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Background: Glycoprotein IIb/IIIa (aIIb/b3) is involved in platelet adhesion, and triggers a series of
intracellular signaling cascades, leading to platelet shape change, granule secretion, and clot retraction.
In this study, we evaluated the effect of ginsenoside Ro (G-Ro) on the binding of fibrinogen to aIIb/b3.
Methods: We investigated the effect of G-Ro on regulation of signaling molecules affecting the binding of
fibrinogen to aIIb/b3, and its final reaction, clot retraction.
Results: We found that G-Ro dose-dependently inhibited thrombin-induced platelet aggregation and
attenuated the binding of fibrinogen to aIIb/b3 by phosphorylating cyclic adenosine monophosphate
(cAMP)-dependently vasodilator-stimulated phosphoprotein (VASP; Ser157). In addition, G-Ro strongly
abrogated the clot retraction reflecting the intensification of thrombus.
Conclusion: We demonstrate that G-Ro is a beneficial novel compound inhibiting aIIb/b3-mediated
fibrinogen binding, and may prevent platelet aggregation-mediated thrombotic disease.
Copyright 2016, The Korean Society of Ginseng, Published by Elsevier. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Activation of platelets by various agonists (i.e., adenosine
diphosphate, collagen, thrombin) causes shape change, granule
secretion, and platelet aggregation. These signaling events are
mediated by the activation of integrins such as glycoprotein IIb/IIIa
(aIIb/b3). Activated aIIb/b3 interacts with its ligands (i.e., fibrinogen,
fibronectin), then causes Ca2þ mobilization, granule secretion, and
clot retraction [1e3], and subsequently augments the formation of
thrombus.

Vasodilator-stimulated phosphoprotein (VASP) in platelets is
associatedwith actin filament dynamics and focal adhesions, but its
phosphorylated-forms (Ser157, Ser239) weaken the affinity of VASP
for actin filaments to block the binding of adhesive proteins to aIIb/
b3 [4,5]. Accordingly, phosphorylation of VASP could be used to
appreciate the binding of adhesive proteins to aIIb/b3, and
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contribute to estimating the antithrombotic effect of a certain
compound. For instance, antiplatelet compounds such as p-ter-
phenyl curtisian E and quercetin lead to VASP phosphorylation
[6,7]. In addition, abciximab, eptifibatide, tirofiban, and lamifiban
are known to inhibit the activation of aIIb/b3 [8,9].

Ginseng, the root of Panax ginseng Meyer, has been used
frequently in traditional Oriental medicine. Ginsenoside Ro (G-
Ro; Fig. 1), an oleanane-type saponin, in P. ginseng Meyer [10,11],
is known to inhibit fibrin formation [12,13], and has no inhibitory
effect on collagen-elevated platelet aggregation [14]. Until now,
there has been no report on the antiplatelet mechanism of G-Ro.
In this study, we found that G-Ro stimulates VASP (Ser157)
phosphorylation in a cyclic adenosine monophosphate (cAMP)-
dependent manner, which attenuates the binding of fibrinogen to
aIIb/b3, and clot retraction in thrombin-activated human
platelets.
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Fig. 1. Chemical structure of ginsenoside Ro. Ginsenoside Ro (G-Ro), an oleanane-type
saponin, is contained in Panax ginseng Meyer [10,11], and is composed of oleanolic acid
as aglycone, and two glucose and one glucuronic acid as sugar component [10].
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2. Materials and methods

