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Abstract

Background: In eukaryotic cells the nuclear envelope isolates and protects DNA from molecules that could damage its
structure or interfere with its processing. Moreover, selected protection enzymes and vitamins act as efficient guardians
against toxic compounds both in the nucleoplasm and in the cytosol. The observation that a cytosolic detoxifying and
antioxidant enzyme i.e. glutathione transferase is accumulated in the perinuclear region of the rat hepatocytes suggests
that other unrecognized modalities of nuclear protection may exist. Here we show evidence for the existence of a safeguard
enzyme machinery formed by an hyper-crowding of cationic enzymes and proteins encompassing the nuclear membrane
and promoted by electrostatic interactions.

Methodology/Principal Findings: Electron spectroscopic imaging, zeta potential measurements, isoelectrofocusing, comet
assay and mass spectrometry have been used to characterize this surprising structure that is present in the cells of all rat
tissues examined (liver, kidney, heart, lung and brain), and that behaves as a ‘‘nuclear shield’’. In hepatocytes, this hyper-
crowding structure is about 300 nm thick, it is mainly formed by cationic enzymes and the local concentration of key
protection enzymes, such as glutathione transferase, catalase and glutathione peroxidase is up to seven times higher than
in the cytosol. The catalytic activity of these enzymes, when packed in the shield, is not modified and their relative
concentrations vary remarkably in different tissues. Removal of this protective shield renders chromosomes more sensitive
to damage by oxidative stress. Specific nuclear proteins anchored to the outer nuclear envelope are likely involved in the
shield formation and stabilization.

Conclusions/Significance: The characterization of this previously unrecognized nuclear shield in different tissues opens a
new interesting scenario for physiological and protection processes in eukaryotic cells. Selection and accumulation of
protection enzymes near sensitive targets represents a new safeguard modality which deeply differs from the adaptive
response which is based on expression of specific enzymes.
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Introduction

In eukaryotic cells different types of biologic machineries

contribute to protect DNA from molecules that could damage its

structure or interfere with its processing. The nuclear envelope is a

first important mechanical barrier that opposes the interaction of

toxic compounds with the genetic material [1]. A second one is

represented by specific protection enzymes and molecules (i.e.

glutathione, vitamin A, C and E) able to eliminate many

dangerous compounds. A third protection mechanism is formed

by specific transcription factors mediated pathways [2]. Among

the many toxic and dangerous compounds for the nucleus, a

prominent killer role is due to compounds that produce oxidative

(ROS), nitrosative (RNS) and alkylative stress. Catalase (CAT),

glutathione peroxidase (GPX) (scavengers of H2O2) and superox-

ide dismutase (SOD) (which eliminates HO2
N radicals) are the most

important antioxidant enzymes that counteract in many cells the

killer activity of ROS. Recently an active antioxidant role has been

described for heme oxygenase-2 in specific cell lines [3], [4] and

for DNA polimerase iota, an enzyme which has intranuclear

localization [5]. Glutathione transferases (GSTs), a superfamily of

enzymes grouped in at least eight gene-independent classes in

mammals, are also involved in the cell protection against alkylating

compounds and organic peroxides. These enzymes catalyze the

conjugation of glutathione (GSH) to the electrophilic centre of

toxic alkylating compounds [6] and the Alpha class isoenzymes
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display a selenium-independent glutathione peroxidase activity

[6]. We have also demonstrated that GSTs is involved in the cell

defence against excess nitric oxide (NO) sequestering this free

radical in a harmless iron complex bound to the active site [7].

Thus GST represents a multifunctional enzyme involved in the

protection against ROS, RNS as well as against electrophilic

agents. While this enzyme can be up-regulated in case of

electrophilic or ROS stress [8], [9], the intracellular concentra-

tions of CAT and GPX in various tissues cannot be increased in

case of oxidative stress conditions [10], [11]. Despite the absence

of a general adaptive response, a permanent optimization of the

defence power could be reached by increasing the local

concentration of protection enzymes near sensible intracellular

targets like the nucleus. Possible existence of this novel defence

strategy is suggested by a few observations: a curious presence of

GSTs near the nucleus has been reported many years ago in

immunohistochemical and non-aqueous cell fractionation studies

[12], [13], [14]. More recently, we have observed a relevant

accumulation of Alpha class GSTs near the nuclear membrane of

the rat hepatocytes [15], a phenomenon revealed by the expedient

of avoiding exogenous salts or buffers during the purification of the

nuclear fraction [15]. The presence of salts or buffers, usually

employed for nuclear preparations, easily detached these proteins

from the membrane, a finding suggesting a predominant

contribution of electrostatic interactions in this binding [15].

Importantly, the use of a specific fluorescent probe for GST

signalled its perinuclear accumulation even in intact cells [15].

However, all these previous studies did not verify if other key

protection enzymes beside GSTs are present. The possibility that

an unrecognized more complex enzyme organization near the

nucleus may exist is a stimulating proposal worthy to be

investigated.

The present study explores the following possibilities: a) that

beside GSTs, additional protection enzymes may be associated to

the nuclear envelope, b) that this phenomenon may not be

restricted to hepatocytes, c) that it has a specific protection

function. We demonstrate here for the first time that a surprising

selected multi-enzyme machinery is present near the nuclear

envelope of cells from many tissues forming a sort of enzyme task-

force which contributes to DNA protection.

