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In Parkinson’s disease (PD) and other synucleinopathies, chronic neurodegeneration occurs within different areas of the central
nervous system leading to progressive motor and nonmotor symptoms. The symptomatic treatment options that are currently
available do not slow or halt disease progression. This highlights the need of a better understanding of disease mechanisms and
diseasemodels.The generation of newborn neurons in the adult hippocampus and in the subventricular zone/olfactory bulb system
is affected by many different regulators and possibly involved in memory processing, depression, and olfaction, symptoms which
commonly occur in PD. The pathology of the adult neurogenic niches in human PD patients is still mostly elusive, but different
preclinical models have shown profound alterations of adult neurogenesis. Alterations in stem cell proliferation, differentiation,
and survival as well as neurite outgrowth and spine formation have been related to different aspects in PD pathogenesis. Therefore,
neurogenesis in the adult brain provides an ideal model to study disease mechanisms and compounds. In addition, adult newborn
neurons have been proposed as a source of endogenous repair. Herein, we review current knowledge about the adult neurogenic
niches in PD and highlight areas of future research.

1. Unmet Needs in the Treatment of
Parkinson’s Disease

Parkinson’s disease (PD) is an age-related chronic neurode-
generative disorder with an estimated prevalence of 160
per 100,000 affecting 2-3% of people aged 55 and above
[1, 2]. The clinical diagnosis is based on the presence of
the motor symptoms bradykinesia, resting tremor, rigidity,
and postural instability [3], while the definitive diagnosis
can only be made post mortem by detection of 𝛼-synuclein
containing Lewy bodies (LB) in the substantia nigra (SN)
[4]. A number of therapies are available to alleviate the
motor symptoms including L-DOPA (as gold standard),
dopamine agonists,MAO-B-inhibitors, theNMDA-receptor-
antagonist amantadine, and neuromodulation by deep brain
stimulation. However, none of them has proven disease-
modifying effects and the clinical benefits of the therapy

may wear off as the disease progresses [5]. Cell replacement
strategies to replace lost dopaminergic input in the striatum
of PD patients have led to the proof of principle that fetal
mesencephalic transplantations into the striatum increase
striatal dopamine levels [6, 7] and reinnervate the striatum
[6, 8–13] but came to a first stop when severe graft induced
dyskinesias were found as a major complication [14, 15].
Moreover, detailed analysis of the tissue revealed signs of
host-to-graft propagation of LB pathology [10, 12]. Recently, a
new trial has been instated that aims at reviving and refining
the technique and is funded by the EU as the multicenter
project TRANSEURO [16].

Nonmotor symptoms of PD have gained increasing
interest due to their major impact on the patients’ quality
of life and due to the limited availability of symptomatic
treatments [17–19]. Indeed, the variety of nonmotor symp-
toms reflects the multisystemic nature of PD, according to
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the current concept of disease propagation in an ascending
pattern [3, 20]. Affected brain regions are identified first
by 𝛼-synuclein-positive LBs and dystrophic Lewy neurites
(LN) [21]. LB deposition is accompanied and followed by
neurodegeneration, but the processes that precede this stage
are unclear as yet. According to the staging proposed by
Braak and colleagues, PD pathology is only detected in two
basal cranial nerves nuclei, namely, the glossopharyngeal
and the vagal nerve and in the olfactory bulb at an early
disease stage (OB, stage 1). This corresponds to the premotor
symptoms hyposmia and autonomic dysfunction, including
obstipation [22–25]. At stage 2, pathology is detectable also in
the pontine areas of the locus coeruleus, the raphe nuclei, and
the reticular formation. This brainstem affection may cause
rapid-eye-movement sleep behavior disorder which is one of
the most specific indicators for the future development of PD
and occurs in 30–50% of PD patients [26, 27]. Depression
is a nonspecific but frequent nonmotor symptom of PD that
often begins in the prodromal phase and severely affects the
quality of life in PD [28, 29]. Stage 3 of PD histopathology
marks the involvement of the SN and the anterior olfactory
nucleus, whereas significant rates of degenerating neurons in
the pars compacta of the SN are only seen in stage 4. Motor
symptoms of PD emerge at stage 4 or later, when disease
pathology is already widespread and a substantial proportion
of SN neurons degenerated. Thus, disease-modifying thera-
pies should be much more promising when instated in early
premotor stages of PD. To this end, PD risk scores have been
introduced [30, 31]. Stages 5 and 6, finally, are characterized
by the involvement of the basal forebrain and cortical regions,
including the entorhinal cortex and the cornu ammonis
regions of the hippocampus. This advanced stage of PD
is clinically dominated by complicated control of motor
symptoms (e.g., fluctuations, dyskinesias, and dysphagia) and
severe nonmotor symptoms like Parkinson’s disease dementia
(PDD), psychosis, and sleep-wake disorders. Dementia with
Lewy bodies (DLB) is characterized clinically by a predom-
inant dementia syndrome preceding motor symptoms and
pathologically by neocortical accentuation of LB pathology
[32–34].