2.1. Materials

G-Ro was obtained from Ambo Institute (Daejon, Korea).
Thrombin was obtained from Chrono-Log Corporation (Haver-
town, PA, USA). Anti-VASP, anti-phosphor-VASP (Ser157), anti-
phosphor-VASP (Ser239), anti-rabbit IgG-HRP-horseradish perox-
idase conjugate (HRP), and lysis buffer were purchased from Cell
Signaling (Beverly, MA, USA). The aIIb/b3 inhibitor eptifibatide, GR
144053, and anti-b-actin were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Polyvinylidene difluoride
membrane was purchased from GE Healthcare (Piseataway, NJ,
USA). Enhanced chemiluminescence solution was purchased from
GE Healthcare (Chalfont St. Giles, UK). cAMP and cyclic guanosine
monophosphate (cGMP) enzyme immunoassay kits were pur-
chased from Cayman Chemical (Ann Arbor, MI, USA). An A-kinase
inhibitor Rp-8-Br-cAMPS, an A-kinase activator 8-(4-chlor-
ophenylthio)-cAMP (pCPT-cAMP), and a G-kinase activator 8-Br-
cGMP were purchased from Sigma Chemical Corporation (St.
Louis, MO, USA). Fibrinogen Alexa Fluor 488 conjugate was ob-
tained from Invitrogen Molecular Probes (Eugene, OR, USA).

2.2. Preparation of washed human platelets

Human platelet-rich plasma with acid-citrate-dextrose solu-
tion (0.8% citric acid, 2.2% sodium citrate, 2.45% glucose) was
supplied from Korean Red Cross Blood Center (Changwon, Korea).
To remove red blood cells and white blood cells, it was centri-
fuged for 10 min at 250g and 10 min at 1,300g. The platelets were
washed twice using washing buffer (138mM NaCl, 2.7mM KCl,
12mM NaHCO3, 0.36mM NaH2PO4, 5.5mM glucose, and 1mM
Na2EDTA, pH 6.5), then resuspended in suspension buffer
(138mM NaCl, 2.7mM KCl, 12mM NaHCO3, 0.36mM NaH2PO4,
0.49mM MgCl2, 5.5mM glucose, 0.25% gelatin, pH 6.9) to a final
concentration of 5 � 108/mL. All of the above procedures were
performed at 25�C to maintain platelet activity. Approval
(PIRB12-072) for these experiments was received from the Na-
tional Institute for Bioethics Policy Public Institutional Review
Board (Seoul, Korea).

2.3. Determination of platelet aggregation

Washed human platelets (108/mL) were preincubated with or
without G-Ro in the reaction system containing 2mM of CaCl2 for
3 min at 37�C, then stimulated with thrombin (0.05 U/mL). The
aggregation was performed for 5 min using an aggregometer
(Chrono-Log Corporation, Havertown, PA, USA) at a constant stir-
ring speed of 1,000 rpm. Each aggregation rate was determined as
an increase in light transmission. G-Ro was dissolved in platelet
suspension buffer (pH 6.9), and suspension buffer was used as the
reference (transmission 0)

2.4. Western blot for analysis of VASP-phosphorylation

The platelet aggregation was terminated by adding an equal
volume (250 mL) of lysis buffer (20mM Tris-HCl, 150mM NaCl,
1mM Na2EDTA, 1mM EGTA, 1% Triton X-100, 2.5mM sodium py-
rophosphate, 1mM serine/threonine phosphatase inhibitor b-
glycerophosphate, 1mM ATPase, alkaline, and acid phosphatase,
and protein phosphotyrosine phosphatase inhibitor Na3VO4, 1 mg/
mL serine and cysteine protease inhibitor leupeptin, and 1mM
serine protease and acetylcholinesterase inhibitor phenyl-
methanesulfonyl fluoride, pH 7.5). Protein contents were
measured using a bicinchoninic acid protein assay kit (Pierce
Biotechnology, Rockford, IL, USA). Proteins (15 mg) were analyzed
by sodium dodecyl sulfate polyacrylamide gel electrophoresis (6%,
1.5 mm), then polyvinylidene difluoride membrane was used for
protein transfer from the gel. The dilutions for anti-VASP, anti-
phosphor-VASP (Ser157), anti-phosphor-VASP (Ser239), and anti-
rabbit IgG-HRP were 1:1,000, 1:1,000, 1:1,000, and 1:10,000,
respectively. The membranes were visualized using enhanced
chemiluminescence solution. The degrees of protein phosphory-
lation were analyzed using the Quantity One, version 4.5 (BioRad,
Hercules, CA, USA).