Results

First evidence and physical characterization of the
nuclear shield

In a first experimental approach, nuclei were purified in the

absence of exogenous salts, and the proteins bound electrostati-

cally to the nuclear membrane were detached by increasing the

ionic strength (see Materials and Methods). Specifically, in rat liver

2.7 mg of nuclear bound proteins per gram of fresh tissue were

extracted (Table 1), including, as expected, the Alpha class GSTs

(see below). This amount represents about 3% of all cytosolic

proteins. Nitrogen electron spectroscopic imaging (ESI) of nuclei

purified in the absence of exogenous salts confirmed the presence

of a thick protein structure surrounding the nuclear membrane,

which appears like a ‘‘nuclear shield’’ and almost vanishes upon

mild salt treatment (Figure 1, A and B). Statistical examination of

ESI images at varying cut sections is consistent with an estimated

thickness of the shield of about 300670 nm. Given that the

nuclear membrane available is 0.022 m2/g of liver [15], [16] (see

Materials and Methods), the shield region has a protein density of

about 0.4 g/cm3, a value twice as high as the one in the cytosolic

milieu (,0.2 g/cm3), but only half as much as the one in a protein

crystal (,1 g/cm3) [17]. In other words, this structure, rather than

a compact multilayer [15], may be represented as a region of

perinuclear hyper-crowding which is undetectable by means of

standard morphological microscopy (Figure 1C).

Zeta Potential measurements and nuclear shield re-
formation

Zeta potential, a sensitive function of the interface nature of

suspended particles [18], [19], added further details on the protein

organization of the shield. At increasing ionic strength, the change

in zeta potential of isolated nuclear fractions parallels the GST

detachment and proceeds without apparent discontinuity

(Figure 2A), supporting the view that the different proteins

forming the shield are mixed homogeneously. The zeta potential

perturbation observed at very low ionic strength is likely due to a

nuclear disaggregation process as suggested by the light scattering

analysis (Figure 2B). We observed that a spontaneous and partial

change of the zeta potential, accompanied by a parallel

detachment of about 50% of the shield proteins, occurs even

without addition of salts by simply incubating a dilute nuclear

fraction in 0.25 M sucrose (Figure 2C). On the other hand, de-

shielded nuclei extensively washed with 0.25 M sucrose are still

able to re-constitute about 50% of the original nuclear shield when

incubated with a cytosolic fraction. The process is fast but not

instantaneous showing a t1/2 of 2.5 minutes (Figure 2D). The

observed time dependent and spontaneous detachment of the

nuclear shield (up to 50%) in 0.25 M sucrose suggests that the

shield, as it appears immediately after nuclei preparation, could

not be an artefact due to the use of sucrose. Obviously, the

possibility that positively charged proteins present in the cytosol

may be linked to a negative counterpart (i.e. proteins or

phospholipid layers) depends on the relative competition between

the cationic proteins and other positively charged ions (mainly K+).

Thus, the relative concentration of these cationic objects drives

protein attachment or detachment. The modality employed to

Table 1. Nuclear shield proteins.

Organ
nuclear shield proteins
(mg/g of tissue)

cytosolic proteins
(mg/g of tissue)

membrane area/g
of tissue (m2/g)

nuclear shield proteins/
membrane area (mg/m2)

LIVER 2.760.4 8565 0.022* 120620

KIDNEY 2.660.3 7066 0.02760.001 100610

HEART 3.860.2 3165 0.03260.001 11967

LUNG 5.060.2 6064 0.01960.001 260620

BRAIN 2.760.3 2467 0.05160.002 5466

*Data from ref. [15].
doi:10.1371/journal.pone.0014125.t001

Nuclear Shield
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prepare the nuclear fraction in 0.25 M sucrose does not perturb

the reciprocal concentration of all cationic competitors and thus it

appears a correct procedure to visualize specific electrostatic

interactions like those which promote the nuclear shield. In

addition, the existence of an artefact should be signalled by an

increase in the shield when the relative amount of sucrose

(compared to the cytosolic volume) is increased. Conversely,

protein content of the nuclear shield remained almost unchanged

when the nuclei were prepared from liver homogenate under

different dilution conditions (i.e. 1:3, 1:6, 1:10 and 1:20 gram of

tissue/ml of 0.25 M sucrose) (data not shown). Other previous

evidences confirm the real existence of the shield; the perinuclear

accumulation of GST has been demonstrated in intact cells (thus

without sucrose) by using a specific fluorescent probe for this

enzyme [15] and a similar evidence has been obtained using

immunostaining procedures [12], [13], [14].

Proteins of the nuclear shield display peculiar acid-base
properties

We next examined whether the protein composition of the

nuclear shield is similar to the one of the cytosolic fraction or

rather only selected proteins are enriched in this perinuclear

region. Isoelectric focusing experiments first suggested that this

structure is formed prevalently by positively charged proteins

(80%) while, in agreement with previous observations [20], the

cytosol is populated predominantly by acidic proteins (60%)

(Figure 3, A–C). Furthermore, a more stringent analysis of the

Figure 1. ESI experiments on shielded and de-shielded rat liver nuclei. (A) ESI of shielded nuclei. Images were obtained as described in
Materials and Methods. The average of thickness of the red area showing the protein shield is 300670 nm. Scale bar, 0.3 mm. (B) ESI of de-shielded
nuclei. Scale bar, 0.3 mm. (C) TEM micrographs of shielded and de-shielded nuclei. Samples were treated and stained as reported in Materials and
Methods. Scale bar, 0.3 mm.
doi:10.1371/journal.pone.0014125.g001

Nuclear Shield
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basic region of the chromatograms indicated that the cationic

proteins of the shield, grouped in discrete pI ranges, display a

different distribution when compared to the cytosolic pool with an

evident selection of the proteins with higher pI values (pI.8.0)

(Figure 3D). The average pI of all shield proteins is ,8.0 while the

average pI of the cytosol is ,6.0, a value close to that reported in

previous studies (pI,5.5) [21].