In light of the chronically progressive disease pattern of
PD involving olfactory and hippocampal systems, the pres-
ence of neural stem cells and active neurogenesis through-
out life serves as an attractive model to study PD disease
pathology and to test neuroprotective and neuroregenerative
treatment approaches. Therefore, in the following review, we
will elaborate current knowledge about adult neurogenesis in
PD patients and PD models, and we will discuss how these
findings may help to understand and to treat PD.

2. Adult Neurogenesis in PD Patients

It is accepted today that neurogenesis persists in humans
in the dentate gyrus (DG) of the hippocampus and in the
subventricular zone (SVZ) beyond embryonic neurogenesis
[35–38]. Few studies have addressed adult neurogenesis in
PD patients, mainly in the SVZ/OB system. Small and
heterogeneous sample groups, post-mortem delay, and the

availability of immunohistochemical markers have limited
the direct investigation of alterations of adult neurogenesis
in the two neurogenic zones of PD patients. The number of
cells positive for proliferating cell nuclear antigen (PCNA)
was reduced in the SVZ of 4 PD patients when compared to 4
controls [39]. This proliferation defect was related to reduced
dopaminergic innervation from the SNpars compacta as seen
in animal models of dopaminergic deafferentation [39–42].
In line with the hypothesis of dopaminergic control of SVZ
proliferation, a decreased number of epidermal growth factor
(EGF) receptor positive cells were found in the SVZ of 6
PD patients as compared to 6 age- and sex-matched controls
[43]. In a clinicohistological study of a cohort of 32 PD
patients, the number ofMusashi-positive cells within the SVZ
(representing neural stem and progenitor cells within this
area) was positively correlated with the extent of dopamin-
ergic treatment whereas disease duration showed a negative
correlation [44]. A similar reduction ofMusashi-positive cells
within the SVZ was noted in specimen of 5 DLB and 6 PDD
cases as compared to 5 controls [45]. The observed decrease
in SVZ proliferation of patients with LB disease may thus be
due to a reduction of the number of putative stem cells as a
consequence of dopamine depletion. However, a recent study
did not detect changes in SVZ proliferation (as determined
by expression of PCNA and pHH3) in post-mortem tissue
of 10 PD patients when compared to 10 controls [46]. No
changes in the number of GFAP𝛿-positive cells as another
putative marker of SVZ stem cells were observed [47]. This
study controlled for age, sex, and post-mortem delay and
included additional specimen from 5 nondemented controls
with incidental LB pathology to take dopaminergic treatment
into account. The authors did not detect differences of SVZ
proliferation in the presence of high intragroup variability.
The ability to generate SVZ-derived cultures from PD post-
mortem tissue provides a hint for its intact proliferative
capacity but currently does not allowquantitative conclusions
[46, 48]. Within the authors’ explanations for the discrepan-
cies between these human SVZ studies, it became clear that
consent about the optimal methodology concerning tissue
sampling, anatomical definition of sampling area, choice of
markers for SVZ stemandprogenitor cells, and quantification
still needs to be defined [49, 50]. Future studies with new
methods thus need to be designed and carefully conducted
to resolve these conflicting data.