2.5. Determination of fibrinogen binding to aIIb/b3

The platelet aggregation was conducted in the presence of
Alexa Flour 488-human fibrinogen (30 mg/mL) for 5 min at 37�C.
The reaction was stopped by the addition of 0.5% para-
formaldehyde in cold phosphate-buffered saline (pH 7.4), and
the aforementioned procedures were implemented under dark
conditions. The assay of fibrinogen binding was carried out us-
ing flow cytometry (BD Biosciences, San Jose, CA, USA), and its
degree was determined with CellQuest software (BD
Biosciences).

2.6. Assay of platelet-mediated fibrin clot retraction

Human platelet-rich plasma, 250 mL, was preincubated with or
without G-Ro (300mM) for 10 min at 37�C, and incubated with
thrombin (0.05 U/mL) for 10 min and 20 min at 37�C. Photographs
of the fibrin clot were taken by a digital camera, and its area (at
20 min) was measured by NIH Image J Software (version 1.46,
National Institutes of Health, Bethesda, Maryland, USA). Percentage
of clot retraction was calculated as follows:

retraction ð%Þ by thrombin ¼ðcontrol area� thrombin areaÞ
=control area� 100: ð1Þ

2.7. Measurement of cAMP and cGMP

After platelet aggregation, 80% ice cold ethanol was added to
terminate the reaction, and cAMP and cGMP were extracted three
times with 80% ice cold ethanol. The extracts tubes were dried by
nitrogen gas, and subsequently dissolved with assay buffer
(Cayman Chemical, Ann Arbor, MI, USA). The level of cAMP and
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cGMP was determined with Synergy HT Multi-Model Microplate
Reader (BioTek Instruments, Winoosku, VT, USA).

2.8. Statistical analysis

The experimental results are indicated as the mean � standard
deviation accompanied by the number of observations. Data were
determined by analysis of variance. If this analysis showed signif-
icant differences among the group means, then each group was
compared by the Newman-Keuls method. Statistical analysis was
carried out according to the SPSS 21.0.0.0 (SPSS Inc., Chicago, IL,
USA). A p value < 0.05 was considered to be statistically significant.

3. Results

3.1. Effects of G-Ro on thrombin-induced human platelet
aggregation

Because 0.05 U/mL of thrombin maximally aggregated human
platelets [15], this concentration was used to investigate the anti-
platelet effect of G-Ro (Fig. 1). In unstimulated platelets, the light
transmission in response to various concentrations of G-Ro (50mM,
100mM, 200mM, 300mM) was 1.3 � 0.6% (at 50mM of G-Ro),
1.7 � 0.6% (at 100mM of G-Ro), 1.3 � 0.6% (at 200mM of G-Ro), and
1.7 � 0.6% (at 300mM of G-Ro), which were not significantly
different from that (1.0 � 0.0%) in resting platelets without G-Ro
(Fig. 2). Thrombin increased light transmission and the aggregation
rate was 90.7 � 1.2% (Fig. 2). However, G-Ro dose-dependently
(50mM, 100mM, 200mM, 300mM) reduced thrombin-elevated light
transmission, meaning G-Ro inhibits thrombin-induced platelet
aggregation (Fig. 2).

