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Simple Summary: The Solanaceae family is one of the most important arable and economic families
in the world. In addition, it includes a wide range of valuable active secondary metabolites of
species with biological and medical properties. This literature review focuses on the assessment
of the anticancer properties of the extracts and pure compounds, and the synergistic effects with
chemotherapeutic agents and nanoparticles from various species of the Solanaceae family, as well
as their potential molecular mechanisms of action in in vitro and in vivo studies in various types
of tumours.

Abstract: Many of the anticancer agents that are currently in use demonstrate severe side effects
and encounter increasing resistance from the target cancer cells. Thus, despite significant advances
in cancer therapy in recent decades, there is still a need to discover and develop new, alternative
anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles
in the prevention and treatment of many diseases. The Solanaceae family is widely used in the
treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose
of this literature review is to highlight the antitumour activity of Solanaceae extracts—single isolated
compounds and nanoparticles with extracts—and their synergistic effect with chemotherapeutic
agents in various in vitro and in vivo cancer models. In addition, the biological properties of many
plants of the Solanaceae family have not yet been investigated, which represents a challenge and an
opportunity for future anticancer therapy.

Cancers 2022, 14, 1455. https://doi.org/10.3390/cancers14061455 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14061455
https://doi.org/10.3390/cancers14061455
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-4559-5015
https://orcid.org/0000-0001-9987-4573
https://orcid.org/0000-0001-7992-8343
https://orcid.org/0000-0003-2398-1254
https://orcid.org/0000-0002-5877-9091
https://orcid.org/0000-0001-6052-3557
https://orcid.org/0000-0001-8385-7744
https://orcid.org/0000-0001-5495-3550
https://doi.org/10.3390/cancers14061455
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14061455?type=check_update&version=2


Cancers 2022, 14, 1455 2 of 42

Keywords: anticancer potential; apoptosis; cytotoxic effect; in vitro and in vivo studies; plant extracts;
pure compounds; Solanaceae

1. Introduction

Cancer is arguably one of the most dangerous diseases for civilization, affecting all
people, regardless the their origin, age or social status. Cancer is also one of the most
common causes of death after cardiovascular diseases in developed countries. Statistics
show that about 20 million new cases were diagnosed in the world in 2020, and as many as
10 million people died as a result of cancer [1]. Apart from the genetic determinants of the
development of cancer (e.g., the presence of typical gene mutations), the most common
causes of cell transformation are lifestyle factors (e.g., radiation exposure, smoking, poor
diet, alcohol consumption, occupational factors or environmental contamination). Gender
and age are also of great importance in the development of neoplastic diseases, and have a
significant influence on cancer incidence and mortality [2–5]. Tumour development and
progression are complex, involving factors in the cancer cells themselves like abnormally
excessive proliferation as well as multidimensional interactions between other cells and
tissues in the body. These cells can also cause angiogenesis, and are capable of dividing
indefinitely and metastasizing. As such, rapid and correct diagnosis increases the chances
of successful treatment [6,7].

Statistics show that one in six deaths in the world today is caused by cancer, and about
70% of these deaths occur in low- and middle-income people [8]. The problem of increased
cancer incidence around the world has led to an increasing search for new compounds that are
ideally toxic to cancer cells but not to normal cells. As the currently used chemotherapeutic
agents show relatively high toxicity towards both neoplastic cells and normal cells [9–11], there
is great interest in the identification of new compounds of natural origin with specific activity
against different cancer types. The anticancer properties of plants have been recognised for
centuries. About 60% of the drugs currently used to treat cancer were originally isolated from
nature, with the plant kingdom being the most important source. The intensive development
of phytochemistry and isolation methods of plant-derived compounds eventually led to the
development of a number of anticancer drugs [12].

A considerable variety and number of plants are known to have medicinal proper-
ties [13–15]. An estimated 70,000 plant species, from algae to trees, have been used for
medicinal purposes [16]. The National Cancer Institute (NCI) has studied approximately
35,000 plant species for potential anticancer effects. Among them, about 3000 plant species
showed reproducible anticancer activity [8]. While the bioactive principles from these
plants can be obtained traditionally by extraction from various natural sources, they can be
produced more efficiently using various biotechnological tools. The range of secondary
metabolites known to exhibit anticancer properties is chemically broad, with the predomi-
nant groups being alkaloids, terpenoids and polyphenols [17,18].

Both pure compounds and extracts of plant origin show cytotoxic effects by inducing
apoptosis in cancer cells [19–24]. Secondary metabolites, either used per se or as nanopar-
ticles in targeted therapy, have also been found to have numerous effects on cancer, both
in vitro and in vivo; they also appear to interact with chemotherapeutic agents, thus posi-
tively or negatively affecting their efficacy, and to protect normal cells against the adverse
effects of anticancer therapies [25–27].

One family of plants commonly included in the diet is the Solanaceae. It is one of the
largest plant families, and its genus—Solanum—is the richest in edible species, including pota-
toes (Solanum tuberosum), tomatoes (Solanum lycopersicum) and eggplants (Solanum melongena);
in addition, peppers are widely-consumed vegetables which are included in the related
genus Capsicum [28,29]. The Solanum genus contains a range of phenolic, alkaloid, saponin,
terpene and lipid compounds; as such, it has frequently been used for medicinal purposes.
Many of the alkaloids from the Solanum genus are particularly interesting because they
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have demonstrated extensive antirheumatic, antimicrobial, antioxidant and antitumour
effects, in the latter case against several types of cancer [30,31].

The present study displays selected general issues including medicinal plants in cancer
treatment, nanotechnology and plant compounds in the fight against cancer, the synergy
between chemotherapeutic agents and plant compounds in cancer therapy, and the Solanaceae
family’s general characteristics and application. Moreover, the reports discussed the functional
properties of extracts or compounds isolated from Solanaceae species that are known to exert
selective anticancer activity in vitro and in vivo, as well as their synergistic effects when used
in combination with chemotherapeutic agents. In some cases, the extracts were formulated
by using nanoparticle-based delivery systems. The studies also address the molecular and
cellular mechanisms involved in the death of cancer cells.

2. Inclusion and Exclusion Criteria

This research papers included in this review focused on in vitro and in vivo studies of
plant extracts or isolated compounds from the Solanaceae family administered per se, or
in combination with chemotherapeutics. In certain studies, the potential mechanisms of
antitumour activity were discussed. Only research articles published in peer-reviewed jour-
nals were selected. Studies in which the isolated compounds of interest were synthesized
or purchased, rather than being derived from plant material, were excluded. In addition,
studies that did not specify the extraction and/or purification methodology of a bioactive
compound were also excluded.

The present literature review was carried out using the following electronic databases:
MedLars Online International Literature, PubMed, SCOPUS, and Web of Science. First,
the medical subject headings (MeSH) were defined using “Solanaceae”, “plant extract”,
“plant-derived compounds”, “cancer cell lines”, “anticancer effect”, “chemotherapeutic
with combination of plant extracts”, and “nanoparticles with plant extracts” as descriptive
terms. The same strategy was used for all of the databases, with adaptations, as appropriate.
The data presented in the tables were published in the period 2015–2021 (Figure 1).Cancers 2022, 14, x FOR PEER REVIEW 4 of 41 
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3. Medicinal Plants in Cancer Treatment

Phytotherapy is believed to have originated with the Sumerian and Chinese civiliza-
tions over four thousand years ago, and became particularly prominent in ancient Egypt.
The first plant to be used against cancer may have been Trifolium pratense: Dioscurides
reported its use in the treatment of neoplasms in De Materia Medica, together with an extract
of Colchicum autumnale known to have anticancer properties, which were attributed to
its colchicine content. Elsewhere, Avicenna also mentions the use of Ricinus communis,
Atropa belladonna, Urtica dioica, Narcissus poeticus, Scrophularia nodosa and Ecbalium elaterium.
Currently, the rapid development of phytochemistry has allowed the discovery of new
compounds with potential medical properties [6,33–38]. Other families of great medical im-
portance include the Poaceae, Fabaceae, Apiaceae, Lamiaceae, Brassicaceae, Papaveraceae,
Plantaginaceae, and Solananceae, etc. [39,40]. For example, in the Poaceae, Oryza sativa
exerts anticancer effects due the presence of anthocyanins and some phenols, e.g., tricin,
which can be used to treat breast cancer [41]. In turn, Arachis hypogaea, of the Fabaceae fam-
ily, has demonstrated efficacy in the treatment of colon, prostate and breast cancer, which
was associated with its β-sitosterol and sterol content [42]. In addition, Senna obtusifolia
extract, which is rich in betulinic acid, showed cytotoxic effects in human glioblastoma
U87MG and leukemic NALM6 cells [19,43]. Daucus carota, a member of the Apiaceae family,
contains bioactive carotenoids (beta-carotene and lutein), polyacetylenes, falcarindiol and
falcarindiol-3-acetate, which may be effective in the treatment of leukemia [44]. In addition,
Leonurus sibiricus or Leonotis nepetifolia, of the Lamiaceae, containing phenolic acids and
flavonoids, were found to demonstrate cytotoxic effects against breast, leukemia, and
human glioblastoma cancer cell lines [21,24,45]. In the Brassicaceae, Brassica oleracea exerts
anticancer effects which have been attributed to the presence of sulforaphane, which can
be used to decrease prostate specific antigen (PSA) levels [46]. In addition, alkaloid-rich
Papaver somniferum extract was proved to have a cytotoxic effect against various cancer cell
lines [47]. In turn, Plantago lanceolata extract, of the Plantaginaceae, has demonstrated a
cytotoxic effect against several breast cancer cell lines, which has been associated with its
flavonoid glycosides content [48]. Patients with benign prostatic hyperplasia treated with
Solanum lycopersicum (of the Solanaceae family) with Serenoa repens, lycopene and bromelain
exhibited an improvement in their lower urinary tract symptom-related quality of life [49].