There is a strong correlation betweennigral dopaminergic
degeneration, cholinergic deficits within the limbic system,
and the premotor symptom hyposmia as shown by imag-
ing data [51, 52]. Odor discrimination is a hippocampus-
dependent task [53] and hippocampal dopaminergic hypoac-
tivity correlates with hyposmia in PD [54]. However, in
addition to the early neuropathological involvement of the
OB during the course of PD, direct studies about alterations
of the OB in PD suggest that pathogenesis of hyposmia
may also take place within the OB. The OB volume was
found to be reduced in a post-mortem study of 7 PD
patients and 7 controls [55]. Other studies, however, found
unchanged OB volumes in PD patients on MR-imaging [56]
and histopathologically along with an increased number of
dopaminergic OB neurons [57, 58]. In summary, currently
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available data suggest a complex pathogenesis of hyposmia
in PD involving the OB and potentially secondary brain
structures.

With regard to hippocampal neurogenesis, the density
of nestin- and beta3-tubulin-positive cells was found to be
reduced in the DG of 3 patients with PD and in the DG
of 5 patients with PDD when compared to 3 controls [39].
Similarly, in the DG of 6 patients with DLB, the number of
Sox2-positive putative stem cells was decreased, as compared
to 6 controls [59]. The involvement of the hippocampus in
nonmotor symptoms of PD has gained increasing attention.
Fatigue and depression have been related to hippocampal
serotonergic dysfunction by positron emission tomography
with specific metabolites of serotonergic metabolism [60, 61].
Besides, the hippocampus is modulated by dopaminergic
input from the ventral tegmental area and the olfactory
bulb and by noradrenergic input from the locus coeruleus
and may thus be involved in drive and mood regulation
[62]. Cognitive deficits in PD are heterogeneous and have
mainly been implicated in cholinergic and noradrenergic
dysfunction involving hippocampal functions (reviewed in
[63]). The extent of hippocampal LB pathology correlated
with the degree of dementia in PD patients [64]. Significant
hippocampal atrophy is seen onmagnetic resonance imaging
of patients with PDD when compared to nondemented PD
patients (reviewed in [65]). Alterations of hippocampal con-
nectivity by diffusion tensor imaging in PDpatients predicted
the emergence of declarative memory deficits [66] indicating
that altered plasticity may be one of the reasons for structural
changes. In summary, hippocampal dysfunction is common
in PD patients and likely contributes to depression and
cognitive impairment. As both of these nonmotor symptoms
have been related to defects in adult neurogenesis, more
research about human hippocampal neurogenesis in PD is
needed to prove a causal role.

3. Lesion Models of PD

In contrast to the limited amount of data and material from
human PD brains, many studies have been conducted in PD
animal models, mainly in rodents. Stereotactic delivery of
6-hydroxydopamine (6-OHDA) into the SN or the medial
forebrain bundle leads to lesions of the striatonigral pathway
and thus replicates the striatal dopaminergic deficit [67]. Dif-
ferent studies have shown a negative impact of dopaminergic
deafferentation onneural progenitor cell (NPC) proliferation,
probably due to decreased input via D2L-receptors [39, 40,
42, 43, 68]. Despite a decrease in SVZ proliferation in the
6-OHDA lesion model, the number of newly generated
dopaminergic neurons in the glomerular layer of the OB
is increased, paralleling the finding of higher numbers of
dopaminergic glomerular neurons in the OB of PD patients
[42]. Dopaminergic stimulation increases proliferation in
nonlesioned and lesioned rodents [43, 69]. Local application
of the growth factors EGF and FGF-2 not only enhances SVZ
proliferation but also induces striatal migration of NPCs [70–
72]. In contrast to the aforementioned results, two studies
found increased SVZ proliferation upon 6-OHDA lesion [73,
74].