3.2. Effects of G-Ro on VASP phosphorylation

In intact platelets, 46 kDa dephosphoprotein only of VASP was
observed (Fig. 3A, Lane 1). Thrombin weakly increased the phos-
phorylation of VASP (Ser157) at 50 kDa phosphoprotein of VASP
(Fig. 3A, Lane 2), and the ratio of p-VASP (Ser157) to b-actin (Fig. 3B).
This means that 46 kDa dephosphoprotein of VASP (46
kDa þ 50 kDa) was weakly shifted to 50 kDa phosphoprotein by
thrombin, and thrombin is involved in a feedback inhibition by
elevating p-VASP (Ser157, Ser239) [16]. Because G-Ro dose (100, 200,
300 mM)-dependently inhibited up to 26.9 � 0.6% (by 100 mM G-
Ro), 56.0 � 2.8% (by 200 mM G-Ro), and 88.4 � 1.7% (by 300 mM G-
Ro) in thrombin-induced platelet aggregation (Fig. 2), we investi-
gatedwhether G-Ro has dose (100, 200, 300 mM)-dependent effects
on VASP (Ser157 or Ser239) phosphorylation in thrombin-activated
Fig. 2. Effects of ginsenoside Ro (G-Ro) on thrombin-induced human platelet aggre-
gation. Measurement of platelet aggregation was carried out as described in the
“Materials and methods” section. Data are presented as mean � SD (n ¼ 4). * p < 0.05
versus the thrombin-stimulated human platelets.
platelets. G-Ro dose-dependently increased p-VASP (Ser157; Fig. 3A,
Lanes 3e5), and the ratio of p-VASP (Ser157)-50 kDa to b-actin in
thrombin-activated platelets (Fig. 3B). However, G-Ro did not affect
phosphorylation of VASP (Ser239; Fig. 3C), even though G-kinase
activator 8-Br-cGMP, a positive control, phosphorylated VASP
(Ser239; Fig. 3C, Lane 6). This reflects the result that G-Ro does not
increase the cGMP level (Table 1), and subsequently involve in
phosphorylation of VASP (Ser239) in thrombin-activated platelets.
Because G-Ro increased the cAMP level (Table 1), it is thought that
G-Ro-increased VASP (Ser157) phosphorylation would be decreased
by the A-kinase inhibitor. Accordingly, to observe an apparent
inhibitory mechanism of cAMP/A-kinase on G-Ro-phosphorylated
VASP (Ser157), we examined the effect of the A-kinase inhibitor on
VASP (Ser157) phosphorylation by 300mM of G-Ro that potently
phosphorylated VASP (Ser157; Fig. 3B). The A-kinase inhibitor Rp-8-
Br-cAMPS (Fig. 3D, Lane 4) potently decreased G-Ro (300mM)-
phosphorylated VASP (Ser157; Fig. 3D, Lane 3), and the A-kinase
activator pCPT-cAMP, a positive control, also phosphorylated VASP
(Ser157; Fig. 3D, Lane 5). The results mean that G-Ro increases cAMP
level (Table 1), and subsequently phosphorylates VASP (Ser157) in
thrombin-activated platelets.

3.3. Effects of G-Ro on the production of cAMP and cGMP

Because it is well established that cAMP and cGMP stimulate
VASP phosphorylation [17,18], we investigated the effect of G-Ro on
the production of cAMP and cGMP in thrombin-induced platelet
aggregation. As shown in Table 1, G-Ro increased the cAMP level in
thrombin-induced platelet aggregation, but did not increase the
level of cGMP.

3.4. Effects of G-Ro on fibrinogen binding to aIIb/b3

Because VASP (Ser157) phosphorylation is involved in inhibition
of fibrinogen binding, and G-Ro increased VASP (Ser157) phos-
phorylation (Fig. 3A), it is thought that G-Ro may decrease fibrin-
ogen binding to aIIb/b3. G-Ro dose-dependently (100mM, 200mM,
300mM) activated the phosphorylation of VASP (Ser157) in
thrombin-activated platelets (Fig. 3B). Therefore, we investigated
whether G-Ro has dose-dependent (100mM, 200mM, 300mM)
inhibitory effects on fibrinogen binding to aIIb/b3 in thrombin-
activated platelets. Thrombin elevated fibrinogen binding to aIIb/
b3 (Figs. 4A-b, 4B) and its degree was 95.3 � 0.7% (Table 2). How-
ever, G-Ro attenuated the fibrinogen binding achieved by thrombin
in dose-dependent manner (Figs. 4A-cef, 4B), and the inhibitory
degree by G-Ro (300mM)was 88.9% (Table 2) as compared with that
(95.3 � 0.7%) by thrombin. aIIb/b3 Inhibitors (eptifibatide, GR
144053), positive controls, inhibited thrombin-induced fibrinogen
binding to aIIb/b3 (Figs. 4A-g, -h, 4B). Their inhibitory degrees were
38.4 � 3.4% (at eptifibatide 50mM) and 35.7 � 2.6% (at GR144053
50mM), which were almost equal to that (37.6 � 0.6%) by G-Ro
(200mM; Fig. 4B). As G-Ro increased the cAMP level (Table 1) and
VASP (Ser157) phosphorylation (Fig. 3B), if the inhibition of fibrin-
ogen binding by G-Ro (Fig. 4B) resulted from cAMP/A-kinase-
mediated VASP (Ser157) phosphorylation (Fig. 3B), it is thought
that G-Ro-decreased fibrinogen binding would be increased by the
A-kinase inhibitor. To confirm that cAMP/A-kinase had an inhibi-
tory effect on G-Ro-blocked fibrinogen binding, we examined the
effect of the A-kinase inhibitor on inhibition of fibrinogen binding
by 300mM of G-Ro (Fig. 4B) that potently inhibited fibrinogen
binding. The A-kinase inhibitor Rp-8-Br-cAMPS increased G-Ro-
inhibited fibrinogen binding to aIIb/b3 in thrombin-activated
platelets (Figs. 5A, 5B), and its degree was increased to 179.2% as
compared with that (10.6 � 1.3%) by G-Ro (300mM) plus thrombin
(Table 2).