The drugs used in anticancer therapy are mainly based on limiting the division
of pathological cells and inducing apoptosis. The currently used anticancer cytostatic
agents most often induce programmed cell death, damaging DNA. The use of natural
compounds with potential anticancer activity seems interesting due to the fact that it may
open up new possibilities for their use in the development of more effective methods
of cancer therapy. Their antitumour activity is often based on a complex mechanism
including antioxidant activity, carcinogen inactivation, antiproliferation, cell cycle arrest,
the induction of apoptosis and differentiation, the inhibition of angiogenesis, and the
abolition of multidrug resistance [50–53].

Cancer treatment modalities are generally based on combinations of chemotherapy, radio-
therapy, surgery, hormone therapy, immunotherapy and targeted drug therapy. Chemother-
apy is an important option in the treatment of cancer, and plant-derived chemotherapeutic
agents have contributed significantly to advances in its development [54–63]. A number of
clinically-applied agents from plant sources were standard ingredients in many anticancer
therapies, including vinblastine, vincristine (Catharanthus sp.), paclitaxel (Taxus sp.), camp-
tothecin derivatives (Camptotheca sp.) and podophyllotoxins (Podophyllum sp.) [9,63–67].
Currently, vincristine encapsulated in liposomes is approved for the treatment of acute
lymphoblastic leukemia, while protein-bound paclitaxel particles are approved for the
treatment of non-small cell lung cancer, according to a Food and Drug Administration
(FDA) report [68]. It is noteworthy that, in some cases, their use is associated with various
side effects that might limit their broad clinical use [69].
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Plant compounds generally suffer from low bioavailability and hydrophobicity issues,
which have been addressed with the use of recently discovered nanomaterials, many of
which may also be of natural origin. Nanoparticle application has led to the increase
of the concentration of the drug in neoplastic cells with particular receptors on their
surface [70–74]. A nanoparticle consists of a drug on the inside, and a so-called “ligand”—
i.e., a molecule designed to bind to a tumour cell receptor—on the outside. After binding
to the receptor, the nanoparticles are absorbed into the cell and the drug is released.
Compounds of plant origin (pure compounds or extracts) have been used in combination
with nanoparticles and with chemotherapeutic agents in adjunctive therapies [75,76].

However, it should be noted that plant preparations have more complicated and
unpredictable interactions with drugs than would be expected between two conventional
drugs due to the numerous active compounds found in the plant raw materials. This may
be due to the fact that compounds of plant origin may influence the pharmacokinetics and
pharmacodynamics of the anticancer drugs used. As a consequence, toxic drug effects
may be observed or treatment efficacy may be reduced [77–80]. So far, numerous studies
have highlighted the positive effects deriving from the co-administration of drugs with
plant extracts. For example, Hussain et al. reported a synergistic effect between cisplatin
and Aloe vera extract on MCF-7 and HeLa cancer cell lines, suggesting that the plant
extract may increase the therapeutic efficacy of conventional anticancer drugs [81]. In
addition, Senna obtusifolia extract was found to have a synergistic effect in combination
with doxorubicin [43].

4. Nanotechnology and Plant Compounds in the Fight against Cancer

The advance of modern technology has brought new products and research techniques
which have driven significant scientific progress. Nanotechnologies have successfully
entered everyday life, and are increasingly used in medical sciences. Many common devices
are based on the achievements of modern nanotechnology, such as energy-efficient and
powerful electronic devices, versatile nanocoatings, and new-generation cosmetics [82–84].
In its simplest definition, nanotechnology is a “nano-scale technology”, i.e., a technology in
the size range 1–100 nm. For a better understanding of these sizes, the nanometer scale (nm)
is one billionth of a meter, or three to five atoms wide: less than one tenth of a micrometer
in at least one dimension.

The latest scientific achievements may turn out to be effective treatments for diseases
that have been troubling people for centuries, among which cancer is still a challenging and
often unresolved issue. In the past, the detection of neoplastic diseases was possible only
after the appearance of specific symptoms, generally in an advanced stage of the disease,
and even in the presence of distant metastases. A more complete view of pathologically-
changed tissues can be obtained by biopsy; however, this method has many limitations,
and carries the risk of complications [85,86]. In response, highly-sensitive non-invasive
methods of detecting neoplastic diseases have been developed, most of which rely heavily
on nanotechnology [87].

In fact, nanomaterials are widely used in the diagnosis and treatment of different
types of cancer due to the possibility of precisely controlling their shapes, sizes and specific
physical properties. Nanoparticles can also serve as carriers of anticancer drugs to specific
cells [88], and nanomaterial-based devices used to detect the proteins or nucleic acids
of cancer cells can provide an early indication of disease or monitor the effectiveness
of therapy. Such biomarkers can be detected in body fluids such as blood, saliva and
urine. One such group of tumour biomarkers are proteins. A number of biomarkers are
routinely tested in clinical practice—PSA (prostate cancer), CEA (colorectal cancer), CA-125
(ovarian cancer), ER (breast cancer), AFP (liver cancer) and CA 19-9 (pancreatic cancer)—
and nanosensors can be successfully used to detect them [89–94]. The most frequently used
nanoparticles in the diagnosis of cancer diseases are gold nanoparticles, nanoshells and
quantum dots [95,96].
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Nanoparticles such as micelles, dendrimers, quantum dots, liposomes and carbon
nanotubes can also be used in the treatment of neoplastic diseases. Traditional chemothera-
peutics include alkylating agents and antibiotics that induce damage to the DNA of cancer
cells. Topoisomerase or mitosis inhibitors are also used [97]. Many of these therapeutics
are highly effective, but they often demonstrate a lack of specificity, resulting in severe side
effects [98]. There is a clear need for new methods allowing for the effective and specific
targeting of neoplastic cells. One potential strategy that has received much attention over
the past few years involves the use of nanoparticles [99–101], as well as those based on a
combination of modern nanotechnology with a rich arsenal of compounds of natural origin
with anticancer properties [102–106].

The nanoparticles themselves are typically obtained by electrospraying, evaporation–
condensation, laser ablation or pyrolysis, or high-energy ball milling. They can also
be obtained chemically by chemical vapor synthesis, the sol-gel method, hydrothermal
synthesis, microemulsion technique, or polyol synthesis [107,108]. It is worth emphasizing
that physical methods sometimes have an advantage over chemical methods due to the lack
of danger of solvent contamination in the prepared thin films, and due to the uniformity of
the synthesized nanoparticle distribution [109]. However, these synthesis methods are often
complicated and require strictly controlled temperature, pH and pressure conditions, as
well as specialized equipment, and often environmentally-hazardous reagents containing
heavy metals [110]. Hence, many research teams are interested in the biological synthesis of
nanoparticles, which should offer weak contamination with toxic agents, the customization
of desired properties, repeatability and easy scalability [111,112].

Among the various biological systems used for this purpose, plants deserve special at-
tention because plant cells may contain a wide range of bioactive compounds with potential
anticancer properties. One study examined the antitumour potential of Nepeta deflersiana
extract in silver nanoparticles (ND-AgNPs) against human cervical cancer (HeLa) cells, as
well as the influence of cytotoxic concentrations of ND-AgNP on markers of oxidative stress,
reactive oxygen species (ROS) production, mitochondrial membrane potential, cell cycle
arrest, and apoptosis/necrosis. It was found that the cytotoxicity of the tested particles was
concentration dependent, and that the treatment was associated with a significant increase
in ROS and lipid peroxidation, and a decrease in matrix metalloproteinases (MMPs) and
glutathione levels. The cell cycle analysis and apoptosis/necrosis assay data showed that
ND-AgNP induced SubG1 arrest and apoptotic/necrotic cell death [113]. Gomathi et al.
examined the potential for silver nanoparticles to be biosynthesized in the fruit shell of
Tamarindus indica. Here, too, the plant extract acts as a reducing and stabilizing agent for
silver nanoparticles. These nanoparticles proved to be cytotoxic to MCF-7 cell lines; hence,
they could be considered as potential therapeutic agents in the treatment of human breast
cancer [114].

Because plants from the Solanaceae family produce a number of compounds with
proven or potential anticancer activity, they may well be used on a large scale as the
basis for new systems for the biosynthesis of nanoparticles exhibiting anticancer activity.
Combined with the extremely rapid technological progress, this may be the starting point
for the development and implementation of completely new and more effective methods
of fighting cancer. The general scheme of the synthesis and application of nanoparticles in
cancer diagnosis and treatment is presented in Figure 2.
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5. Synergy between Chemotherapeutic Agents and Plant Compounds in
Cancer Therapy

Despite its many side effects, chemotherapy remains the most popular treatment for
cancer. Although many chemotherapeutic compounds are of plant origin (e.g., paclitaxel,
camptothecin, colchicine, vincristine, and podophyllotoxin, etc.), being either synthetic or
isolated directly from plants, they have considerable side effects. Moreover, their low water
solubility, poor penetration into target cells, limited therapeutic potential and toxic side effects
may limit the suitability of these natural agents for the treatment of cancer [9,11,63,115–117].
Therefore, new phytochemical anticancer agents require substantial evidence of efficacy
from appropriate preclinical trials before their approval for use in patients [79,118–121]. It
is also possible to chemically modify the molecule and improve its properties [122].