Systemic administration of 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) is another way of ablating
dopaminergic neurons via mitochondrial damage. Acute
administration of high doses results in decreased SVZ prolif-
eration along with an increased rate of apoptosis of migrating
neuroblasts [39, 75–77] which was confirmed in a study in
nonhuman primates [41]. In contrast, another group reported
increased rates of proliferation in the acute MPTP model
[78, 79] and chronic MPTP-treatment at lower doses did not
alter SVZ proliferation [46].

In summary, a definite statement about the precise effect
of dopaminergic lesions on SVZ proliferation cannot be
made, but a negative effect of dopaminergic depletion on
SVZ proliferation was a common finding. As mentioned in
the previous chapter, it remains disputable whether this also
holds true for PD patients.

4. 𝛼-Synuclein Transgenic Models of PD

Lesion models acutely damage dopaminergic structures and
result in a pronounced motor phenotype. Transgenic models
of PD exhibit milder but chronically progressive deficits
including nonmotor symptoms (reviewed by [80–83]). In
addition, transgenic models provide an insight into the
disease mechanism of relevant genes and proteins.

The protein 𝛼-synuclein has been causally linked to PD. It
is present in LB and LN [21, 84, 85] and different 𝛼-synuclein
mutations and duplications and triplications cause genetic
PD [86–92]. Common single nucleotide polymorphisms in
the 𝛼-synuclein locus are significantly associated with PD
[93, 94].

Adult neurogenesis has been studied in different 𝛼-
synuclein transgenic animal models. A transgenic mouse
model overexpressing human wild-type 𝛼-synuclein under
control of the PDGF𝛽 gene promoter exhibits widespread
accumulation within the central nervous system including
the hippocampus along with age-dependent memory deficits
[95, 96]. In these mice, the survival of newborn neurons is
compromised both in the hippocampus and in the olfactory
bulb, paralleled by increased levels of cell death in these
regions [97]. In mice overexpressing the familial 𝛼-synuclein
mutant A53T under the same promoter, the neurogenesis
deficit is even higher indicating increased toxicity due to the
mutation [98, 99].

In a different transgenic mouse model of synucle-
inopathies, 𝛼-synuclein is overexpressed under tetracycline-
regulatable control of the CaMKII𝛼 promoter which led
to neurodegeneration within the SN and the hippocampus
[100]. Similar to the PDGF𝛽promoter transgenic animals, the
survival of newborn neurons is impaired in the hippocampus
and in the olfactory bulb of these animals and in conditional
overexpressers of A30P-mutant human 𝛼-synuclein [100–
103]. Interestingly, transgene repression reversed the neuro-
genic deficit in overexpressers of wild-type 𝛼-synuclein in
the hippocampus, but only partially in the OB. In contrast,
transgene repression in A30P-mutant 𝛼-synuclein transgenic
mice reversed the neurogenic deficit in the olfactory bulb,
but not in the hippocampus. In principle, the partial restora-
tion of the neurogenic deficit indicates a survival deficit at
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the integration site rather than a persisting developmental
defect and proves in principal that 𝛼-synuclein pathology is
reversible.Thepersisting deficit of hippocampal neurogenesis
despite transgene repression in A30P-mutant 𝛼-synuclein
transgenic animals was related to the uptake of 𝛼-synuclein
from neurons into glial cells [102]. In addition, the A30P
mutation shows a higher propensity to form oligomers [104].
𝛼-Synuclein toxicity in general may be mediated by a prion-
like propagation.𝛼-Synuclein is released into the extracellular
space and can be taken up by neurons, NPCs, and astro-
cytes [105–107]. This may explain the continuous spread of
pathology in PD [20] and has to be kept in mind when
planning transplantation strategies [108, 109]. The finding
that glial A30P-𝛼-synuclein is not cleared upon transgene
repression suggests that 𝛼-synuclein propagated into glial
cells persistently impairs the integration of newborn neurons
independent of cell-autonomous expression of 𝛼-synuclein
within the neuron itself [102].