Key antioxidant enzymes are present in the nuclear
shield

The identification of specific enzyme activities in the nuclear

shield could be diagnostic to clarify the physiological role of this

structure. Beside the Alpha class GSTs – a well known efficient

barrier against alkylating compounds, organic peroxides and nitric

oxide [15], [22] – we detected significant amounts of additional

anti-oxidant enzymes such as CAT and GPX (Table 2 and

Figure 4A). In the nuclear shield all these enzymes have specific

activities (U/mg of total proteins) similar and even higher than those

found in the cytosol (five times higher for GST and three times for

CAT) (Figure 4B) and increased local concentrations (seven times

higher for GST and four times for CAT) (Figure 4C). The

normalization of the activities of these enzymes to the corresponding

nuclear membrane area is an additional parameter here termed

‘‘defence potentiality’’ of the shield (Table 2 and Figure 4D). For

comparison, we examined the presence, in the nuclear shield, of

enzymes that do not have a specific ‘‘protective role’’, such as L-

lactate dehydrogenase (LDH), L-alanine amino transferase (ALT),

and creatine kinase (CK); these proteins are scarcely present in the

shield and display very much lower specific activities than in the

cytosol (Figure 4B). Curiously, the CAT identified in the shield is a

peculiar cationic form (pI = 7.7) that is not found in the cytosol

where a few anionic forms (pI = 5.846.2), also present in large

amounts in peroxisomes, are the predominant isoenzymes [23].

CAT is encoded by a single gene and its theoretical pI value,

calculated on the basis of the amino acid composition, is 7.5 (see

Materials and Methods) close to the one of the isoenzyme found in

the shield, while the acidic cytoplasmic form is the result of post-

translational modifications [24]. The shield contains only traces of

an additional anti-oxidant enzyme i.e. SOD but its presence in this

region could be pleonastic due to its cytosolic and nucleoplasmic

localization [25]. Notably, the catalytic activities of GST, CAT and

GPX are very similar when these enzymes are packed into the

nuclear shield or free in solution (Figure 4E), demonstrating that

active site accessibility and functional flexibility are not impaired by

the increased protein density. Mass spectrometry analysis of the

nuclear shield extract and of the cytosol disclosed additional details.

Figure 2. Zeta potential and shield re-formation. Shielded nuclei
were diluted with 20 volumes of 0.25 M sucrose. (A) Zeta potential
changes (pink squares) and GST detachment (green squares) due to the
addition of potassium phosphate buffer, pH 7.4. Zeta potential
perturbation at very low buffer concentration (below 1 mM) is due to
a nuclear disaggregation process as suggested in (B) by a similar
perturbation of light scattering at 600 nm (pink triangles). (C) Time
dependent zeta potential changes and nuclear shield GST detachment
in 0.25 M sucrose. Shielded nuclei suspended in 0.25 M sucrose were
incubated at 25uC. At variable times the amount of GST released in
solution (blue circles) and zeta potential (light blue circles) were
measured. (D) Kinetic of shield re-formation. De-shielded nuclei in
0.25 M sucrose were divided into aliquots; each aliquot was resus-
pended in rat liver cytosolic fraction and incubated at 25uC. At fixed
times, the mixture was centrifuged. The re-formation of the shield was
measured either on the basis of protein content that can be detached
with 50 mM NaCl. All experiments were performed in triplicate. Error
bars, s.d.
doi:10.1371/journal.pone.0014125.g002

Nuclear Shield
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Beside a clear confirmation of the prominent selection of cationic

proteins in the shield (Figure S1, A and B), this approach indicated

that, in addition to GST, CAT and GPX, many other enzymes

contribute to the nuclear shield. Keeping in mind that mass

spectrometry analysis allows to identify only proteins that display

proper fragmentation patterns and volatility properties (e.g. GPX,

whose activity was unambiguously identified, could not be detected

either in the shield or in the cytosol), 78 distinct proteins have been

identified in the shield, 39 of which are almost exclusive of this

structure (Table S1 and S2). Of note, 72% of the shield proteins

have, in their native oligomeric structures, molecular masses higher

than the cut-off of the nuclear pores (kDa = 40445) [26], [27],

Figure 3. Isoelectrofocusing experiments. (A) Combined chromatogram of the cytosolic proteins obtained from two runs at different pH ranges
(i.e. pH 9.0–6.0 and pH 7.0–4.0). The double slash shows the connection zone of the two chromatograms. Blue area indicates the basic proteins and
red area the acidic proteins. Dotted line represents the pH gradient. (B) Combined chromatogram of the nuclear shield proteins. (C) Acid-base
properties of nuclear shield and cytosolic proteins. (D) Percent of acidic and basic proteins grouped in discrete pI ranges as derived by the
experiments shown in A and B.
doi:10.1371/journal.pone.0014125.g003

Table 2. Antioxidant enzymes of the nuclear shield.

organ cytosolic activity (U/g of tissue) nuclear shield activity (U/g of tissue)
shield defense potentiality*
(U/m2 of membrane area)