One new therapeutic strategy which is based on the synergistic action between
chemotherapeutic agents and plant compounds intends to overcome these shortcom-
ings. Synergy comes from the Greek word “synergos”, which means “working together”,
and is broadly defined as the interaction of two or more compounds or other factors to
produce a combined effect greater than the sum of their separate parts [123,124]. Syn-
ergistic effects are believed to arise from synergistic multi-target effects, the modulation
of pharmacokinetic or physicochemical effects, interference with resistance mechanisms,
or elimination and neutralization potentials [125–128]. Studies show that a secondary
compound or plant extract—such as essential oil derivatives, polyphenol derivatives or
terpenoid derivatives—may be capable of removing or neutralizing the toxic effects or side
effects of a drug [123,129–131].
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6. Solanaceae Family—General Characteristics and Application

The Solanaceae (nightshades) are considered to be the third most economically-important
family in the plant kingdom after the Poaceae and the Fabaceae. They are also one of the
most significant families of trees, shrubs and herbs, with great floristic, phytochemical and
ethnobotanical importance, with over 90 genera comprising 3000–4000 species spread all
over the world. Almost half of these belong to the large and varied genus Solanum. It is
distributed in all continents except Antarctica, with the greatest diversity being observed
in Central and South America [132–136]. In addition to Solanum, the leading genera of
the Solanaceae family include Atropa, Datura, Capsicum, Nicotiana, Lycium, Hyoscyamus,
Lycopersicon, Withania and Petunia. This single-genus hyper-diversity is remarkable in
angiosperms, making Solanum interesting from an evolutionary point of view, as well as
for its usefulness to humans (Figure 3).
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Figure 3. Selected examples of species from the Solanaceae family exhibiting anticancer activity, such
as Solanum tuberosum, Capsicum annuum, Solanum melongena, Lycopersicon esulentum, Nicotiana tabacum,
Datura stramonium and Lycium barbarum.

The representatives of the Solanaceae vary extremely in regards to their habit, distri-
bution and morphology, with an astonishing variety of flowers and fruits. The flowers
are usually radially symmetrical, with five united sepals, five united petals, five stamens
inserted on the tube. The ovary is positioned superior. It consists of two united carpels
with the partition walls often present, but more obvious in wild species than domes-
tics. The leaves are alternate, or rarely opposite, and are usually simple. The fruit is a
two-chambered capsule called a berry [28,29,137–143]. In addition to a wide range of
other uses (e.g., traditional medicine, traditional culture, pharmacology, and ornamental
horticulture), the species of the Solanaceae are of great importance as food crops around
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the world. In 2020, the global areas cultivated with four basic species— potatoes, tomatoes,
aubergines and capsicums (chilies and green peppers)—were 16.5, 5.1, 1.9 and 2.1 million
hectares, with productions of 359.1, 186.8, 56.6 and 36.1 million tons, respectively [144].
Moreover, from a biotechnological point of view, species from the seven genera of the
Solanaceae have become the subject of genetic research as model plants and/or because of
their importance as crops. Model plants include cultivated tomatoes and their wild rela-
tives (genus Solanum, former genus Lycopersicon), tobacco (genus Nicotiana), and species of
petunias (genus Petunia) [29,142,143]

The Solanaceae are also known to possess a diverse range of biologically-active com-
pounds that can be used to benefit human health, such as phenolics, alkaloids, saponins,
terpenes and lipids. However, toxic alkaloids such as tropane alkaloids or glycoalkaloids
are of particular interest because of their reported antimicrobial, anti-rheumatic and
antioxidant activities [145]. They have also demonstrated antitumour activity against
several types of cancer, including prostate, breast and colon cancer [146,147]. Tropane
alkaloids such as atropine, hyoscyamine and scopolamine have a characteristic bicyclic
structure, and particularly high concentrations have been found in Datura stramonium,
Datura ferox and Datura innoxia. Atropine is a racemic mixture of two enantiomeric
forms of hyoscyamine, with the L-enantiomeric form being the active one. Scopolamine,
which acts as an antagonist at both the peripheral and central muscarinic receptors,
is the most valuable member of a group known as the tropane alkaloids [143,147,148].
This group is highly diverse, being formed from a tropane skeleton, which is highly
prone to modification. Tropane alkaloids are found in all plant parts, with the highest
concentrations in roots and seeds. Their levels vary according to their species, season,
location, and plant organ. From a pharmacological standpoint, they are well known as
potent anticholinergic agents, meaning that they inhibit neurological signals from the
endogenous neurotransmitter acetylcholine. The symptoms of an overdose may include
a dry mouth, ataxia, dilated pupils, convulsions, urinary retention, hallucinations, coma,
and death [140,147,149].

Glycoalkaloids are produced in more than 350 plant species, particularly those of the
Solanaceae and Liliaceae families. They are a group of glycosidic derivatives of nitrogen-
containing steroids consisting of a cholestane skeleton with a carbohydrate moiety of one
to five monosaccharides attached at the 3-OH position [150]. Arguably, the most signifi-
cant glycoalkaloids are α-solanine and α-chaconin, which are contained in potatoes (Solanum
tuberosum); solasonin and solamargine, in eggplants (Solanum melongena); and α-tomatin
and dehydrotomatin, which are spirosolan-type glycoalkaloids found in tomato plants
(Lycopersicon esculentum) [151].

7. Anticancer Effect and Potential Mechanisms of Action of Plant Extracts from the
Solanaceae Family

Thanks to their wide range of active substances, plant extracts exert a variety of effects
on cancer cells, with some of them having been reported to have inhibitory effects on cell
proliferation [152]. Indeed, a number of in vitro and in vivo studies have found extracts
from Solanaceae family members to also have strong anticancer properties.
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In the Solanum genus, a Solanum lycopersicum leaf extract was shown to exhibit po-
tential antitumour properties against breast cancer cells by modulating the expression
of genes associated with cancer growth and progression [153]. In addition, a Solanum
lyratum extract taken from the whole plant exhibited a proapoptotic effect against
human osteosarcoma epithelial cells. The apoptosis induction took place through a
number of routes: the increase of reactive oxygen and nitrogen species production; the
decrease of mitochondrial membrane potential; the release of cytochrome c; the activa-
tion of caspase 3, 8 and 9; the increase of the level of proapoptotic proteins, including
Bax; and the decrease of the level of anti-apoptotic proteins, including Bcl-2 [154].
Solanum nigrum fruit extract has also been found to decrease viability by the induction
of apoptosis and cell cycle arrest at the G2/M phase in prostate cancer cells [155], and
to inhibit the proliferation, migration and invasion of glioma cells by the induction of
their apoptosis [156].

Extracts of Withania species are also indicated to have specific cytotoxic properties
against cancer cells. Withania somnifera leaf extract was found to have cytotoxic effects
against human osteosarcoma, fibrosarcoma and lung cancer epithelial cells, and to activate
tumour suppressor proteins including p53 [157]. Similarly, extracts from different parts of
Withania coagulans were found to bestow antiproliferative properties and NFκB pathway
induction [158].

In addition, Capsicum annuum seed extract has been shown to inhibit the migration
of lung cancer and breast cancer cells by downregulating metalloproteinases MMP-2
and MMP-9, and increasing E-cadherin expression [159]. Furthermore, leaf and shoot
extracts of Nicotiana glauca exhibit cytotoxic properties against lung cancer and prostate
cancer cells, and demonstrate anti-angiogenic properties in vivo by inhibiting microvessel
formation [160].

Recent reports on the anticancer properties of plant extracts in the Solanaceae family
are listed in Table 1.
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Table 1. In vitro anticancer effect of plant extracts from the Solanaceae family and their potential mechanisms of action.

Name of the Species Part of the Plant Type of Solvent

Class of
Compounds/Compounds

Identified in
Extract/Fraction

Cancer Cell Lines Activity/Mechanism/Effect Ref.

Athenaea velutina Sendtn. leaves dichloromethane: methanol
(1:1)

phenolic compounds
and flavonoids MCF-7, HepG2, B16-F10

Cytotoxic (IC50 values in the range of
1.56–200 µg/mL) (MTT test); inhibition
of migration, adhesion, invasion and cell

colony formation.

[161]

Capsicum annuum L. red pericarp water/methanol capsianoside derivatives HCT116, PC-3 Cytotoxic (IC50 = 51 µg/mL and
60 µg/mL) (MTT test) [162]

Capsicum annuum L. fruits ethanol
carotenoids, chlorophyll,

polyphenols, tannins,
and flavonoids

Calu6 Cytotoxic [163]

Solanum betaceum Cav. fruits ethanol phenolics HepG2, MDA-MB-231 Cytotoxic (IC50 values in the range of
30–80 µg/mL) (MTT test) [164]

Datura innoxia Mill. leaves water phenolic and
flavonoid contents K562

Cytotoxic (IC50 = 0.6 mg/mL) (MTT
test); antiproliferative activity by

interaction with DNA and histones
[165]

Datura stramonium L.,
Datura inoxia Mill. leaves ethyl acetate rutin, gallic acid, catechin,

apigenin and caffeic acid PC-3, MDA-MB 231, MCF-7

Cytotoxic (IC50 < 3µg/mL) (MTT
assay); anti-tumour activity (evaluation

of haematological, biochemical
and histological)

[166]

Hyoscyamus reticulatus L.,
Hyoscyamus tenuicaulis

Schönb.-Tem. Lycium shawii Roem.
& Schult. and Solanum luteum L.

shoots,
leaves, stems dichloromethane - MOLT-4 Cytotoxic (IC50 values in the range of

35.5–>50 µg/mL) (MTT test) [167]

Ipomoea batatas (L.) Lam. root tubers and leaves

methanol/trifluoroacetic
acid (TFA), ethanol/TFA,

methanol/TFA/water, and
ethanol/TFA/water

anthocyanins MCF-7, HCT-116, and HeLa Antiproliferative properties [168]

Lycium barbarum L. fruits (Goji berries) ethanol - T47D

Cytotoxic (IC50 = 0.75 mg/mL) (MTT
test); induction of apoptosis by changes

of the apoptotic protein expression
(increase in pro-apoptotic proteins and a

decrease in anti-apoptotic proteins)

[169]

Lycium barbarum L. fruits - phenolics HepG2 Cytotoxic (18%, at 1600 µg/mL)
(MTT test) [170]
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Table 1. Cont.

Name of the Species Part of the Plant Type of Solvent

Class of
Compounds/Compounds

Identified in
Extract/Fraction

Cancer Cell Lines Activity/Mechanism/Effect Ref.