In a BAC-transgenic rat model, human 𝛼-synuclein gene
was expressed with its whole genomic locus [110]. These
rats exhibited early behavioral changes and a subsequent
progressive motor phenotype along with a marked decrease
of striatal dopamine content and nigral degeneration. The
number of newborn neurons in the glomerular layer of the
OB (mostly dopaminergic neurons) was increased in these
rats, paralleling preliminary results in humans and the 6-
OHDA lesion mouse model [42].

Themechanisms that lead to defective neurogenesis in 𝛼-
synuclein transgenic animals are still not well understood.
Transgenic overexpression of 𝛼-synuclein is accompanied
by decreased levels of Notch which may be mediated by
increased p53 signaling [111, 112].

There is growing evidence that oligomeric forms of 𝛼-
synuclein rather than LB and LN constitute the toxic species
in the process of 𝛼-synuclein aggregation [113]. Interestingly,
an artificialmutant of𝛼-synuclein that is highly prone to form
oligomers causes increased dopaminergic toxicity within the
SN and synaptic loss in a transgenic mouse model [114,
115]. Therefore, the specific effect of oligomeric species on
newborn neurons may be of interest to study pathogenic
events of synaptic integration in the future.

When studying survival of adult newborn neurons, one
has to keep in mind that a complex process of migration,
phenotypic transition, lineage determination, outgrowth, and
synaptic integration is involved,modulated bymany different
stimuli [116]. The survival of newborn neurons depends on
their proper integration and on a certain degree of synaptic
input activity (reviewed in [117]). The outgrowth of den-
drites and the formation of synaptic spines are prerequisites
for synaptic input. Indeed, dendritic morphology of adult
newborn neurons is significantly reduced in 𝛼-synuclein
transgenic animals [59] with an example shown in Figure 1.
In addition, the density of mushroom spines reflecting stable
synaptic input onto newborn neurons is reduced in these
animals.Therefore, increased cell death and reduced survival
of newborn neurons in 𝛼-synuclein transgenic animals may
be due to defects in outgrowth and synaptic integration.
Upon cell-specific overexpression of 𝛼-synuclein in new-
born neurons, dendrite outgrowth but not mushroom spine

Figure 1: Newborn neuron in the hippocampus of an 𝛼-synuclein
transgenic mouse labeled retrovirally with GFP. Scale bar 50𝜇m.

formation was decreased. This led to the conclusion that the
dendritic outgrowth defect is due to cell-autonomous effects
of 𝛼-synuclein. 𝛼-Synuclein may, for example, interfere with
dendritic outgrowth by direct interaction with microtubule
associated proteins and thereby disrupt microtubule assem-
bly and transport [118].The cAMP response element-binding
protein (CREB) pathway could also play a causal role since
its activation by the phosphodiesterase inhibitor rolipram
rescued the outgrowth defect [59]. Dystrophic LNs are a
common feature of PD pathology, but they represent a final
stage of neuritic degeneration and 𝛼-synuclein aggregation
[20, 119]. The defect of dendrite growth and spine formation
rather represents an early feature of PD pathology. Indeed,
synaptic dysfunction is an early feature in synucleinopathies
and is accompanied by loss of dendritic spines [120–122].
Transgenic overexpression of 𝛼-synuclein alters the vesicle
composition of the synapse (“vacant synapse”) and leads to
neurotransmitter release deficits [123]. Thus, the neurogenic
system in 𝛼-synuclein transgenic animal models represents
certain features of PD pathology and therefore constitutes a
model to study the effect of drugs on synaptic pathology and
cellular survival in PD.