GST GST (Alpha)** CAT GPX GST (Alpha){ CAT GPX GST(Alpha){ CAT GPX

LIVER 90610 3964 2900065000 1462 762 30006600 0.2860.04 300680 140000630000 1362

KIDNEY 1264 963 1500062000 862 1.860.6 200650 0.460.1 70620 700062000 1564

HEART 2.960.8 0.460.1 6006100 661 0.2560.09 3468 0.360.1 863 11006200 963

LUNG 1063 561 8006100 461 0.3560.06 2669 0.2660.07 1863 14006500 1464

BRAIN 662 0.960.3 370650 0.660.1 0.360.1 1063 0.0960.03 662 200660 1.860.6

Activities of GST, CAT and GPX were measured as reported in Materials and Methods. Values reported are the means of 5 independent tissue preparations. The standard
deviation of the five different replicas are reported for each measurement. The units of the cytosolic GSTs (first column) are the sum of the activity contributions of all
enzyme isoforms.
*‘‘Defense potentiality’’ is defined as the amount of enzyme unit normalized per membrane area.
**Units of cytosolic Alpha class GST were calculated from previous studies (see Materials and Methods).
{GST units in the shield of various tissues were tentatively ascribed to Alpha class GST as occurs for the liver [15].
doi:10.1371/journal.pone.0014125.t002

Nuclear Shield
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indicating that they are unlikely to represent a contamination due to

nuclear proteins (Table S2 and Figure S1C). Beside the postulated

antioxidant role inferred from the observed enrichment of GST,

CAT, and GPX, the nuclear shield may also have additional

functions as hinted from the variegated enzyme mesh identified by

mass spectrometry approach. In this respect it is worth pointing out

that typical ‘‘metabolic enzymes’’ such as malate dehydrogenase

and glyceraldehyde-3-phosphate dehydrogenase, identified in the

nuclear shield, have been shown to be also part of transcriptional

complexes and implicated in transcription regulation [28], [29].

DNA protection
Whatever possible additional roles played by such a variegated

enzymatic composition of the shield, the clear enrichment of

DNA-protective enzymes (Figure 4C) suggests for this newly

identified structure a role as a guardian of genomic integrity.

Comet assay, allowing the assessment of DNA breaks, performed

on shielded and de-shielded nuclei, showed a direct evidence that

the nuclear shield represents an efficient protection barrier for the

genetic material, both in the presence and in the absence of

oxidizing compounds (Figure 5A). A quantification of the damage

produced by H2O2 on DNA has been obtained by measuring the

tail length (Figure 5B). Furthermore, a clear indication that

perinuclear Alpha GSTs may act as an efficient trap even against

non-oxidizing toxic compounds like nitric oxide derivatives has

been described previously in intact hepatocytes treated with NO

donors [7].

Nuclear shield compositions vary in cells of different
tissues

This protein structure is not restricted to the liver cells but it is

also present in the perinuclear regions of cells of tissues as diverse

as kidney, heart, lung and brain (Table 1, Table 2 and Figure 4A).

The most and the less populated nuclear shields were found in the

lung and in the brain, respectively (Table 1). This difference might

be related to the fact that lung cells are more exposed to exogenous

toxic compounds and, conversely, the brain is a protected tissue by

virtue of the hematoencephalic barrier. Interestingly, each tissue

Figure 4. Quantification of antioxidant enzymes in the nuclear shield. Activity values reported in (A–E) are the means of 5 independent
tissue preparations. Calculations in (A and C) were made assuming as reference the activity of the cytosolic Alpha GST found in distinct rat tissues (see
Materials and Methods). (A) Nuclear shield activities of GST, CAT, GPX reported as percentages of the corresponding cytosolic activities. Error bars, s.d.
(B) Specific activities of the antioxidant enzymes (GST, CAT and GPX) and non-antioxidant enzymes (CK, LDH and ALT) in the shield of rat liver. Specific
activities of the corresponding cytosolic enzymes are taken as 100%; error bars, s.d. (C) Nuclear shield GST, CAT, and GPX concentrations compared
with their cytosolic levels taken as 100%. A cytosol volume of 2630 mm3 for each hepatocyte and a shield volume of 67 mm3 (0.3 mm6222 mm2) were
assumed for calculations [53]. Errors, s.d. (D) ‘‘Defense potentiality’’ of the nuclear shield. GST, CAT, and GPX activities found in the nuclear shield and
normalized for nuclear membrane area (U/m2 of membrane area) of liver, kidney, heart, lung, and brain (from Table 2) were compared to those of
liver taken as 100%. Error bars, s.d. (E) Catalytic activity of GST, CAT and GPX measured when they are free in solution (100%) or packed in the nuclear
shield (see Materials and Methods); error bars, s.d.
doi:10.1371/journal.pone.0014125.g004

Nuclear Shield
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shows different and characteristic levels of antioxidant enzymes in

the shield; for example, while the liver shield has a relevant

amount of CAT and little GPX, the opposite it is true in the

kidney, lung and brain (Figure 4A).

Nuclear proteins are the electrostatic counterpart for the
cationic shield

Only the nuclear membrane displays propensity to form the

protein shield. Membranes of different intracellular organelles,

such as mitochondria, microsomes and lysosomes, lack this

enzymatic protection [15]. Given that all intracellular membranes

have similar, albeit non identical, lipid composition, it is unlikely

that subtle differences may be responsible for the unique presence

of the shield on the nuclear membrane. We speculate that some

negatively charged proteins, exclusively present in the nuclear

membrane and firmly bound to the envelope, may provide the

necessary electrostatic potential to attract and stabilize the protein

shield. Proteolytic experiments support this hypothesis; incubation

of de-shielded nuclei with trypsin or protease K completely inhibits

the re-formation of the nuclear shield (Figure 6A).