Lycium barbarum L. fruits methanol/ethyl
acetate/petroleum ether zeaxanthin-rich extract BJ HEP, A375 Cytotoxic (IC50 = 75.15 and 85.06 µM for

BJ HEP, 62.36 and 92.59 µM for A375) [171]

Lycium barbarum L. water pectin-free, polysaccharides
fraction

MCF-10A, MCF-7, HER2,
MDA-MB-231 Cytotoxic 1000 µg/mL (MTT test) [172]

Lycium barbarum L. fruits - carotenoids Caco-2 cells Effect (range from 6.5 to 92.8%)
(MTT test) [173]

Lycium barbarum L.,
Lycium ruthenicum Murr fruits ethyl acetate phenolics flavonoids,

carotenoids MDA

Cytotoxic (EC50 = 4.08 mg/mL);
apoptosis via modulating cell cycle
arrest, cell apoptosis, and the p53

signalling pathway

[174]

Lycium chinense Mill. fruit (Goji berries) ethanol - LS180 Cytotoxic (MTT test) [175]

Lycium europaeum L. fruit methanol

phenolic, flavonoids,
anthocyanins, carotenoids,
lycopens, and condensed

tannins content

A549, PC12
Cytotoxic (MTT assay), morphological
changes and induction of apoptosis by

caspase 3/7 activation
[176]

Lycopersicon esculentum Mill. leaves hydromethanol, acetone
and alkaloid extracts

phenolic compounds,
pigments, and alkaloids AGS Cytotoxic (IC50 values in the range of

9–171 µg/ mL) [177]

Nicotiana glauca Graham leaves ethanol palmitic acid and scopoletin CCL-136
Anti-proliferative effect and induction of
apoptosis by changes in mitochondrial

and nuclear morphology
[178]

Nicotiana glauca Graham stem n-hexane

beta-sitosterol, stigmasterol,
campesterol,

D-alpha-tocopherol,
scopoletin,

3,7,11,15-tetramethyl-2-
hexadecen-1-ol,

Bicyclo[3.1.1]heptanes

MCF-7

Cytotoxic (IC50 = 17.98 µg/mL) (MTT
test); induction of apoptosis by changes
in mitochondrial membrane potential,

chromatin condensation and
cytoplasmic shrinkage

[179]

Physalisalkekengi L. fruit chloroform physalin D HeLa MCF-7, A431 Growth inhibition [180]

Physalis angulata L. leaves ethanol - SKOV3, HL-60 Cytotoxic (IC50 in the range of
18–375 µg/mL) (MTS test) [181]
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Table 1. Cont.

Name of the Species Part of the Plant Type of Solvent

Class of
Compounds/Compounds

Identified in
Extract/Fraction

Cancer Cell Lines Activity/Mechanism/Effect Ref.

Physalis peruviana L. fruit ethanol, isopropanol
ursolic acid, rosmarinic acid,

gallic acid, quercetin,
and epicatechin

HeLa Cytotoxic (IC50 = 60.48 µg/mL)
(Resazurin Reduction) [182]

Solanum aculeastrum Dunal whole plant methanol solamargine and solanine SH-SY5Y
Cytotoxic (IC50 = 10.72 µg/mL)

(sulforhodamine B (SRB)
colorimetric assay)

[183]

Solanum capsicoides All. seeds methanol carpesterol K562

Cytotoxic (U251 GI50 = 24.7 µg/mL,
MCF-7 GI50 = 27.1 µg/mL,
786-0 GI50 = 25.8 µg/mL,

OVCAR-03 GI50 = 24.0 µg/mL, and
K562 GI50 = 32.0 µg/mL) (Toxicity

Estimation Software Tool
(TEST) software)

[184]

Solanum chacoense Bitter. leaves, tubers methanol phenolic acids and volatile
compounds MCF-7

Cytotoxic (IC50 values in the range of
132.9–390.7 µg/mL) (MTT test);

induction of apoptosis by changes in
expression of proliferation- and

apoptosis-related genes (overexpression
Bax¸ down-regulation Bcl-2)

[185]

Solanum incanum L. whole plant

acid base precipitation
followed by the different

ratios of ethanol/H2O
extraction (according to the

patents—US patent
7,078,063, EU patent

1,058,334, and Japan patent
3,940,928)

solamargine B16

Cytotoxic (IC50 in the range of
2.91–6.85 µg/mL) (MTT test); induction

of apoptosis by DNA damage and
activation of caspase 9; G0/G1 cell

cycle arrest

[186]

Solanum incanum L. fruit water - HCT-116

Cytotoxic (IC50 = 23.35 µg/mL)
(Sulphorhodamine B test);

ultrastructural changes (loss of the
surface microvilli, mitochondrial
damage, formation of autophagic

vacuoles, nuclear shrinkage, chromatin
condensation and nucleolar changes)

[187]
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Table 1. Cont.

Name of the Species Part of the Plant Type of Solvent

Class of
Compounds/Compounds

Identified in
Extract/Fraction

Cancer Cell Lines Activity/Mechanism/Effect Ref.

Solanum incanum L.,
Solanum schimperianum Hochst,

Solanum nigrum L.,
Physalis lagascae Roem. & Schult.
and Withania somnifera (L.) Dunal

leaves methanol

hydroxycinnamic acid
amides, steroid alkaloids,

steroidal
glycoalkaloid fractions

MCF-7, MDA-MB-231,
HT-29, HTC-116

Cytotoxic (IC50 values in the range of
µg/mL and 1.29–19.83 µg/mL)

(MTT test)
[188]

Solanum lycopersicum L. fruit methanol phenolic, ascorbic acids and
flavonoid content HepG2, HeLa Cytotoxic (IC50 values in the range of

156–212 µg/mL) (MTT test) [189]

Solanum lycopersicum L. fruit ethanol/water carotenoids, phenolics,
sterol content, fatty acid HT-29 Cytotoxic (IC50 = 150 µg/mL) (MTT test) [190]

Solanum lycopersicum L. leaves ethanol - A549, HeLa Cytotoxic (IC50 < 31.25 µg/mL) (MTT);
significant caspase-3 activity [191]

Solanum lyratum Thunb. whole plant chloroform - HSC-3, SAS, CAL-27

Cytotoxic (IC50 values in the range of
40–80 µg/mL); induction of apoptosis
(in extrinsic- and intrinsic-dependent
pathways) by changing levels of the

proteins p21, p16, CDK2 and CDK6, and
cyclins D1 and E.

It also promotes proapoptotic proteins
Bax and Bad and inhibits anti-apoptotic
proteins Bcl-2 and Bcl-xl, promotes ROS

and Ca2þ production, decreases
mitochondrial membrane potential,

increases NO production

[192]

Solanum nigrum L. whole plant water
alkaloids, glycosides,

flavonoids, polyphenols
terpenoids, and saponins

A-375 Cytotoxic [193]

Solanum nigrum L. whole plant water - MCF-7

Cytotoxic (IC50 = 100 µg/mL) (crystal
violet staining assay) induction of

apoptosis by activation of caspase-3 and
loss of mitochondrial integrity. It also
inhibited EMT (cancer cell metastasis

and migration) by downregulating
ZEB1, N-cadherin, and vimentin

[194]
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Table 1. Cont.

Name of the Species Part of the Plant Type of Solvent

Class of
Compounds/Compounds

Identified in
Extract/Fraction

Cancer Cell Lines Activity/Mechanism/Effect Ref.

Solanum nigrum L. leaves water - SCC-4

Cytotoxic (IC50 = 150 µg/mL) (crystal
violet staining assay); induction of

apoptosis by increasing ROS production,
activating caspase-9 and caspase-3,
alleviating the inhibition of glucose

uptake and loss of
mitochondrial integrity

[195]

Solanum nigrum L. fruit ethanol phenolic and
flavonoid compounds MCF-7

Cytotoxic (IC50 value = 40.77 µg/mL)
(MTT assay); arrest the cell cycle in the S
phase and continued to the G2/M phase

[196]

Solanum nigrum L. whole plants water - HepG2 Cytotoxic (MTT test); inhibits the
proliferation and AKT/mTOR pathway [197]

Solanum paniculatum L. fruit ethanol carotenoids, phenolic
compounds MCF-7 Cytotoxic (IC50 value = 1.87–30 µg/mL) [198]

Solanum schimperianum
Hochst. ex A.Rich

Solanum villosum Mill.
Solanum coagulans

Forssk.
Solanum glabratum Dunal.,

Solanum incanum L.
, Solanum nigrum L.

aerial parts ethanol rutin HepG2, HEK293, MCF-7 Cytotoxic (IC50 values in the range of
20.4–30.1 µg/mL) (MTT assay) [199]

Solanum sessiliflorum Dunal pulp/seed ethanol
caffeic and gallic acids,
beta-carotene, catechin,

quercetin, and rutin
MCF-7, HT-29 Cytotoxic (IC50 values in the range of

3–>30 µg/mL) (MTT assay) [200]

Solanum tuberosum L. tuber, peels, flesh, flowers water - HT-29

Cytotoxic (IC50 values in the range of
7.2–14.4 mg/ mL) (MTS test); induction

of apoptosis by upregulation of
caspase-3 protease activity

[201]

Solanum tuberosum L. tubers water polyphenol and
anthocyanin-rich U937

Cytotoxic; expression of specific
apoptotic agents, such as caspase 8, 9, 3,

and poly (ADP-ribose) polymerase
(PARP)

[202]



Cancers 2022, 14, 1455 16 of 42

Table 1. Cont.

Name of the Species Part of the Plant Type of Solvent

Class of
Compounds/Compounds

Identified in
Extract/Fraction

Cancer Cell Lines Activity/Mechanism/Effect Ref.