It is still unclear whether the physiological function of 𝛼-
synuclein overlaps with its pathogenic effects in PD [124]. 𝛼-
Synuclein was originally described as a modulator of plastic-
ity and neurogenesis during songbird learning [125]. Knock-
out of 𝛼-synuclein in mice does not lead to an overt phe-
notype, but rather to minor changes of dopaminergic neu-
rotransmission, especially when 𝛽-synuclein is also deleted
[126, 127]. In line with this, 𝛼-synuclein knockdown by RNA-
interference in hippocampal neurons reduces the presynaptic
vesicle pool size [128]. Physiologically,𝛼-synuclein also exerts
neuroprotective functions, since deletion leads to increased
vulnerability to cysteine-string protein-𝛼 (CSP𝛼) deletion
and to nigral cell death [129, 130]. Therefore, it is not sur-
prising that neurogenesis is altered in 𝛼-/𝛽-synuclein double-
knockout mice [59]. Neuronal differentiation of newborn
neurons was increased, which may be caused by altered
dopaminergic signaling inputs from the perforant path [131].
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Overexpression of human 𝛼-synuclein in newborn neurons
in the 𝛼-/𝛽-synuclein-null background does not impair
dendrite outgrowth [59]. This suggests that a certain amount
of 𝛼-synuclein may be necessary to exert these pathological
effects, as indicated by the genetic PD forms due to gene
duplication and triplication.

5. LRRK2-Transgenic Models of PD

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the
most frequent cause of genetic PD [132, 133]. Clinical and
neuropathological features of LRRK2-related PD are mostly
indistinguishable from idiopathic PD [134, 135]. Transgenic
overexpression of the entire human LRRK2 gene carrying the
mutant Gly2019Ser in a mouse model results in abnormal
dopamine signaling and increased levels of phosphorylated
tau [136]. In this model, LRRK2 was expressed at high
levels within the SVZ, OB, and the hippocampus which led
to a significant reduction of proliferation and survival of
newborn neurons within both neurogenic regions [137]. The
morphology of newborn hippocampal neuronswasmarkedly
impaired with reduced dendrite length and spine density. It
remains to be determined in the future whether common
mechanisms are involved in the 𝛼-synuclein and the LRRK2
models. LRRK2, for example, has been shown to directly
impair neurite outgrowth and dendritogenesis in C. elegans
and in mouse neurons [138, 139].

Similar to 𝛼-synuclein, adult hippocampal neurogenesis
was also studied in LRRK2-knockout mice [140]. Prolifera-
tion and survival of newborn neurons were not altered by
deletion of endogenous LRRK2, but there was a significant
increase of doublecortin-positive (DCX) neuroblasts with
higher dendritic complexity in the knockouts. This pro-
outgrowth effect may be either due to the direct effects of
LRRK2 on neurite outgrowth or due to enhanced integration
into the molecular layer of the dentate gyrus.

6. Clinical Implications of
Compromised Neurogenesis

Adult newborn neurons have been proposed to exert differ-
ent functions that partly overlap with premotor symptoms
observed in PD.

Data from rodent studies indicate a function of newborn
neurons in the adult hippocampus in depression. Depression
is a frequent symptom in PD patients that often predates the
onset of motor symptoms and was shown to have a high
impact on quality of life in PD [141]. Serotonergic inputs
to the hippocampus are decreased in PD-related depression
(reviewed by [65]). There are indications that adult neuro-
genesis, on the other hand, is impaired in depression and
that the effect of antidepressant therapy relies upon adult-
generated neurons which led to the “neurogenic hypothesis
of depression” [142–144]. A number of important studies
have shown that alterations in adult neurogenesis are not
the one single cause of depressive-like behavior; rather, the
dentate gyrus, including the adult generation of newborn
neurons, represents one part of a “mood-network” with other