Discussion

For the first time a particular enzyme-network is identified which

is electrostatically associated to the outer nuclear membrane. In the

last years many studies have been performed to detail composition

and role of the inner and outer nuclear envelopes and their

enzymatic equipments. For example, nuclear pores and other

integral membrane protein complexes (belonging to the inner

membrane) have been found to play a fundamental role in the

dynamic organization of the genome, positioning in DNA repair,

recombination and stability [30]. On the other hand, recent findings

point to important structural roles for nesprins and plectins, giant

rod-like proteins anchored exclusively to the outer nuclear

membrane [31]. These proteins stretch out into the cytosol and

are involved in the nucleus positioning. The nuclear shield

described in the present study implements the functions correlated

to the outer nuclear membrane. The existence in different rat cells

of a perinuclear multi-enzyme structure mainly formed by selected

cationic proteins including key protection enzymes (Figure 3 and

Table 2) indicates that this particular region may act as guard

against oxidative damage. This peculiar finality can be only

revealed on the basis of classical biochemical studies instead of

immunocytochemical assays that cannot verify the enzymatic

competence of the detected enzymes. Indeed, antibody works made

in the past [12], [13], [14] clearly indicated the accumulation of

GST in the perinuclear region but they were unable to assess any

biological activity. The presence of active forms of GST, CAT and

GPX, as determined in this paper, designs this perinuclear region a

sort of hyper-filter where the detoxifying power is enhanced up to

seven times with respect to the cytosol (Figure 4C). A simple comet

assay visualizes an increased DNA protection against ROS favoured

by this structure (Figure 5). Additional evidences point to a specific

finality of the shield and not to a casual enzyme assemblage. For

example, this structure appears more prominent in tissues more

exposed to toxic compounds (lung) while it is less populated in the

highly protected brain (Table 1). Furthermore, in tissues where

CAT is abundant, GPX (which has similar detoxifying activity

against H2O2) must be redundant and, accordingly, it is scarcely

represented in the shield (Table 2). Obviously, the protection role

may be just one of many other possible functions inherent in this

structure. Beside CAT, GST and GPX, the large variety of different

enzymes that composes the shield (Table S2) represents an

unexplored mine for future investigations in this direction. We also

note that most of the shield enzymes have molecular masses higher

than the one allowing the entrance into the nucleus (Figure S1C)

and thus this machinery may be a clever system to approach these

enzymes to the chromosomes.

The biochemical and physical characterization of this novel

cellular structure outlines a new level of cell organization,

mediated by weak, relatively unspecific, electrostatic interactions,

that somewhat contrasts a picture of the cell delineated by well

organized organelles interspersed in a relatively homogeneous

milieu. The particular protein density of the shield (only two times

higher than in the cytosol) as calculated through ESI measure-

ments, allows to assimilate this structure to an hyper-crowding

which cannot be detected by classical microscopy (Figure 1C).

This may explain why its presence remained masked until now.

Interestingly, the lack of shield re-formation after proteolytic

treatment of the nucleus (Figure 2D) indicated that some

negatively charged proteins (specifically present on the outer

nuclear envelope) could play a crucial role in the shield formation.

Only a few membrane proteins may be indicated as possible shield

scaffold. Among them, nesprin-1, nesprin-2 and plectin are giant

proteins (ranging from 2800 to 6900 residues) showing rod-like

structures about 300–400 nm long [31] (a length similar to the

Figure 5. Protection of DNA from oxidative damage in the presence or absence of the nuclear shield. (A) Comet assay on shielded and
de-shielded nuclei exposed to 10 mM H2O2 for three minutes. Experimental details are reported under Materials and Methods. (B) Statistical analysis of
comet assay. Error bars, s.d.
doi:10.1371/journal.pone.0014125.g005

Nuclear Shield
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shield thickness), and exclusively present as a sort of negatively

charged network on the outer nuclear membrane surface [32],

[33]. These proteins are involved in the nucleus positioning and

display conspicuous net negative charge i.e. about 270 for plectin,

2100 for nesprin-1 and 2240 for nesprin-2 (see Materials and

Methods) that may represent a good electrostatic counterpart for

the positively charged proteins of the nuclear shield. A tentative

pictorial model of this structure is shown in Figure 6B.

If the nuclear shield is a functionally important structure, as

proposed here, genetic alterations that reduce its thickness or modify

its enzyme composition should affect the protective role and possibly

result in pathological phenotypes. Intriguingly, many neurodegen-

erative pathologies like Alzheimer, Parkinson, Huntington and

amyotrophic lateral sclerosis are characterized by typical aggrega-

tions of misfolded or damaged proteins in the perinuclear region

termed aggresomes [34]. The possibility that such structures alter

the protective nuclear shield described in this study is just one of the

hypotheses that must be verified in the immediate future.

Materials and Methods

Reagents
All reagents used in this study were from Sigma-Aldrich Inc. (St.

Louis, USA) and used without further purification. Trypsin and

Protease K (Sigma-Aldrich) employed in the proteolytic experi-

ments were from bovine pancreas (11,400 U/mg) and from

Tritirachium album (13.1 U/mg), respectively.

Animals
Male Wistar rats were anaesthetised with sodium pentobarbital

(50 mg/kg body weight, injected i.p.) before rapid killing by

cervical dislocation minimizing sufferings and subsequent liver,

kidney, heart, lung and brain dissections. Experiments were

carried out with the approval by the Ethic Committee of the

University of Roma Tre in accordance to the ethical guidelines for

animal research of the Italian Ministry of Health (permit number:

246/H10) D.Lvo 116/92.