Solanum tuberosum L. peels ethanol/water

caffeic, caffeoylquinic acid,
O-glycosylated flavonol

derivatives and
polyamine derivatives

NCI-H460, MCF-7, HepG2,
and HeLa

Cytotoxic (GI50 values in the range of
51–365 µg/mL) [203]

Withania coagulans (Stocks) Dunal roots, leaves, leaf stalk,
and fruit methanol

flavonoid and phenolic
content, myricetin,

quercetin, gallic acid,
hydroxybenzoic acid

HeLa, MCF-7, RD, RG2
Cytotoxic (IC50 values in the range of
0.96 µg/mL–6.69 µg/mL (Presto Blue

cell metabolic test)
[204]

Withania coagulans (Stocks) Dunal fruits methanol withaferin A MDA-MB-231 Cytotoxic (IC50 = 40 mg/mL)
(MTT assay) [205]

Withania somnifera (L.) Dunal root water - A375

Cytotoxic (IC50 = 350 µg/mL) (MTT
test); induction of morphological

changes (apoptotic body and nuclear
blebbing) and DNA fragmentation

[206]

Withania somnifera (L.) Dunal leaves water - HepG2
Cytotoxic (IC50 = 5.0 mg/mL)(MTT test);
induction of apoptosis by caspase-3, -8

and -9 activation
[207]

Withania somnifera (L.) Dunal roots and leaves
water, ethanol, metanol

(various methods of
extraction and maceration)

withanoside V, withanoside
IV, 12-

deoxywithastramonolide,
withanolide A, and

withaferin A

HeLa Cytotoxic (IC50 = 10 mg/mL) (MTT test) [208]

Withania somnifera (L.) Dunal roots ethanol/water alkaloids, carbohydrates,
phytosterols and phenolics A549

Cytotoxic (IC50 = 99.7 µg/mL) (MTT
test); anticancer activity via antioxidant,
apoptotic, autophagy and angiogenesis

inhibition mechanisms

[209]

Withania somnifera (L.) Dunal roots - withaferin A, whitanolide,
withanolide B Jurkat

Proapoptotic mechanism involves
intracellular Ca2+ accumulation and the

generation of reactive oxygen species
[210]

Withania somnifera (L.) Dunal leaves water - C6 glioma
Activation of multiple pro-apoptotic
pathways, leading to suppression of

cyclin D1, Bcl-xl, and p-Akt
[211]

Withania somnifera (L.) Dunal stems methanol, ethanol, water withaferin A MDA-MB-231 Cytotoxic (IC50 values of 30 and
37 µg/mL) (MTT test) [212]
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8. Anticancer Effect and Potential Mechanisms of Action of Pure Compounds Isolated
from the Solanaceae Family

Although plants and natural extracts are very important sources of biologically-active
compounds, the study of their isolated products can provide a starting point for the
development of new drug candidates with unique structures and mechanisms of action.
Indeed, many of the secondary metabolites produced by the Solanaceae have been found
to be of medical importance, with effects on cancer cells [13].

For example, solajiangxins H, solajiangxins I and 7-hydroxylsolajiangxin I isolated
from whole plant extracts of Solanum lyratum show cytotoxic effect against intestinal
cancer cells [213]. Solanum aculeastrum, containing steroidal glycosides, showed antitumour
activity against various cancer cell lines, including lung, colon and cervical cancer cells [214].
In turn, Shieh et al. demonstrated the time- and dose-dependent inhibition of cell viability
in α-tomatine-treated non-lung cancer cells [215]. The steroidal alkaloid soladulcidine,
isolated from Solanum dulcamara, and ten of its derivatives were shown to have significant
antiproliferative effects against prostate cancer cells [216]. In addition, 35 withanolides and
withaferin A from the roots and leaves of Withania somnifera have demonstrated efficacy
against a wide range of cell lines [217,218]. Withawrightolide and four other withanolides
derived from the aerial parts of Datura wrightii were similarly found to exhibit cytotoxic
properties against glioma cells [219]. In addition, Physalis peruviana seed extract induced
apoptosis in HeLa cells [220].

In particular, secondary metabolites of the Solanaceae family are known to induce
apoptosis in various types of cancer cells by activating different signalling pathways. These
differences may result from both chemical structure of the compounds and specific sensi-
tivity of cancer cells. Such compounds with antiproliferative properties commonly affect
processes associated with the cell cycle, gene expression, signal transduction pathways,
changes in the mitochondrial membrane, metabolic pathways, and autophagy [31].

The cell cycle is an important mechanism that determines cell proliferation. Alkaloids
such as baimantuoluoamide A and baimantuoluoamide B inhibit cyclin-dependent kinase
4 (CDK4) activity, and glycoalkaloids such as solasonine, solanidine, and solamargine
induce cycle arrest in the S phase. Arrest in the G2/M phase is induced by solamargine and
withaferin A [24]. Withaphysalin F—isolated from the leaves of Acnistus arborescens—also
has anti-proliferative properties and the ability to arrest the cell cycle in the G2/M phase,
which has been attributed to the inhibition of tubulin polymerization and the induction of
DNA fragmentation [221].

The compounds also influence gene expression. For example, withaferin A is known
to inhibit transcription factors such as MYB and C/EBPβ [31]. In addition, solasonine, β1-
solasonine, solamargine and solanigroside P isolated from the aerial part of Solanum nigrum
show antiproliferative properties against gastric cancer cells, and can induce apoptosis by
altering gene expression, such as by increasing Bax expression, decreasing Bcl-2 expres-
sion, and activating caspase-3 [222]. Lycopene, a carotenoid found commonly in Solanum
lycopersicum, was found to regulate the expression of various apoptosis-related proteins
and genes—such as caspase-3, caspase-8, Bax, Bax:Bcl-2 and Bcl-xL—among breast cancer
cells [223]. Furthermore, physalin F derived from the whole plant Physalis minima has cyto-
toxic effects and induces the apoptosis of breast cancer cells through caspase-3 activation
and DNA fragmentation [224]. In turn, solamargine increased the expression of p53, Bax
and Bcl-2 in U2OS and K562/A02 cells on the mRNA and protein levels, and the mRNA
expression and promoter activity of EP4, as well as the protein expression of SP1 and NF-κB
subunit p65 in lung cancer cell lines [225].

In addition, they can also inhibit various signalling pathways that may be responsible
for cell growth and proliferation. For example, withanolide S5 inhibits receptor tyrosine
kinases, withametelin and coagulansin A downregulate the Mitogen-Activated Protein
Kinase (MAPK) pathway and the phosphatidylinositol-3-kinase (PI3K) pathway, and 4β-
hydroxywithanolide E targets the Wnt/β-catenin pathway. Solamargine suppresses the
phosphorylation of Akt [225]. In addition, withaferin A inhibits colon cancer by inhibiting
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Notch-1 signalling, as indicated by the downregulation of Notch-1 targets including Hes-1
and Hey-1; it also inhibits its cross-talk with the Akt/mTOR pathway, thus suggesting
the Notch-Akt-mTOR axis as a therapeutic target in colon cancer [226]. Furthermore, α-
chaconine and α-solanine reduce the expression and activity of the Akt and ERα signalling
pathways in human endometrial carcinoma cells [227]. In addition, arabinogalactan upreg-
ulates two of the three MAPK cascades, including c-jun N-terminal kinase (JNK) and p38
kinases, and downregulates the third based on extracellular signal-regulated kinases (ERK),
and scopoletin demonstrates a strong binding affinity with vascular endothelial growth
factor (VEGFA), which is involved in signalling [31].

Solanaceae-isolated compounds may also induce apoptosis by influencing the mi-
tochondrial membrane. Defensin (NoD173), for example, permeates the mitochondrial
outer membrane, resulting in the potential collapse of the membrane, followed by the
release of cytochrome c and the activation of caspases. In turn, α-solanine was found to
induce mitochondrial mediated apoptosis by opening pores and inducing the release of
cytochrome c and Smac from mitochondria into the cytosol, further activating caspase-9
and decreasing the mitochondrial membrane potential [228].

They may also alter metabolic pathways: physapubescin I blocks kidney-type glutam-
inase, an enzyme involved in ATP production. Its downregulation may inhibit the growth
and proliferation of cancer cells. Finally, physapubescin B is known to activate autophagy
via mTORC1 inhibition, while physapubenolide downregulates key proteins involved in
the process [31].

Recent reports on the anticancer properties of pure compounds isolated from plants
from the Solanaceae family are listed in Table 2.

The mechanisms of action described in the text and included in Table 2 are presented
in Figure 4.
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Figure 4. Schematic diagram presenting the potential anticancer effect of compounds from the
Solanaceae family through the induction of apoptosis and the activation of signalling pathways in
cancer cells (created using BioRender).
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Table 2. In vitro anticancer effect of pure compounds isolated from the Solanaceae family, and their potential mechanisms of action.

Name of the Species Part of the Plant Compounds/Fraction Cancer Cell Lines Activity/Mechanism/Effect Ref.

Brugmansia suaveolens
(Humb. & Bonpl. ex Willd.)

Bercht. & J.Presl
leaves SUPH036-022A MCF7, A549

Cytotoxic (MTT test) and induction of apoptosis
by loss of mitochondrial integrity and increase
of ROS

[229]

Capsicum annuum L. pericarp polyphenolic content U937 Cytotoxic (Trypan blue assay) [230]

Capsicum chinenses L. fruits capsaicin and dihydrocapsaicin SH-SY5Y Cytotoxic (IC50 = 69.75 µg/mL) (Trypan
blue assay) [231]

Datura innoxia Mill. aerial parts
dinnoxolide A, 21,27-dihydroxy-1-

oxowitha-2,5,24-trienolide,
daturamalakin B, withametelin

U251 and SK-LU-1 Cytotoxic (IC50 values in the range of 1.2–19.6 µM)
(SRB assay) [232]

Datura inoxia Mill. leaves phytosterol, rinoxiaB HCT 15 Cytotoxic (IC50 = 4 µM), apoptotic effects by
targeting BAX/Bcl2 pathway [233]

Datura metel L. seeds indole alkaloids, daturametelindoles
A–D SGC-7901, Hepg2, MCF-7 Cytotoxic (IC50 values in the range of

6.73–47.63 µM/mL) (MTT test) [234]

Datura metel L. whole plants steroidal saponins (metelosides A–E) HepG2, MCF-7, and SK-Mel-2 Cytotoxic (SRB assay) [235]

Lycium ruthenicum Murray fruits

petunidin 3-O-[6-O-(4-O-(trans-p-
coumaroyl)-α-L-rhamnopyranosyl)-β-

D-glucopyranoside]-5-O-[β-D-
glucopyranoside]

DU-145

Cytotoxic (IC50 = 361.58 µg/mL) (MTT test),
apoptosis through the
ROS/PTEN/PI3K/Akt/caspase
3 signalling pathway

[236]

Lycium shawii Roem. & Schult whole plant

aloe emodin, dehydrocostus lactone
costunolide, lyciumate, aloe emodine

11-O-rhamnoside,
emodin-8-O-β-D-glucoside and lyciuma

MDA-MB-231 Cytotoxic (IC50 values in the range of >72 µg/mL)
(MTT test) [237]

Physalis alkekengi var. franchetii Mast. aerial parts physalin A A549
Cytotoxic (IC50 = 28.4 µM/mL) (MTT test); cell
cycle arrest in the G2/M phase and increase
of ROS

[238]

Physalis alkekengi var. franchetii Mast. - physakengose G U-2OS, HOS

Cytotoxic (MTT test), increase of lysosome
dysfunction, induction of apoptosis
(mitochondrial-dependent pathway) and
inhibition of mTOR signalling

[239]
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Table 2. Cont.

