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In the year 2015, new Zika virus (ZIKV) broke out in Brazil and spread away in more

than 80 countries. Scientists directed their efforts toward viral polymerase in

attempt to find inhibitors that might interfere with its function. In this study,

molecular dynamics simulation (MDS) was performed over 444 ns for a ZIKV

polymerase model. Molecular docking (MD) was then performed every 10 ns during

the MDS course to ensure the binding of small molecules to the polymerase over the

entire time of the simulation. MD revealed the binding ability of four suggested

guanosine inhibitors (GIs); (Guanosine substituted with OH and SH (phenyl) oxidanyl

in the 2′ carbon of the ribose ring). The GIs were compared to guanosine

triphosphate (GTP) and five anti-hepatitis C virus drugs (either approved or under

clinical trials). The mode of binding and the binding performance of GIs to ZIKV

polymerase were found to be the same as GTP. Hence, these compounds were

capable of competing GTP for the active site. Moreover, GIs bound to ZIKV active

site more tightly compared to ribavirin, the wide-range antiviral drug.
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1 | INTRODUCTION

Zika virus (ZIKV) infection was reported for the first time 70 years ago

in Uganda.1,2 It appeared in different central and western African

countries in 2007 but the spread was not as fast as the 2015 outbreak

in Brazil and Caribbean countries.3,4 By the year 2016, more than 80

countries reported ZIKV infection worldwide.5 The World Health

Organization (WHO) declared it as a public health emergency of

international concern in February 2016.5

ZIKV is transmitted through the bites of Ades mosquitos (Aedes

africanus, Aedes aegypti, Aedes luteocephalus, and Aedes albopictus).6–8

It can be detected in body fluids like saliva, urine, and blood.9,10 Slight

fever, rash, arthralgia, and conjunctivitis are common symptoms of

ZIKV infection.5,11 Strong links between ZIKV infection and micro-

cephaly and neuronal disorders in newborn infants of ZIKV-infected

women were confirmed in March 2016.12

Non-structural 5 (NS5) viral protein have two domains; the helicase

domain and theRNA-dependentRNApolymerase (RdRp) domainwhich

is vital for viral replication.13,14 The polymerase domain has a highly

conserved active site in different viruses including hepatitis C virus

(HCV), West Nile virus, and Middle East Respiratory Syndrome

Coronavirus.15–19 The antiviral activity of different nucleotide inhibitors

were studied against the RdRp of HCV. Sofosbuvir is an example of a

successful nucleotide inhibitor that was approved by Food and Drug

Administration (FDA) inDecember2013.20–23 The samecompoundwas

also studied as a possible inhibitor against ZIKV.24–26

Molecular modeling is usually used to mimic the behavior of

macromolecules.27,28 Molecular docking (MD) is important in testing

the binding of small molecules to protein active site and in virtual

screening.18 These in silico techniques were used to study viral

proteins.18,27,29–33 Molecular dynamics simulation (MDS) offers a

means to study protein dynamics in silico. It is able tomimic and predict
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the dynamical properties of protein in solution28 in addition to

suggesting possible interaction potency.34–37 In this study, MD was

used to mimic the interaction between 10 of nucleotide inhibitors and

ZIKVRdRp domain.MDSwas performed on the predictedmodel of the

viral polymerase for more than 400 ns, while MDwas carried out each

10 ns to test the binding of the inhibitors.

2 | MATERIALS AND METHODS

2.1 | Preparation of small molecules and protein target

ZIKV RdRp sequence was downloaded from the National Center for

Biotechnology Information.38 Protein Homology/analogY Recognition

Engine PHYRE 2.0 server39 was used to build the 3D structure model

from ZIKV sequence. Dengue virus NS5 RdRp domain structure was

used as a template (sequence identity 67%).

Nucleotide inhibitors (in its active triphosphate form) were

sketched and optimized using SCIGRESS 3.0 software.29,40 Optimiza-

tion was done using Molecular Mechanics force field MM341 followed

by quantummechanics (B3LYP functional).42 Supplementary Figure S1

shows the structures of the inhibitors in 2D representation.43

2.2 | Molecular dynamics simulation (MDS)

NAMD software34 was used to perform MDS on the Cy-Tera super

computer facility of the Cyprus Institute of Science (Project no.

pro15b114s1). ZIKV model was solvated (explicitly) using TIP3P water

model.34 Two chlorine ions were added to neutralize the protein charge

at pH 7. The protein in the solvent system was equilibrated at room

temperature (310 K) then the solventwasminimized for 100 ps. Normal

pressure and temperature (NPT) ensemblewas used to relax the system

for a total period of 5 ns, after that normal volume and temperature

(NVT) ensemble was used in the production run for 444 ns. In the

production run, the box sizewas set to (90.32 × 90.32 × 90.32)Å3 based

on the fluctuations during the 5 ns of NPT ensemble.