Nuclei preparations
After perfusion with 0.25 M sucrose and heparine to remove

blood, different tissues (liver, kidney, heart, lung and brain) from

male rats were excised, minced and homogenized in a teflonglass

Potter Elvehjem homogenizer, in 0.25 M sucrose (10 ml per gram

of tissue). After a brief centrifugation at 3006g (3 min) to remove

unbroken cells and periplasmic membranes, the homogenate was

centrifuged at 10006g for 10 min to isolate the nuclear fraction

[15]. The resulting supernatant, centrifuged at 100,0006g for

30 min, represents the ‘‘cytosolic extract’’. The nuclear pellet was

washed three times with 10 ml of 0.25 M sucrose and re-

suspended in 10 ml of 0.25 M sucrose. This suspension represents

the ‘‘shielded’’ nuclei fraction. It contains less than 2% of

contaminating structures as judged by microscopy analysis. Even

less contamination was observed by measuring marker enzymes of

cytosolic, mitochondrial, lysosomal and microsomal origin [15].

De-shielded nuclei were obtained by incubating the shielded nuclei

(coming from 1 gram of fresh tissue) with 50 mM NaCl (or

10 mM potassium phosphate buffer, pH 7.4). After centrifugation

at 10,0006g for 5 min, 4uC, the pellet was re-suspended in 10 ml

of 0.25 M sucrose. The total protein content of cytosolic fraction

and nuclear shield fraction were determined by the method of

Lowry [35].

Figure 6. Proteolysis experiments and tentative pictorial representation of the nuclear shield. (A) Effect of proteolysis by trypsin and
proteinase K on the nuclear shield reconstitution (see Materials and Methods). Error bars, s.d. (B) Tentative pictorial representation of nuclear shield
on the outer nuclear membrane, also based on the models shown in refs. [32], [33]. Proportions between anionic and cationic proteins in the shield
and in the cytosol shown in the picture are those obtained experimentally.
doi:10.1371/journal.pone.0014125.g006
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Nuclear membrane surface
Nuclear membrane area of cell from different rat tissues were

calculated on the basis of the total phospholipidic content.

Phospholipids were determined according to literature protocols

[36], [37], [38]. The extraction step started from 800 ml of a nuclear

suspension of different tissues prepared as above described. In a

glass tube 4 ml of a solution CHCl3/MeOH 2:1 v/v were mixed

with the nuclear sample, vortexed for one min and centrifuged at

2,000 rpm for 2 minutes. The aqueous phase was discarded.

Chromatographic controls were made by using a TLC slice of silica-

gel POLYGRAM SIL UV 254 (0.25 mm gel with fluorescence

probe), eluted with a solution CHCl3/MeOH/H2O/NH3 - 25%

65/30/4/2 v/v. The organic phase was mixed with 1 ml of NaCl

0.9% at 0uC, vortexed and centrifuged at 2,000 rpm for 2 minutes.

The washing aqueous phase was discarded and the organic phase

was stored at 220uC. To quantify the phospholipidic content, 80 ml

of organic phase were evaporated (110uC, 15 min), then 70 ml of

H2SO4/HClO4 1:1 v/v were added and the sample was heated at

240uC for 30 minutes. 1.6 ml of ascorbic acid/ammonium

molibdate 0.83%/0.2% were added, vortexed and incubated at

45uC for 30 minutes. The blue color due to the complex formed was

quantified spectrophotometrically at 820 nm. The calibration curve

derived from a standard solution of 1 mM KH2PO4.

For quantitative analysis, the total membrane surface area of a

single rat liver hepatocyte is assumed 110,000 mm2 [16]. Considering

that 1 gram of fresh liver contains about 108 cells and that the outer

nuclear membrane is 0.2% of the total hepatocyte membranes, it

results that the available outer nuclear surface area is about 0.022 m2

per gram of fresh liver. The membrane area/g of tissue for kidney,

lung, heart, and brain was determined by evaluating the phospho-

lipidic content as reported above and by comparing this value with

the phospholipidic content found in rat liver.

Nitrogen Electron Spectroscopic Imaging (ESI) and
morphological microscopy

Shielded and de-shielded nuclei from rat hepatocytes suspended

in 0.25 M sucrose were treated with a fixative solution containing

3% glutaraldehyde for six hours. Nuclei were post-fixed for

2 hours in 1% osmium tetroxide in the same buffer, dehydrated

with ethanol, and embedded in epon 812 resin [39] (TAAB,

England). Thin and ultra-thin (,40 nm) unstained sections were

collected in uncoated 200 mesh copper grids and observed with a

Zeiss CEM transmission electron microscope at 80 kV. Staining of

the ultra-thin sections with lead citrate and uranyl acetate (usually

performed to visualize better sub-cellular structures in transmission

electron microscopy) was omitted to avoid the interference with

the ESI and electron energy loss spectroscopy analyses. For the

localization of N in the specimens, the electron spectroscopic

images were taken at DE = 410 eV, just above the ionization edge

(IE) of N (Nk DE = 401 eV), to detect the total N signal, and at

DE = 377 eV, the pre-ionization edge (PIE) of N, as a reference

carrying information on the background [39], [40]. The unit test

area was circular with a variable diameter ranging from 1.3 to

8 mm, which was anyway smaller than the selected microscopic

field and inversely proportional to the degree of microscopic

magnification. Net N images were obtained by using a digital

image analyzer with an interactive built analysis system: the N

map obtained by subtracting the PIE from the IE images was

recorded with a highly sensitive camera.