Fig. 3. Effects of ginsenoside Ro (G-Ro) on vasodilator-stimulated phosphoprotein (VASP) phosphorylation. (A) Effects of G-Ro on VASP phosphorylation. Lane 1, intact platelets
(base); Lane 2, thrombin (0.05 U/mL); Lane 3, thrombin (0.05 U/mL) þ G-Ro (100mM); Lane 4, thrombin (0.05 U/mL) þ G-Ro (200mM); and Lane 5, thrombin (0.05 U/mL) þ G-Ro
(300mM). (B) The ratio of phosphorylation of VASP (Ser157)-50 kDa to b-actin by G-Ro. Its ratio is from Fig. 3A. (C) Effects of G-Ro on VASP (Ser239)-50 kDa phosphorylation. Lane 1,
intact platelets (base); Lane 2, thrombin (0.05 U/mL); Lane 3, thrombin (0.05 U/mL) þ G-Ro (100 mM); Lane 4, thrombin (0.05 U/mL) þ G-Ro (200mM); Lane 5, thrombin (0.05 U/
mL) þ G-Ro (300 mM); and Lane 6, thrombin (0.05 U/mL) þ 8-Br-cGMP (1mM). (D) Effects of G-Ro on VASP (Ser157)-50 kDa phosphorylation in the presence of an A-kinase inhibitor
(Rp-8-Br-cAMPS). Lane 1, intact platelets (base); Lane 2, thrombin (0.05 U/mL); Lane 3, thrombin (0.05 U/mL) þ G-Ro (300mM); Lane 4, thrombin (0.05 U/mL) þ G-Ro (300mM) þ Rp-
8-Br-cAMPS (250 mM); and Lane 5, thrombin (0.05 U/mL) þ pCPT-cAMP (1mM). Western blotting was performed as described in the “Materials and methods” section. Data are
presented as mean � SD (n ¼ 4). * p < 0.05 versus the thrombin-stimulated human platelets. ** p < 0.05 versus the thrombin-stimulated human platelets in the presence of G-Ro
(300mM).
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3.5. Effects of G-Ro on retraction of fibrin clot

The binding of fibrinogen is known to stimulate clot retraction
to intensify the formation of thrombus [19e21]. Thus, we investi-
gated whether G-Ro inhibits clot retraction. Thrombin reaction
time-dependently (10 min and 20 min) accelerated the clot
retraction (Fig. 6A), and its degree (at 20 min) was increased to 90%
compared to that (55.4 � 1.3 mm2) without thrombin, control
Table 1
Effects of ginsenoside Ro (G-Ro) on cyclic adenosine monophosphate (cAMP) and
cyclic guanosine monophosphate (cGMP) production1)

cAMP
(pmol/108 platelets)

cGMP
(pmol/108 platelets)

Basal 4.9 � 0.3 3.0 � 0.1
Thrombin (0.05 U/mL) 4.6 � 0.1 3.0 � 0.1
Thrombin (0.05 U/mL) 10.9 � 0.6* 2.1 � 0.1
þ
G-Ro (300mM)

Data are presented as mean � standard deviation (n ¼ 4)
*p < 0.05 versus the thrombin-stimulated human platelets
1) Determination of cAMP and cGMPwas carried out as described in the “Materials

and methods” section
(Fig. 6B). However, G-Ro very potently inhibited clot retraction by
thrombin (Fig. 6A), which was attenuated up to 740% against that
(5.5 � 0.8 mm2) by thrombin (Fig. 6B).