Name of the Species Part of the Plant Compounds/Fraction Cancer Cell Lines Activity/Mechanism/Effect Ref.

Physalis alkekengi var. franchetii Mast. calyx withanolides A549, K562

Cytotoxic (IC50 value in the range of
1.9–4.3 µM/mL) (MTT test); induction of
apoptosis by suppressing the PI3K/Akt/mTOR
signalling pathway

[240]

Physalis angulata L. stems and leaves physangulatins A−N; withaphysalin
Y;withaphysalin Z

C4-2B, 22Rvl, 786-O, A-498, ACHN,
A375-S2

Cytotoxic (IC50 values in the range of
0.18–11.59 µM/mL) (MTT test) [241]

Physalis angulata L. stems and leaves
physalins and analogues (physalins

V-IX, 16,24-cyclo-13,
14-seco withanolides)

C4-2B, 22Rv1, 786-O, A-498,
ACHN, A375-S2

Cytotoxic (IC50 values in the range of
0.24–3.17 µM/mL) (MTT test) [242]

Physalis angulata L. whole plant physalin B, physalin F
HL60, A549, HeLa, HuCCA-1,

HepG2, MDA-MB-231), T47-D),
S102, H69AR, MRC-5

Cytotoxic (IC50 values in the range of
0.76–11.92 µM/mL) (MTT, XTT test) [243]

Physalis angulata L. aerial parts withanolide MG-63, HepG-2, MDAMB-231 Cytotoxic (IC50 values in the range of
3.50–15.74 µM/mL) [244]

Physalis angulata L. whole plant withanolides A549, HeLa and p388
Cytotoxic (IC50 values in the range of
1.91–>30 µM/mL) (MTT test); apoptosis-inducing
activity by flow cytometric analysis

[245]

Physalis crassifolia Benth. fruits 17β-Hydroxy-18-acetoxywithanolides LNCaP, PC-3M, MCF-7, NCI-H460
and SF-268

Cytotoxic (IC50 values in the range of
0.12–>5.0 µM/mL) (AlamarBlue) [246]

Physalis ixocarpa Lam. fruits ixocarpalactone A SW1990, MCF-7, HeLa
Cytotoxic (IC50 values in the range of
3.22–7.51 µM/mL) (CCK-8 assay); induction of
apoptosis by inhibition of PHGDH

[247]

Physalis minima L. whole plant withanolides A549, SMMC-7721, MCF-7 Cytotoxic (IC50 value in the range of
40.01–82.17 µM/mL) (MTT test) [248]

Physalis minima L. whole plant 5, 6-β-epoxywithanolides A549, SMMC-7721, MCF-7 Cytotoxic (IC50 values in the range of
31.25–80.14 µM/mL) (MTT test) [249]

Physalis minima L. aerial parts

withanolide E, withaperuvin C,
4b-hydroxywithanolide E,

28-hydroxywithaperuvin C,
physaperuvin G, and
4-deoxywithaperuvin

HepG2, SK-LU-1, and MCF7 Cytotoxic (IC50 in the range of 0.051–0.86 µg/mL) [250]

Physalis minima L. aerial parts physaminilides HeK, withanolides A375 Cytotoxic (IC50 values in the range of
1.2–7.5 µM/mL) (MTT assay) [251]
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Table 2. Cont.

Name of the Species Part of the Plant Compounds/Fraction Cancer Cell Lines Activity/Mechanism/Effect Ref.

Physalis peruviana L. seeds

perulactones I–L,
17-deoxy-23β-hydroxywithanolide E,

23βhydroxywithanolide E,
4-deoxyphyperunolide A,
7β-hydroxywithanolide F,

7βhydroxy-17-epi-withanolide K,
24,25-dihydro-23β,28-

dihydroxywithanolide G, and
24,25-dihydrowithanolide E,

withanolides

LNCaP, 22Rv1 ACHN, M14,
SK-MEL-28

Cytotoxic (IC50 values in the range of
0.11–> 2 µM/mL) (MTS assay) [252]

Physalis peruviana L. aerial parts 4-hydroxywithanolide E HT-29, HCT116, Caco-2

Cytotoxic (IC50 = 0.84 µM/mL) (CCK-8); cell cycle
arrest in the G0/G1 phase (at low concentrations)
and induction of apoptosis (at higher
concentrations) by changes in apoptosis-related
proteins and genes and histone modification

[253]

Physalis philadelphica Lam. aerial parts

7-epi-philadelphicalactone A;
withaphysacarpin

philadelphicalactone C,
ixocarpalactone A

LNCaP, ACHN, UO-31,
M14,SK-MEL-28

Cytotoxic (IC50 values in the range of
0.06–>10 uM/mL) (MTS assay) [254]

Physalis pubescens L. Fruits physapubescin B SKOV3, HepG2, MDA-MB-231,
PC-3, Du145

Cytotoxic (IC50 values in the range of
1.85–16.05 µM) (MTT test); cell cycle arrest in the
G2/M phase (associated with reduced Cdc25C
levels and increased levels of
CyclinB1, p21 as well as p-Cdk1)

[255]

Physalis pubescens L. stems and leaves

physapubescin E
physapubside A
physapubside B
physapubescin F
physapubside C
physapubescin G
physapubescin H
physapubescin I

and two withanolides

C4-2B, 22Rvl, 786-O, A-498, ACHN,
Caki-2, A375-S2, A375

Cytotoxic (IC50 values in the range of
0.17–5.30 µM/mL) (MTT test) [256]

Physalis pubescens L. fruits physapubescin B ES-2, A2780, A2780/TR Induction of apoptosis and cell-cycle arrest [257]

Physalis pubescens L. fruits physapubescin I SW1990 Cytotoxic (IC50 in the range of 2.06–5.04 µM/mL) [258]
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Table 2. Cont.

Name of the Species Part of the Plant Compounds/Fraction Cancer Cell Lines Activity/Mechanism/Effect Ref.

Salpichroa scandens Dammer aerial parts
salpichrolides A, C, D, G, M, S, T, and

2,3-dihydrosalpichrolide B
and derivatives

LNCaP, PC-3, MCF-7, T47D Cytotoxicity (IC50 values in the range of
29.97–64.91 µM/mL) (MTS assay) [259]

Solanum capsicoides All. seeds carpesterol U251, MCF-7, 786-0, OVCAR 03,
K562

Cytotoxic (GI50 values in the range of
24.0–226.3 µg/mL) [184]

Solanum incanum L., Solanum
schimperianum Hochst,

Solanum nigrum L., Physalis lagascae
Roem. & Schult. and Withania

somnifera (L) Dunal

leaves steroidal glycoalkaloid fractions MCF-7,MDA-MB-231, HT-29,
HTC-116

Cytotoxic (IC50 values in the range of
1.29–>50 µg/mL) (MTT test) [188]

Solanum lycopersicum L. different parts α-tomatine CT-26
Inhibition of tumour growth and induction of
apoptosis through caspase-independent
signalling pathways

[260]

Solanum lyratum Thunb whole plant sesquiterpenoids including solajiangxin
H and lyratol D

MCF-7, HCT-8, A549, SGC-7901,
BEL-7402)

Cytotoxicity (IC50 value in the range of
4.8–5.9 µg/mL) (CCK-8); induction of apoptosis
(mitochondrial-dependent pathway) by changes
in apoptosis-related proteins

[261]

Solanum lyratum Thunb. whole plant steroidal compounds SGC-7901, BEL-7402 Cytotoxic (IC50 value in the range of
0.39–71.89 µmol/mL) (MTT test) [262]

Solanum melongena L. fruit peels
solasonine;
solasodine;

solamargine
Huh7, HepG2

Cytotoxic (IC50 values in the range of
9.6–91.8µM/mL) (SRB assay); cell cycle arrest in
S-phase, induction of apoptosis,

[263]

Solanum melongena L. sepals melongenamides H-I HeLa, Ishikawa and MGC-803 Cytotoxic (IC50 values in the range of
15.3–32.1 µM/mL) (CCK8 assay) [264]

Solanum nigrum L. whole plant degalactotigonin, solasodine, O-acetyl
solasodine, and soladulcoside A

PANC1, MIA-PaCa2, A549,
NCI-H1975, and NCI-H1299

Cytotoxic (IC50 values in the range of 2.9–>30)
(Cell Migration Assay),; induces apoptosis and
cell cycle arrest via inhibiting the EGFR
signalling pathways

[265]

Solanum nigrum L. fruits solaoiacid A549 Cytotoxic (IC50 = 2.3 µmol/mL (MTT assay) [266]

Solanum nigrum L. fruits alkaloid glycosides HL-60, U-937, Jurkat, K562,
and HepG2

Cytotoxic (IC50 values in the range of
2.72–39.19 µM/mL) (MTT assay) [267]

Solanum nigrum L. leaves uttroside B HepG2
Cytotoxic (IC50 = 0.5µM) (MTT test); induction of
apoptosis by down-regulating the activation of
MAPK and mTOR pathways

[268]
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Name of the Species Part of the Plant Compounds/Fraction Cancer Cell Lines Activity/Mechanism/Effect Ref.