Enzymatic assays and catalytic activities
GST, CAT, GPX, and SOD activities were assayed both in

cytosolic and nuclear shield fractions following usual assay

conditions [15], [41], [42], [43]. Cytosolic and nuclear shield

fractions were treated with dithiothreitol (DTT) to preserve GPX

enzymatic activity [42]. Enzymatic assays for CK, LDH, and ALT

were carried out on a Modular P800 device (Roche) [44]. The

enzymatic units of cytosolic GSTs are the sum of the activities of

all enzyme isoforms. Conversely, as demonstrated previously for

the liver nuclei [15], the activities of GSTs found in the shield of

the different rat tissues can be related mainly to the Alpha class

GSTs. The cytosolic Alpha GST abundances are calculated on the

basis of previous studies on liver [45], kidney [46], heart [47], lung

[48], and brain [49] GSTs.

Comparison of the catalytic activities of GST, CAT and GPX

bound to the nuclear shield or free in solution was made on

shielded nuclei aliquots (suspended in 0.25 M sucrose), in the

absence or in the presence of 50 mM NaCl. Activities were

measured by usual spectrophotometric methods [15], [41], [42]

but in the absence of any buffer.

Zeta potential measurements
Zeta potential values were obtained by using a Laser-Doppler

microelectrophoresis using a Zetasizer 5000 instrument (Malvern,

UK). Measurement cell was aligned before analysis by using

reference latex beads (25065 mV) (Malvern, UK). Zeta poten-

tials were calculated by the integrated Malvern proprietary

software (v. 1.36) by using the Smoluchowsky model

(F(ka) = 1.5). Reported values refer to the average of five

independent measurements (variation coefficient ca. 5–10%).

Shielded nuclei samples from rat liver in 0.25 M sucrose, kept

constantly at 4uC, were treated with variable amounts of 0.1 M

potassium-phosphate buffer, pH 7.4 (or of 1 M NaCl). The

volume of the added buffer did not exceed 2.5% v/v. Samples

were then poured into the measurement cell and measured after

temperature equilibration at 25uC (about 1 minute). Preliminary

experiments have shown that nuclei do not sediment significantly

in such time interval.

Nuclear shield re-formation
Experiment is illustrated in Scheme S1 (Supporting informa-

tion). Nuclei from rat liver were de-shielded with 50 mM NaCl

and washed three times with 0.25 M sucrose. The nuclear

suspension was divided into aliquots, each aliquot was resuspended

in rat liver cytosolic fraction and incubated at 25uC. At fixed times,

the mixture was centrifuged. The re-formation of the shield was

measured either on the basis of protein detached from the nuclei

with 50 mM NaCl or, alternatively, by measuring the decrease of

the total protein concentration of the cytosol after incubation with

the de-shielded nuclei. Experiments were performed in triplicate.

FPLC Chromatofocusing
Isoelectrofocusing experiments were performed on an AKTA

Purifier system (Amersham Biosciences, Inc.), equipped with a

pump system (P-900), spectroscopy unit (UV-900), pH-meter/

conductimeter (pH/C-900), and a fraction collector (Frac-900).

The chromatography runs were performed on a Mono P 5/200

GL (HR 5/20) column (Amersham Biosciences Inc.), with 1 ml/

min flow rate. The pH range explored in two different

chromatographic runs were from 9.0 to 6.0 using a start buffer

ethanolamine-CH3COOH 0.025 M pH 9.4 and a Polybuffer 96-

CH3COOH pH 6.0 (Amersham Biosciences, Inc.), and from 7.0

to 4.0 by a start buffer bis/Tris-Iminodiacetic acid 0.025 M

pH 7.4 and a Polybuffer 74-Iminodiacetic acid pH 4.0 (Amer-

sham Biosciences, Inc.). Rat hepatocyte cytosol extract and

nuclear shield extract were loaded at a concentration of 0.3 mg/

Nuclear Shield
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ml. The final chromatograms were recorded and analyzed by the

software Unicorn 5.2 (Amersham Biosciences, Inc.).

Theoretical pI calculations
Theoretical pI estimation and electrostatic calculations were

performed at pH 7.0 by the Protein Calculator Server v. 3.3 at

www.scripps.edu. Catalase pI estimation (accession number:

AAB42378). Proteins selected for net charge calculations: plectin

(accession number: CAA42169), nesprin-1 (accession number:

AAL47053) and nesprin-2 (accession number: XP_001080795).

Mass spectrometry analysis
Proteins derived from rat liver cytosolic fraction and nuclear

shield fraction were precipitated with 50% ethanol, 25%

methanol, 25% acetone and dissolved in 6 M urea and 100 mM

Tris pH 7.9. After reduction with 10 mM DTT and alkylation

with 20 mM iodacetamide, protein samples were digested 50:1

(w/w) with sequence grade trypsin (Promega, Madison, WI, USA)