hippocampal subregions, amygdala, thalamus, the anterior
pituitary, and other cortical and subcortical areas [145–148].
Data are mostly from preclinical models due to the method-
ological constraints of the investigation of adult neurogenesis
in humans, but both MRI and post-mortem studies have
shown reduced hippocampal volumes in major depressive
disorder [149, 150]. Epidemiological studies and the presence
of neurotransmitter imbalances in PD suggest depression as
a specific nonmotor symptom in PD rather than a reactive
pathogenesis due to impairedmobility [151]. Likewise, cogni-
tive disturbances in PD (which are also related to pathology
within the limbic system including the hippocampus) may be
partly caused by alterations in adult neurogenesis. In fact, the
most important function of adult hippocampal neurogenesis
in rodents is the ability of memorizing two temporally related
events (pattern separation [152, 153]). In light of this overlap
with PD premotor symptoms and the known involvement
of the hippocampus, changes in the plasticity of newborn
neurons may contribute to the pathogenesis of depression
and of cognitive decline but certainly needmore investigation
[154].

Regardless of the causal role of adult newborn neurons
in PD pathology, strategies to reverse the observed neu-
rogenesis defects might have therapeutic implications. In
a recent paper, adult neurogenesis was rescued by chronic
oral treatment with the selective serotonin reuptake inhibitor
(SSRI) fluoxetine which is in routine use as antidepressant
[99]. In fluoxetine-treated transgenic animals, proliferation,
number of Sox2-positive progenitor cells, the number of
DCX-positive neuroblasts, and the number of surviving
newborn neurons were all restored to the level of fluoxetine-
treated nontransgenic animals. As the levels of transgenic
𝛼-synuclein were unchanged upon treatment, the effects of
fluoxetine rather made newborn neurons resistant to the
deleterious effects of 𝛼-synuclein. This effect was paralleled
by increased levels of the growth factors BDNF and GDNF
which are both investigated in preclinical models of PD [155–
157]. Fluoxetine treatment also showed marked benefits in a
transgenic animal model of atypical PD expressing human 𝛼-
synuclein under control of the myelin basic protein promoter
[158]. SSRIs are often prescribed in depression including
depression in PD; however, detailed studies about the clinical
effect in PD patients are lacking. Dual modulation of the
serotonergic pathway has been shown to accelerate the onset
of antidepressant action on adult neurogenesis and may
therefore also be tested in PD models [159].

Pharmacological screens have identified small molecules
with a strong impact on adult neurogenesis [160], but the
application in PD models has not been tested so far.

Physical activity, a known strong inducer of adult neu-
rogenesis, was found to be another strategy to reverse PD-
related alterations of adult neurogenesis as observed in the
LRRK2-transgenic mouse model of PD [137]. Interestingly,
deletion of the serotonin gene abolishes the proneurogenic
effects of running indicating overlapping mechanisms and
a causal role of serotonin in exercise-induced neurogenesis
[161]. Different kinds of physical activity had positive effects
on executive function and, to a limited degree, on cognition
in PDpatients and in lesionmodels of PD (reviewed by [162]).
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The activity-related rescue of adult neurogenesis may also be
affected by disease pathology, as observed in a mouse model
of Huntington’s disease [163]. Therefore, investigation of the
effects of physical activity on adult hippocampal neurogenesis
in more PD models will be necessary.