Every 10 ns of the production run, the structure of the protein was

retrieved for docking study. Therefore, the docking study was

performed for 45 times during different dynamic states (different

conformations). The retrieved structureswereused to check the solvent

accessible surface area (SASA) and radius of gyration (R ofG). These two

parameters were used to check conformational changes during the

course of MDS. AutoDock Vina software44 was used to perform the

docking studyusingdefault parameters. The protein is treated as rigid as

weneed to test the contributionofdynamicsof theprotein into inhibitor

binding. The calculated binding affinity (in kcal/mol) were used for

comparison between different nucleotide inhibitors.

3 | RESULTS AND DISCUSSION

As reported before anti-HCV drugs were capable of binding to ZIKV

polymerase active site.24,25 In the current study, MDS was performed

on the ZIKV RdRp model for a period of 444 ns. Despite five solved

structures of ZIKV, NS5 RdRpwere deposited in the ProteinData Bank

in the last fewmonths, the comparatively built model used in this study

had very strong sequence and hence structural conservation

(Figure 1A). Sequence comparison between the five solved structures

(PDB IDs: 5WZ3, 5TFR, 5TMH, 5TIT, and 5U04) and the model used in

this study is shown in Supplementary Figure S2. Figure 1B shows the

rootmean square deviation (RMSD) over the carbon alpha atoms of the

polymerase versus time. Saturation was achieved after 200 ns with

about 12 Å RMSD. During the course of MDS, two distances were

recorded. These were the distance between carbon alpha of the active

site D124 and the two alpha carbons of D6 and G46 (green and red

curves in Figure 2A, respectively). D6 lied in the center of alpha helix

(α1 in Figure 2B) near the active site. On the other hand, G46 lied at the

end of the arm consisting of β1, β2, and its connecting loop (fingers tip).

It was reported that this arm takes part in the interaction with the RNA

FIGURE 1 A, Structural alignment of ZIKV model built in this
work in silico and a solved structure of ZIKV (PDB ID 5TFR)
showing high conservation. (B) Root Mean Square Deviation (RMSD)
values in Å versus simulation time in ns showing an equilibration
after about 200 ns
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during the nucleotide transfer reaction.25 Based on the structural

alignment made with HCV NS5b, this arm suggested to be movable in

ZIKV polymerase and this is what we found using MDS.

As shown in Figures 2Aand2F, theD6-D124distance is stablewith

an average value of 13 Å.On the other hand,G46-D124distance shows

adifferentpattern. Thedistributionof thevalues showsthreemaxima; in

the first200 nsof the simulation it is around36Å (step i inFigure2F), the

distance reduces to 24Å (see Supplementary Video S1) in the next

150 ns of MDS (step ii in Figure 2F) and finally it is increases again to

about 28Å for the rest of the simulation time (step iii in Figure 2F). This

implies a conformational change in the distal end of the arm that

contains G46 and suggests its functional characteristics. Based on

structural alignment made between ZIKV and HCV polymerases, this

arm is a part of the fingers domain, where the fingers’ tips interact with

the viral RNA during the polymerization process.45

Figure 2B illustrates the secondary structural elements of the

ZIKV RdRp model before performing the MDS. It has nine alpha

helices and six beta sheets. The active site aspartates are protruding

from the beta turn between β3 and β4. The distance between the

active site D124 and each of D6 and G46 is labeled at selected times

during the MDS (Figure 2C-E).

Figures 3A and 3B shows the calculated values of surface

accessible surface area (SASA) in Å2 and the radius of gyration (R of

G) in Å. These values were calculated each 10 ns of the MDS using

visualizing molecular dynamics (VMD) software.46 SASA was

calculated as relative exposure (0 to 1), that is, the exposure of

each amino acid in the protein relative to per residue SASA values.