at 37uC overnight. The reaction was stopped by adding a final

concentration of 0.1% trifluoroacetic acid. Samples were diluted

with 0.1% formic acid, 3% acetonitrile in water at a concentration

of 0.36 mg/ml, and 0.72 mg of protein digestion were loaded on

column for peptide separation. Peptides were trapped on a 5 mm

Symmetry C18 trapping column 180 mm620 mm (Waters Corp.,

Milford, MA, USA) and separated using a 175 min reversed phase

gradient at 250 nl/min (3 to 40% acetonitrile in water over

125 min) on a nanoACQUITY UPLCTM System (Waters),

utilizing a 1.7 mm BEH 130 C18 NanoEaseTM 75 mm625 cm

nanoscale LC column (Waters). The lock mass ([Glu1]-Fibrino-

peptide B/ml, 500 fmol/ml) was delivered from the auxiliary pump

of the with a constant flow rate of 200 nl/min. The separated

peptides were mass analyzed by a hybrid quadrupole orthogonal

acceleration time-of-flight mass spectrometer (Q-Tof PremierTM,

Waters Corp.) directly coupled to the chromatographic system and

programmed to step between low (4 eV) and high (15–40 eV)

collision energies on the gas cell, using a scan time of 1.5 per

function over 50–1990 m/z (Expression mode: data independent

parallel parent and fragment ion analysis [50]). Continuum LC-

MS data from three replicates experiments for both rat liver

fractions were processed using the software ProteinLynx Global

Server v2.3 (Waters). Protein identifications were obtained with

the embedded ion accounting algorithm of the software [51] and

searching on the UniProtKB/Swiss-Prot protein knowledgebase

(release 57.15 of 02-March-10 containing 515203 sequence

entries, with taxonomical restriction: Rattus norvegicus, 7483

sequence entries). The search parameters were: automatic

tolerance for precursor ions and for product ions, minimum 3

fragment ions matched per peptide, minimum 7 fragment ions

matched per protein, minimum 2 peptides matched per protein, 1

missed cleavage, carbamydomethylation of cysteine as fixed

modification and oxidation of methionine as variable modification.

Comet assay
Rat liver nuclei suspension in 0.25 M sucrose and the

corresponding de-shielded nuclei were treated with H2O2

(10 mM) for three minutes. The assay was performed starting with

20 ml of nuclei suspension (,10.000–20.000 nuclei) mixed with

180 ml of 1.7% low melting agarose in sucrose 0.25 M and

immediately pipetted onto a frosted glass microscope slide pre-

coated with a layer of 1% normal melting point agarose, prepared

in PBS lacking Ca2+ and Mg2+. Three slides were prepared for

each experimental point. The agarose was allowed to set at 4uC for

the necessary time. After, slides were placed on a horizontal

electrophoresis unit containing fresh buffer (1 mM EDTA,

300 mM NaOH pH 13.0). Electrophoresis was then conducted

in fresh electrophoresis buffer (pH 13.0) for 15 min at 25 V and

300 mA (0.8 V/cm) at 4uC. Subsequently, the slides were gently

washed in neutralization solution (0.4 M Tris-HCl, pH 7.5) for

5 min and fixed in 100% fresh methanol for 3 min. Slides were

stained with 50 ml ethidium bromide (20 mg/ml) and covered with

a coverslip. The main protocol for comet assay was based

according by usual method [52]. Stained nucleoids were scored

visually using a fluorescence microscope (Leica) equipped with a

camera COHU (206 magnification). Three slides were analyzed

for each experimental point and comet images on each slide were

acquired using the ‘I.A.S.’ automatic image analysis software

purchased from Delta Sistemi (Rome, Italy). The comet images

were digitalized and a statistical assessment of tail length was

conducted.

Proteolysis experiments
The experiment is illustrated in Scheme S2 (Supporting

information). Nuclei from one gram of five different rat tissues

were de-shielded with 50 mM NaCl, washed three times with

10 ml of 0.25 M sucrose and resuspended in 0.25 M sucrose

(10 ml). Two samples for each tissue (1 ml) were incubated for

2 hours at 25uC with trypsin and proteinase K (1.0 mg/ml final

concentration). A third sample was incubated only with 50 mM

NaCl, and a fourth sample taken as simple control (sample D).

After incubation the samples were washed three times in 0.25 M

sucrose. Proteolyzed and control nuclei from liver, kidney, heart,

lung and brain were incubated with their corresponding cytosolic

fractions for 20 minutes at 25uC, and then washed three times

with 0.25 M sucrose. The amount of re-constituted shield was

evaluated by measuring the proteins or Alpha GST detached by

50 mM NaCl.

Supporting Information

Figure S1 Mass spectrometry analysis. (A) Theoretical pI

distribution of the cytosolic and nuclear shield proteins identified

by LC-MSE (see Materials and Methods). Statistical significance

was calculated according to a nonparametric Wilcoxon-Mann-

Whitney test. (B) Percent of total acidic and basic proteins in

cytosol and nuclear shield. (C) Molecular masses of the native

proteins found in the shield. Green circles: proteins with molecular

masses higher than the cut-off value of nuclear pores. Green circles

with arrow: proteins bound with protein complexes with higher

molecular masses. Pink circles: proteins with molecular masses lower

than cut-off value of nuclear pores.

Found at: doi:10.1371/journal.pone.0014125.s001 (0.62 MB TIF)

Table S1 Proteins identified in cytosolic fraction.*

Found at: doi:10.1371/journal.pone.0014125.s002 (0.13 MB

DOC)

Table S2 Proteins identified in nuclear shield fraction.*"

Found at: doi:10.1371/journal.pone.0014125.s003 (0.11 MB

DOC)

Scheme S1

Found at: doi:10.1371/journal.pone.0014125.s004 (0.65 MB TIF)

Scheme S2

Found at: doi:10.1371/journal.pone.0014125.s005 (0.41 MB TIF)
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