4. Discussion

Intracellular cAMP and cGMP phosphorylate inositol 1,4,5-
triphosphate receptor type I (IP3RI) and VASP. The
Table 2
Effects of ginsenoside Ro (G-Ro) on changes of fibrinogen binding1)

Fibrinogen Binding (%) D(%)

Intact platelets 2.4 � 0.4 d

Thrombin (0.05 U/mL) 95.3 � 0.7 d

G-Ro (300mM) 10.6 � 1.3 �88.9 2)

þ thrombin (0.05 U/mL)
G-Ro (300mM) 29.6 � 3.1 þ179.2 3)

þ thrombin (0.05 U/mL)
þ Rp-8-Br-cAMPS (250mM)

1) Data presented are from Fig. 5B
2) D (%) ¼ [(G-Ro þ thrombin) � thrombin]/thrombin � 100
3) D (%) ¼ [(G-Ro þ thrombin þ Rp-8-Br-cAMPS) � (G-Ro þ thrombin)]/

(G-Ro þ thrombin)] � 100



Fig. 4. Effects of ginsenoside Ro (G-Ro) on thrombin-induced fibrinogen binding. (A) The flow cytometry histograms on fibrinogen binding. a, intact platelets (base); b, thrombin
(0.05 U/mL); c, thrombin (0.05 U/mL) þ G-Ro (50mM); d, thrombin (0.05 U/mL) þ G-Ro (100 mM); e, thrombin (0.05 U/mL) þ G-Ro (200mM); f, thrombin (0.05 U/mL) þ G-Ro (300
mM); g, thrombin (0.05 U/mL) þ eptifibatide (50mM); and h, thrombin (0.05 U/mL) þ GR 144053 (50mM). (B) Effects of G-Ro on thrombin-induced fibrinogen binding. Its binding
degree (%) is from Fig. 4A. Determination of fibrinogen binding to glycoprotein IIb/IIIa (aIIb/b3) was carried out as described in the “Materials and methods” section. Data are
presented as mean � standard deviation (n ¼ 4). * p < 0.05 versus the thrombin-stimulated human platelets. FL1-H, fluorescent light-1 height.
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Fig. 5. Effects of ginsenoside Ro (G-Ro) on thrombin-induced fibrinogen binding in the
presence of an A-kinase inhibitor (Rp-8-Br-cAMPS). (A) The flow cytometry histograms
on fibrinogen binding. Thrombin (0.05 U/mL) þ G-Ro (300mM) þ Rp-8-Br-cAMP
(250mM). (B) Effects of G-Ro on thrombin-induced fibrinogen binding in the presence
of the A-kinase inhibitor (Rp-8-Br-cAMPS). Its binding degree (%) is from Figs. 4A, 5A.
Determination of fibrinogen binding to aIIb/b3 was carried out as described in the
“Materials and methods” section. Data are presented as mean � SD (n ¼ 4). * p < 0.05
versus the thrombin-stimulated human platelets. ** p < 0.05 versus the thrombin-
stimulated human platelets in the presence of G-Ro (300mM). FL1-H, fluorescent
light-1 height.