In addition, there are speculations that counteracting
inflammatory processes in PD may halt disease pathology.
While epidemiological clinical studiesmay indicate a reduced
PD risk after use of nonsteroidal anti-inflammatory drugs
(NSAIDs) but have not been conclusive due to method-
ological difficulties [164, 165], it is widely accepted that
neuroinflammation is involved in PD pathogenesis [166].
Neuroinflammatory activation is not confined to the substan-
tia nigra but is found along with the progressing pathology of
the disease [167]. This holds especially true for the olfactory
bulb, where microgliosis is found in the olfactory bulb of PD
patients [168] and mouse models [169]. The limbic system
also shows an increased number of activated microglia in
PD [170]. Notably, neuroinflammation induced by irradiation
[171] or cortical injection of lipopolysaccharides [172] nega-
tively regulates adult hippocampal neurogenesis. Moreover,
the proinflammatory cytokine TNF-𝛼 impairs proliferation
of neural progenitor cells in vitro [173]. Levels of TNF-
𝛼 were found to be elevated in the serum of PD patients
[174] and were associated with the presence of the nonmotor
symptoms depression and anxiety in PD [175]. Thus, inflam-
matory processes in the neurogenic regions may contribute
to the decline of neurogenesis in different transgenic animal
models. A detailed analysis of inflammatory changes in
the neurogenic regions of these models is still lacking but
may represent one of the mechanisms contributing to the
neurogenesis deficits. Adult neurogenesis itself is regulated
by inflammatory activation and sophisticated studies showed
both pro- and anti-inflammatory effects for different subtypes
of microglia [176–178]. Interestingly, the modulation of adult
neurogenesis by physical activity and enriched environment
also seems to be dependent on microglial function [179, 180]
which again underlines the need for a better understanding
of microglial activation in the neurogenic niche in PD.
Although the precise contribution of microglial activation
to PD pathology is still elusive and may function as a mul-
tiplier of PD-associated neurodegeneration, an interaction
between microglia and adult neurogenesis in the PD brain is
likely.

7. Future Research

In summary, many studies in animal models have shown
effects of PD pathology on the adult generation of newborn
neurons, in part with conflicting results owing to different
experimental conditions. Data on adult neurogenesis in
human PD are still scarce but will be important to validate
experimental findings. In the future, novel techniques will
facilitate analysis of adult neurogenesis in animals and in
patients [181, 182]. In addition, the discussed models of
impaired neurogenesis in PD will serve as drug screening
platform to validate drugs aimed at modifying the course of
PD.
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[31] J. Winkler, R. Ehret, T. Büttner et al., “Parkinson’s disease risk
score: moving to a premotor diagnosis,” Journal of Neurology,
vol. 258, no. 2, pp. S311–S315, 2011.

[32] G. M. Halliday, J. L. Holton, T. Revesz, and D. W. Dickson,
“Neuropathology underlying clinical variability in patients with
synucleinopathies,” Acta Neuropathologica, vol. 122, no. 2, pp.
187–204, 2011.

[33] D. J. Irwin, V. M. Lee, and J. Q. Trojanowski, “Parkinson’s
disease dementia: convergence of𝛼-synuclein, tau and amyloid-
𝛽 pathologies,” Nature Reviews. Neuroscience, vol. 14, no. 9, pp.
626–636, 2013.

[34] IG. McKeith, DW. Dickson, and J. Lowe, “Diagnosis and
management of dementia with Lewy bodies: third report of the
DLB Consortium,” Neurology, vol. 65, pp. 1863–1872, 2005.

[35] M. A. Curtis, M. Kam, U. Nannmark et al., “Human neuroblasts
migrate to the olfactory bulb via a lateral ventricular extension,”
Science, vol. 315, no. 5816, pp. 1243–1249, 2007.

[36] P. S. Eriksson, E. Perfilieva, T. Björk-Eriksson et al., “Neurogen-
esis in the adult human hippocampus,” Nature Medicine, vol. 4,
no. 11, pp. 1313–1317, 1998.

[37] N. Sanai, T. Nguyen, R. A. Ihrie et al., “Corridors of migrating
neurons in the human brain and their decline during infancy,”
Nature, vol. 478, no. 7369, pp. 382–386, 2011.

[38] K. L. Spalding, O. Bergmann, K. Alkass et al., “Dynamics of
hippocampal neurogenesis in adult humans,” Cell, vol. 153, no.
6, pp. 1219–1227, 2013.
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