Solanum nigrum L. - degalactotigonin different lines of osteosarcoma cells

Cytotoxic (IC50 values in the range of
12.91–31.46 µM/mL) (MTT test); induction of
apoptosis, suppression of migration and invasion
by repression of the Hedgehog/Gli1 pathway
through GSK3b inactivation.

[269]

Solanum nigrum L. fruits

solanine A;
7a-OH khasianine,

7a-OH solamargine;
7a-OH solasonine

MGC803, HepG2, SW480 Cytotoxic (IC50 values in the range of
6.00–9.25 µM/mL) (SRB assay) [270]

Solanum septemlobum Bunge whole plant septemlobin D and
11,12-O-isopropylidenesolajiangxin F P-388, HONE-1 and HT-29 Cytotoxic (IC50 values in the range of

3.0–7.3 µM/mL) (MTT test) [271]

Solanum torvum Swartz. Fruits methyl caffeate MCF-7

Cytotoxic (IC50 = 0.62 µM/mL) (MTT test);
induction of apoptosis by caspase activation via
cytochrome c release from mitochondria. Further,
increased DNA fragmentation, apoptotic body
and changes in apoptosis-related proteins (Bcl-2,
Bid and Bax)

[272]

Withania adpressa Coss. leaves
glycowithanolide named wadpressine,
withanolide F, withaferin A, coagulin L

and nicotiflorin
MM-CSCs, RPMI 8226 Cytotoxic (IC50 values in the range of

0.1–>20 µM/mL) (MTT test) [273]

Withania somnifera (L.) Dunal roots withasilolides A−F, withanone A549, SK-OV-3, SK-MEL-2, and
HCT-15

Cytotoxic (IC50 values in the range of
<10.0 µM/mL) (SRB assay) [274]

Withania somnifera (L.) Dunal leaves withaferin A and its derivatives PANC-1, DU145, MCF7 Cytotoxic (IC50 values in the range of
1.1–>25 µM/mL) [275]

Withania somnifera (L.) Dunal roots protein fraction MBA-MB-435, MDA-MB-231, T47D,
MCF-7, HCT-116, A549

Cytotoxic (IC50 = 92 µg/mL) (MTT test);
induction of apoptosis by decrease of the
mitochondrial membrane potential levels,
promotion of the reactive oxygen species
production, changes in apoptosis-related proteins
regulation and caspases-3 activation. Further, cell
cycle arrest in G2/M-phase.

[276]

Withania somnifera (L.) Dunal roots and leaves
withanoside V, withanoside IV,
12-deoxywithastramonolide,

withanolide A, and withaferin A
HeLa Cytotoxic (IC50 value in the range of

3.2 to 7.7 µM/mL) (MTT test) [208]
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9. Anticancer Effect and Potential Mechanisms of Action of Nanoparticles in
Combination with Plant Extracts from the Solanaceae Family

Plant-based nanomaterial synthesis has been growing in popularity. The approach
is more environmentally friendly than chemical or physical methods, and many studies
have reported that it yields nanoparticles with improved pharmacological properties [277].
Regarding extracts from the Solanaceae, the available data indicate that silver nanoparticles
generated by Datura inoxia exert significant antiproliferative effect against lung cancer cells.
They also induce apoptosis cell cycle arrest and inhibit DNA synthesis [278]. Recent reports
on the anticancer properties of nanoparticles using extracts from the Solanaceae family are
listed in Table 3.
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Table 3. Anticancer effect of nanoparticles in combination with plant extracts from the Solanaceae family, and their potential mechanisms of action.

Name of the Species Part of the Plant Type of Solvent/
Active Compounds Type of Nanoparticles Cancer Cell Lines Activity/Mechanism/Effect Ref.

Atropa acuminate Royle ex Lindl. leaves water/total phenolic,
flavonoid and tannin Ag HeLa Cytotoxic (IC50 = 5.418 µg/mL)

(MTT test) [279]

Lycium chinense Mill. fruits water Au,
Ag MCF 7 Cytotoxic (MTT test) [280]

Lycopersicon esculentum L. fruits benzene/lycopene Ag, Au, Fe COLO320DM, HT29
and HeLa Cytotoxic (MTT test) [281]

Solanum elaeagnifolium Cav. leaves water Ag-AgO-Ag2O A-549 Cytotoxic (IC50 = 67.09 µg/mL)
(MTT test) [282]

Solanum incanum L. leaves water Ag-NPs HepG2, MCF-7 Cytotoxic (IC50 values in the range of
21.76–129.9 µg/mL) (MTT test) [283]

Solanum lycocarpum A.St.-Hil. fruits glycoalkaloids NP-AE RT4

Cytotoxic (2D model: IC50 = 4.18 µg/mL,
3D model: three-fold higher than in 2D
cell culture) (2D—the neutral red assay,
3D—CellTiter-Glo®3D); induction of
apoptosis by cell cycle arrest

[284]

Solanum lycocarpum L. fruits
ethanol-soluble fraction

glycoalkaloids, solamargine
and solasonine

AE-loaded folate-targeted
nanoparticles MDA-MB-231, RT4

Folate-conjugated polymeric
nanoparticles are potential carriers for
targeted glycoalkaloidic extract delivery
to bladder cancer cells (2D model:
IC50 = 3.78 µg/mL, 3D model:
7.7 µg/mL) (2D model—Neutral Red
Uptake assay, 3D model:
CellTiter-Glo®3D)

[285]

Solanum lycopersicum L. tomato’s pomase ethyl acetate/lycopene lycopene-NPs MCF-7, HCT-116, HepG2, Cytotoxic (IC50 in the range of
72.40–92.54 µg/mL) (MTT test) [286]

Solanum muricatum L. leaves water Ag HeLa Cytotoxic (IC50 = 37.5 µg/mL)
(MTT assay) [287]

Solanum trilobatum L. unripe fruits water Ag MCF7

Cytotoxic (MTT test); induction of
apoptosis by changes in expression of
proliferation- and apoptosis-related
genes (overexpression Bax¸
down-regulation Bcl-2), and activation
of caspases 3 and 9

[288]



Cancers 2022, 14, 1455 26 of 42

Table 3. Cont.

Name of the Species Part of the Plant Type of Solvent/Active
Compounds Type of Nanoparticles Cancer Cell Lines Activity/Mechanism/Effect Ref.

Solanum trilobatum L. leaves water Mn-Ag co-doped FeO MCF-7, HeLa Cytotoxic (IC50 value in the range of
37.11–60.49 µg/mL) (MTT test) [289]

Solanum xanthocarpum
Schrad. & Wendl leaves water Au C666-1

Cytotoxic (MTT test); triggering cell
death by autophagy and apoptosis
(mitochondrial-dependent pathway)

[290]

Withania somnifera L. leaves water/total flavonoid,
phenolic and tannin Se A549 Cytotoxic (IC50 = 25 µg/mL) (MTT test) [291]

Withania somnifera L. leaves water/phenolic, flavonoid
and tannin Zn HEP2, PC3, MCF-7, HCT-116, Cytotoxic (IC50 value in the range of

19.17–88.3 7 µg/mL) (MTT test) [292]
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10. Synergistic Effect of Chemotherapeutic Drugs and Plant Extracts from the
Solanaceae Family

The occurrence of drug resistance indicates the need to search for new chemotherapeu-
tic agents and improved combinations of them. Combined anticancer therapy uses drugs
that target different pathways, as this can result in improved cytotoxicity for the cancer
cell, with both additive and synergistic effects [293]. Synergy can also be observed be-
tween conventional drugs and chemical compounds and extracts, and some plant-derived
compounds have been found to improve the effeciency of anticancer therapy [124]. For
example, Solanum nigrum leaf extract has been found to enhance the effect of cisplatin,
doxorubicin, docetaxel and 5-fluorouracil, resulting in the induction of intestinal cancer
cell autophagy through the accumulation of microtubule-associated proteins [294]. More-
over, whole-plant Solanum nigrum extract has intensified the effect of doxorubicin in the
suppression of the growth of HeLa [295] and breast cancer cells [296]. Recent reports on
the synergistic properties of extracts from the Solanaceae family and anticancer drugs are
listed in Table 4.

Table 4. Anticancer synergistic effect of chemotherapeutic drugs and plant extracts from the
Solanaceae family.

Name of the Species Part of the Plant
Type of Slovent

or Fraction
or Compound

Chemotherapeutic
Drugs Cancer Cell Lines Activity/Mechanism/Effect Ref.

Capsicum frutescens L. - capsaicin doxorubicin Caco-2 and
CEM/ADR 5000

Enhancement of the
doxorubicin cytotoxicity in

cancer cells and
chemosensitizing activity

(inhibition of
P-glycoprotein activity)

[297]

Lycium barbarum L. fruits water doxorubicin MCF-7,
MDA-MB-231

Enhancement of the
doxorubicin cytotoxicity in

cancer cells
[298]

Solanum cernuum Vell. leaves cernumidine cisplatin T24, RT4, 5637

Enhancement of the cisplatin
cytotoxicity in cancer cells.
Inhibition of cell migration,

down-regulation of MMP-2/9
and p-ERK1/2, increase EGFR

activity. Furthermore,
down-regulation of Bcl-2,
up-regulation of Bax and

reduction of the mitochondrial
membrane potential

[299]

Solanum incanum L.

extract—according
to the patent (US

patent 7,078,063, EU
patent 1,058,334,
and Japan patent

3,940,928)
SR-T100

extract containing
solamargine cisplatin, paclitaxel

ES2, TOV-21G,
IGROV1, A2780,

A2780CP70, ov2008
and ov2008CP20

Suppression of C/EBPβ and
COL11A1 expression and its

promoter activity
[300]

Solanum nigrum L. leaves water cisplatin,
doxorubicin Hep3B, HepJ5

Induction of caspase-7 and
accumulation of microtubule

associated protein-1 light
chain-3 A/1B II

[301]

Solanum nigrum L. leaves water
cisplatin,

doxorubicin,
docetaxel

ES-2, SKOV-3,
OVCAR-3

Induction of caspase-3 and
accumulation of microtubule

associated protein-1 light
chain-3 A/1B II

[302]

Solanum nigrum L. unripe fruit glycoside fraction
(methanol) doxorubicin NCI/ADR-RES

Overcoming doxorubicin
resistance by inhibiting the

JAK-STAT3 signalling pathway
by downregulation of JAK1,
STAT3, pSTAT3, and Mdr1

expression. Furthermore, the
cell growth suppression was
proven to be apoptotic, based
on results obtained from DNA

fragmentation, annexin V
apoptosis assay and PARP

cleavage analysis.”

