROK2 expression was upregulated in patients with

AD. Furthermore, the PROK2 expression was not only

associated with inflammatory responses in the blood samples

of patients with AD but also was a core gene associated with

inflammation in OP.
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TABLE 1 Results of molecular docking vina, discovery studio 2019.

Receptor Ligand ZDOCK

score

Hydrogen bond

interaction

Electrostatic interaction

PROK2 (1IMT) CSF3 (2D9Q) −85.085 B:ARG167:NH1—A:ASP109:OD1,

B:ARG167:NH2—A:ASP112:OD1,

B:ARG288:NH2—A:GLU19:OE1,

A:HOH177:O—A:PRO65:O. . .

A:LYS16:NZ—B:ASP197:OD1,

A:LYS16:NZ—B:ASP200:OD1,

B:ARG167:NH1—A:ASP112:OD2,

B:ARG288:NH1—A:GLU19:OE2,

A:LEU15—B:LEU291

FIGURE 9

Molecular docking of inflammatory proteins and protein docking model.

Few studies have shown the PROK2 expression and

functions in OP. Interestingly, previous studies have

demonstrated the involvement of PROK2 in Aβ-mediated

toxicity and have a positive correlation with Aβ peptides.

It also alters the bone mineral density, which may affect

the bone formation and resorption balance, leading to the

development of OP (16, 42). Prokineticin receptor 2 (PROKR2)

is the PROK2 and G protein-coupled receptor (GPCR). In

addition, GPCRs affect bone metabolism by influencing the

cytokines and signaling pathways that regulate osteoblasts (OB)

and osteoclasts (OC) (43). In addition, PROK2 is also closely

associated with gastrointestinal (GI) function and GI diseases

(44). Previous studies have also shown that the OP incidences

were significantly higher in patients with GI diseases (45, 46).

Hence, we hypothesized that PROK2 plays an important role in

the development of OP. In this study, we show for the first time

the upregulation of PROK2 expression in OP. Furthermore,

PROK2 was a core gene associated with OP inflammation and

a common gene differentially expressed between AD and OP

patients. Hence, PROK2 could be potentially used as a molecular

marker for predicting the occurrence of OP in patients with AD.

CSF3 is a member of the colony-stimulating factor family.

Together with its receptor CSF3R, CSF3 is involved in regulating

sarcomere cell production, neutrophil function, etc. (47). A

study has reported that neutrophil/lymphocyte ratio could

be used in predicting the occurrence of OP (48). Zhang

et al. demonstrated the expression of RANKL, the osteoclast

differentiation factor on the surface of neutrophils. RANKL

binds to the osteoclast differentiation factor receptor, RANK,

which mediates osteoclast differentiation, thereby enhancing

the osteoclast activity. This disrupts bone metabolism, which

reduces bone mass (49). However, the relationship between

CSF3 and OP has not been established.

In this study, the expression of CSF3 was downregulated in

OP as a core gene related toOP inflammation. Bone resorption is

enhanced during the chronic inflammatory response, reducing

the bone formation and promoting OP (50). Previous studies

show that CSF3 is an anti-inflammatory cytokine that clears

bacterial pathogens and modulates the inflammatory response

(51). Therefore, we postulate the involvement of CSF3 in

inflammation-related biological processes in the progression

of OP.

The core inflammation-related genes PROK2 and CSF3

involved in OP, identified in this study, were associated with

the signal transducer and activator of the transcription (STAT)

pathway. The STAT pathway induces astrocyte proliferation
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and is activated in AD animal models and humans. Previous

studies have demonstrated that reactive astrocyte proliferation

is a hallmark of the AD signaling pathway (52). STAT3 induces

astrocyte proliferation and is activated in human AD and animal

models, and reactive astrocyte proliferation is a hallmark of

AD (52). During acute inflammation and septic inflammatory

conditions, CSF3 mediates STAT3-dependent upregulation of

neutrophil IL-4R (53). Interestingly, an increase in STAT3

phosphorylation was observed in cells stably expressing

PROKR2, which is the receptor for PROK2 (54). In addition,

the STAT signaling pathway plays an important role in the

pathogenesis of OP and AD. Inhibiting STAT3 phosphorylation

attenuates learning and causes memory deficits in AD animal

models (55). Furthermore, the STAT3 signaling pathway is

involved in the progression of OP by altering osteoblast bone

metabolism (43, 56). Consistent with the previous studies,

the KEGG pathway enrichment analysis revealed that both

genes enriched the JAK-STAT signaling pathway and pathways

associated with malaria, IL-17 signaling pathway, hematopoietic

cell lineage, and COVID-19. GeneCards database (https://

ga.genecards.org/#results) shows that both PROK2 and CSF3

were associated with the extracellular region. Furthermore,

GO analysis revealed the involvement of PROK2 and CSF3 in

protein binding and their association with VEGF. In this study,

we identified the combined role of PROK2 and CSF3 in the

pathogenesis of AD and OP. Our results reveal those alterations

in the inflammatory response pathway in the peripheral blood

of patients with AD may affect the occurrence and progression

of OP. The docking results show that proteins PROK2 and CSF3

could form a stable protein docking model, thus confirming the

previous bioinformatics results that the interaction between the

PROK2 and CSF3 could be involved in the inflammatory-related

response to OP in patients with AD.

In this study, using bioinformatics analysis, we

demonstrated that the proteins PROK2 and CSF3 may

be involved in inflammation-related processes in the

development of OP in patients with AD and confirmed

stable protein interactions between them by docking,

thereby verifying the reliability of predictions made by

bioinformatics analysis. However, the study has a few

shortcomings. The primary technique used in this study

was bioinformatics analysis. Hence, further experiments

validating the interaction between PROK2 and CSF3

proteins are required. The results of our study predict

the role of PROK2 and CSF3 protein binding in the

pathogenesis of OP in patients with AD. However, the

mechanism is still unclear and needs further exploration using

appropriate experiments.

Conclusion

AD-related OP may be caused by the interaction

between PROK2 and CSF3, two proteins related to OP

inflammation. Accordingly, abnormalities/alterations

in the inflammatory response in the peripheral blood

of patients with AD could influence the progression

of OP. Further exploration of targets for treating

OP in patients with AD will be facilitated by

our study.
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