Fig. 6. Effects of ginsenoside Ro (G-Ro) on fibrin clot retraction. (A) Photographs of
fibrin clot. (B) Effects of G-Ro on thrombin-retracted fibrin clot. Quantification of fibrin
clot retraction was performed as described in the “Materials and methods” section. 1)

(control � thrombin)/control � 100. 2) [control � (thrombin þ G-Ro)]/control � 100. 3)

[thrombin � (thrombin þ G-Ro)]/thrombin � 100. Data are presented as
mean � standard deviation (n ¼ 4). * p < 0.05 versus the thrombin-stimulated human
platelets.
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phosphorylation of IP3RI is connected to inhibition of [Ca2þ]i
mobilization by IP3, and the phosphorylation of VASP contributes to
inhibition of fibrinogen binding to aIIb/b3. In a previous report, we
found that G-Ro inhibits thrombin-elevated [Ca2þ]i mobilization by
phosphorylating IP3RI in a cAMP-dependent manner [22]. This
means that G-Ro may be involved in inhibition of fibrinogen
binding to aIIb/b3 by decreasing [Ca2þ]i, and increasing cAMP. It is
well established that intracellular Ca2þ activates aIIb/b3, and sub-
sequently stimulates the binding of fibrinogen to aIIb/b3 [23]. If so,
G-Ro that increases the level of the Ca2þ-antagonistic molecule
cAMP might be involved in inhibition of fibrinogen binding to aIIb/
b3 via cAMP-dependent VASP phosphorylation. VASP (Ser157) is
phosphorylated by cAMP/A-kinase, and VASP (Ser239) is phos-
phorylated by cGMP/G-kinase [17,18]. In reality, G-Ro cAMP-
dependently stimulated the phosphorylation of VASP (Ser157), but
not phosphorylation of VASP (Ser239), which is evidenced as G-Ro
increased the level of cAMP, but not cGMP. In addition, this is also
supported from the results that the A-kinase inhibitor Rp-8-Br-
cAMPS decreased G-Ro-increased VASP (Ser157) phosphorylation,
and elevated G-Ro-attenuated fibrinogen binding to aIIb/b3.

The fibrinogen binding to aIIb/b3 intensifies the formation of
thrombus [19] by stimulating the retraction of the fibrin clot, which
accelerates the progression of atherosclerosis [24,25]. Therefore, it
is natural that G-Ro, inhibiting the fibrinogen binding, potently
inhibits the retraction of the fibrin clot.
Platelet aggregation is connected to inflammation, a cause of
atherosclerosis, and its associated proteins (platelet-derived
growth factor, vascular endothelial growth factor, p-selectin,
interleukin 1b, etc.) are secreted out of a-granules [26e33]. Even
though G-Ro phosphorylates VASP (Ser157), it inhibits fibrinogen
binding to attenuate thrombin-induced platelet aggregation, and
fibrin clot retraction. If G-Ro dose not attenuate inflammation by
leukocytes, antiplatelet effects by G-Ro would be doubtful. It is
known that p-selectin is released by Ca2þ, and subsequently in-
teracts with monocyte to trigger inflammation [34]. G-Ro in a Ca2þ-
antagonistic action inhibited thrombin-induced expression of p-
selectin [22], which means that the decrease of Ca2þ level by G-Ro
might involve in inhibition of inflammation by suppressing
thrombin-induced p-selectin secretion. This is also evidenced by
results that G-Ro had anti-inflammatory activity in vivo and in vitro
[35,36]. These reports [35,36] indicate that G-Ro may protect
against thrombosis and atherosclerosis without inflammation.

The concentrations of G-Ro with antiplatelet effects (50e300
mM) are very low as compared with that 1mM of G-Ro attenuated
arachidonic acid-induced platelet aggregation [12]. It is reported
that G-Ro (10e50 mg/kg body weight-rat) administration activates
fibrinolysis, an index of inhibition in fibrin thrombi [13]. Even
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though 300 mM (about 287 mg/kg) of G-Ro (MW. 957.1) has the
anticlot retraction effect, it is unknownwhether thrombin-induced
clot retraction would also be inhibited in vivo through adminis-
tration. However, because thrombin stimulates platelet aggregation
and fibrin formation, it is thought that G-Ro 300mM (287 mg/kg)
would be involved in attenuation of fibrin clot retraction.

In conclusion, we found inhibitory effects of G-Ro on fibrinogen
binding to aIIb/b3, and clot retraction, which is mediated by cAMP-
dependent phosphorylation of VASP (Ser157). From this study, we
suggest that G-Ro is a novel compound of P. ginseng which inhibits
fibrinogen binding to aIIb/b3.
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