[303]
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11. Anticancer Effect in In Vivo Studies of Compounds of the Solanaceae Family

Due to due to their high content of bioactive compounds, Solanaceae family members
have also been used in a number of in vivo studies. This review categorizes in vivo studies
as extracts, pure compounds, nanoparticle extracts and chemotherapeutic extracts. For
example, Wu et al. showed that SR-T100—extracted from Solanum incanum (solamargine
alkaloid)—caused all papillomas (35/35) and 27 of the 30 UVB-induced microinvasive
squamous cell carcinoma in hairless mice to disappear within 10 weeks of the daily use of
topical SR-T100 [304]. In other studies, Wu et al. found that Solanum incanum extract (SR-
T100) paclitaxel and cisplatin inhibited the growth of A2780CP70 cells in mouse xenografts,
compared to the vehicle control, and that the combination of cisplatin and SR-T100 was
more effective than either treatment alone. The authors suspect that SR-T100 may represent
a potential therapeutic adjunct to chemotherapy for ovarian cancer treatment [300]. Further-
more, Solanum lyratum aerial part extract was found to significantly inhibit the growth of
S180 sarcoma in mice in vivo, and to increase the proliferation of splenocytes, natural killer
cells and cytotoxic T cells, as well as interleukin 2 and interferon-γ, by splenocytes. The
authors propose that the extract exhibits its anti-tumour effects through its immunomod-
ulatory properties [305]. Solasodine and rhamnosyl glycosides isolated from Solanum
sodomaeum were found to demonstrate antitumour properties in a mouse model [306].

In turn, Deng et al. revealed that the fraction from Lycium barbarum polysaccharide
could reduce immunotoxicity and enhance the antitumour activity of doxorubicin in mice.
The results showed that Lycium barbarum polysaccharide did not protect against the body-
weight loss caused by doxorubicin, but it promoted the recovery of bodyweight starting at
day 5 after doxorubicin treatment in tumour-free mice. Lycium barbarum polysaccharide
also improved peripheral blood lymphocyte counts, promoted cell cycle recovery in bone
marrow cells, and restored the cytotoxicity of natural killer cells. Furthermore, in H22
tumour-bearing mice, Lycium barbarum polysaccharide enhanced the antitumour activity
of doxorubicin, and improved the peripheral blood lymphocyte counts and the cytotox-
icity of splenocytes [307]. Diwanay et al. noted that the alkaloid-free polar fraction of
Withania somnifera resulted in protection towards cyclophosphamide-induced myelo- and
immunoprotection, as was evident from the significant increase in white cell counts and
hemagglutinating and hemolytic antibody titers. Treatment with these candidate drugs may
be important in the development of adjunctive therapy with anticancer chemotherapy [308].

The anticancer and radio-sensitizing efficacy of a Withania somnifera extract/Gadolinium
III oxide nanocomposite (WSGNC) was also investigated in mice. WSGNC treatment
combined with γ-radiation led to a significant decrease in the solid Ehrlich carcinoma
size and weight in mice; this was associated with a significant decrease in mitochondrial
enzyme activities, glutathione content and superoxide dismutase (SOD) activity, as well
as a significant increase in caspase-3 activity, malondialdehyde concentration and DNA
fragmentation in cancer tissues. The authors indicate that WSGNC can be considered as a
radio-sensitizer and an anticancer modulator, suggesting a possible role in the reduction of
the radiation exposure dose during radiotherapy [309]. Further studies are presented in
the Table 5.

Table 5. In vivo anticancer effect of plant extracts and pure compounds from the Solanaceae family
and their potential mechanisms of action.

Name of The Species Part of the Plant Type of Solvent

Class of Com-
pounds/Compounds

Identified in
Extract/Fraction

Potential Mechanism of Action Ref.

Athenaea velutina Sendtn. leaves dichloromethane:
methanol (1:1)

phenolic compounds
and flavonoids

Suppression of the development of
pulmonary melanomas following the

intravenous injection of melanoma
cells to C57BL/6 mice

[161]

Datura stramonium L.,
Datura inoxia Mill. leaves ethyl acetate

rutin, gallic acid,
catechin, apigenin and

caffeic acid

Alleviative effects in benzene induced
leukaemia in Sprague Dawley rats [166]
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Table 5. Cont.

Name of The Species Part of the Plant Type of Solvent

Class of Com-
pounds/Compounds

Identified in
Extract/Fraction

Potential Mechanism of Action Ref.

Physalis alkekengi L. aerial parts hydro alcoholic -

Tumour progression on the 28 ER+ BC
BALB/c mice animal model (the

tumour size among the different doses
of extract lose to 0.6 mm was in the
greatest dimension with dosage of

10 mg/kg)

[310]

Physalis ixocarpa Lam. fruits - ixocarpalactone A

Inhibition of the tumour growth in a
SW1990 xenograft mouse model with
low toxicities, suggesting its potential
therapeutic application in pancreatic

cancer treatment

[247]

Physalis pubescens L. fruits - physapubescin B
Antitumour efficacy in human

prostate cancer PC3 xenograft in
nude mice

[255]

Solanum incanum L. whole plant
SR-T100

acid base precipitation
followed by the

different ratios of
ethanol/H2O extraction

(according to the
patents—US patent
7,078,063, EU patent
1,058,334, and Japan

patent 3,940,928)

solamargine

Extract SR-T100-treated
C57BL/6 mice, the tumour burden of

lung metastases was significantly
reduced compared to that in

control mice

[186]

Solanum incanum L. whole plant
SR-T100

acid base precipitation
followed by the

different ratios of
ethanol/H2O extraction

(according to the
patents—US patent
7,078,063, EU patent
1,058,334, and Japan

patent 3,940,928)

solamargine

Animal experiments showed that all
papillomas (35/35) and 27 of

30 UVB-induced microinvasive SCCs
in hairless SKH-hr1 female mouse
mice disappeared within 10 weeks

after once-daily application of topical
SR-T100 extract

[304]

Solanum lycopersicum L. different parts - α-tomatine

Intraperitoneally administered
α-tomatine (5 mg/kg body weight)

also markedly inhibited growth of the
tumour using CT-26 cancer cells
without causing body and organ

weight changes. The reduced tumour
growth in the BALB/c mice by 38%

after 2 weeks was the result of
increased caspase-independent

apoptosis associated with increased
nuclear translocation of AIF and

decreased surviving expression in
tumour tissues.

[260]

Solanum nigrum L. fruits methanol
rutin, solasonine,

quercetin and
solamargine

Reduction of the growth and
infiltration of C6 glioma tissue and

suppressed the proliferation of
tumour cells in Wistar rats brain

[311]

Solanum nigrum L. stems - polysaccharide fraction
(SN-ppF3)

Tumour suppression mechanisms
observed in SN-ppF3-treated mice
were most probably due through

enhancing the host immune response

[312]

Solanum nigrum L. leaves - uttroside B

Drastic inhibition of tumour growth
produced by uttroside B in NOD-SCID

mice bearing human liver cancer
xenografts demonstrates the

chemotherapeutic efficacy of uttroside B

[268]

Solanum nigrum L. - - degalactotigonin

Degalactotigonin injected
intraperitoneally after tumour

inoculation, significantly decreased the
volume of osteosarcoma xenografts in

athymic nude (nu/nu) mice model and
dramatically diminished the

occurrence of osteosarcoma xenograft
metastasis to the lungs

[269]

Withania somnifera L. leaves water ASH-WEX extract

Reduced the intracranial tumour
volumes in vivo and suppressed the

tumour-promoting proteins p-nuclear
factor kappa B (NF-κB), p-Akt,

vascular endothelial growth factor in
the albino rat model of orthotopic

glioma allograft

[211]
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12. Conclusions and Future Perspectives

Cancer is a devastating disease, and the currently available treatments for patients
are generally associated with undesirable adverse effects. The use of medicinal plants to
manage or arrest the carcinogenic process provides an additional strategy that can be used
alongside treatments with canonical drugs. Many plant-derived bioactive compounds have
achieved favorable results in clinical studies, and their tumouricidal properties against
various cancers are under investigation.

This literature review evaluated the anticancer properties of natural products from the
Solanaceae family. They were grouped in terms of extracts, pure compounds, nanoparticles
with extracts, and chemotherapeutic agents with extracts, and their potential mechanisms
of action were given. Although all of the studies found the extracts to demonstrate strong
in vitro and in vivo anticancer activity in cancer cell lines and animal models, more research
is needed in order to elucidate their specific mechanisms of action, and to determine their
potential for cancer prevention and treatment.

Plants of the Solanaceae family are widely discussed due to their multi-directional
activity. Multiple in vitro studies have been reported with promising results. On the
other hand, the anti-tumour potential of the secondary metabolites from Solanaceae is
also quite clear. In addition, nanotechnology techniques can enhance their action and
eliminate negative effects on normal cells. Thus, plants of the Solanaceae family should be
tested further in order to better elucidate their therapeutic potential not only in in vitro and
in vivo studies but also in clinical applications. However, the study of these plants should
not limit the study of the plethora of anticancer plants, some of which are still unexplored.
Research is needed in order to elucidate the antitumour mechanism of action of many
already studied and unexplored plants.
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