The latter is calculated for each amino acid alone in the maximum

speed molecular surface (MSMS) algorithm implemented in VMD

software.47 The solvent radius was chosen to be 1.4 Å (radius of

water molecule). On the other hand, radius of gyration was

calculated using the following formula:

R of G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N
i¼1ðri � rconfÞ2

N

s
ð1Þ

where ri represents atoms position, rconf represents the center of mass

of the protein atoms (center of the protein molecule) and N is the

number of protein atoms.

SASA values are in good agreement with the G46-D124 distance

distribution pattern. In the first 200 ns, SASA values are around

14 200 Å2. In the next 150 ns the values reduce to 13 500 Å2 before

they rise up slightly in the rest of the simulation time. SASA values

represent the compactness of the protein.47 As the arm containing

G46 starts to get close to the protein core it reduces the SASA values.

After the 350 ns, the arm starts to open again and SASA starts to

slightly increase. Radius of gyration was also calculated every 10 ns of

FIGURE 2 A, Two distances recorded over 444 ns of MDS. G46-
D124 (red line) and D6-D124 (green line). (B) Secondary structural
elements of the ZIKV polymerase model before the MDS run
represented in carton using VMD software. (C), (D), and (E) ZIKV
polymerase structure at 0.1, 300, and 375 ns, respectively of MDS
run showing the differences in the two distances in the different
simulation times. (F) Distances distribution showing different
patterns as mentioned in the text. The color is the same as in A

FIGURE 3 A, Solvent Accessible Surface Area (SASA) (Å2) and (B)
radius of gyration (Å) of ZIKV polymerase model versus time (ns)
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the MDS. One can notice that at the beginning of the MDS (in the first

70 ns), the values increase up to 45.6 Å. This can be attributed to the

swallowing of the protein in the solvent.37 The R of G of the protein

gradually increases up to a certain value. It then fluctuates around this

value up to 200 ns before it starts to decrease again and fluctuate

around 45.35 Å. This may be also attributed to the arm movement

close to the protein core which reduces the R of G. After 350 ns the

fluctuation in the R of G increases again, probably due to reverse

movement of the arm apart from the protein core.

3.1 | Does arm movement have a contribution on
small molecule binding to ZIKV polymerase?

To answer this question, MD was performed over the course of the

MDS to test the binding affinities of the studied drugs to ZIKV RdRp

during 444 ns of simulation. Figure 4 shows the average binding

affinities of GTP, IDX-184, MK0608, R7128, sofosbuvir, and ribavirin

to ZIKV RdRp over 444 ns of MDS (error bars represent the standard

deviation). The binding affinities were calculated every 10 ns of the

MDS and their values were found to lie between −5.5 and −9.1

kcal/mol. GTP (red circle) is better (having more negative binding

affinities) compared to ribavirin and R7128.

As shown there is superposition of the GTP values with those of the

compounds (CPD #1, CPD # 2, CPD # 3, and CPD # 4) (green circles in

Figure4).Byexamining theH-bonds thatwere formeduponbindingof the

small molecules to ZIKV polymerase, one finds the same mode of

interaction as thatwithHCVpolymerase.H-bondswere formed between

the small molecules and ZIKV polymerase active site aspartate D124 and

two amino acids in the active site cavity; R190 and E194. These results

imply the ability of the suggested compounds to compete with GTP for

ZIKV RdRp active site over the entire period of MDS.

Figure5showsanexampleof ligand (GTP)bound toZIKVpolymerase

at 141 ns (A) and243 ns (B) of theMDS. The former has the armextended

(G45-D124 distance 40.6 Å) while the latter has the arm flexed (G45-

D124 distance 26.4 Å). The conformations are selected randomly before

andafter thearmmovement and thebinding affinities are recordedon the

bottom of the figures. There are no dramatic changes in the binding

affinities before and after arm movement. This is also reported for other

inhibitors used (Supplementary Figure S3). Hence, we can conclude that

the arm movement has not contributed against binding of the small

molecules to ZIKV polymerase.

As reportedby the authors in earlier studies, IDX-184showspromising

results compared to other drugs.22,25,27,48 The new suggested compounds

have also promising averagebinding affinities to ZIKVNS5RdRp compared

to other drugs (Figure 4). Upon binding, the suggested ligands will stop the

polymerization process and impair the virus life cycle.

4 | CONCLUSION

In the previous studies, authors suggested the ability of anti-HCV

drugs to bind and subsequently inhibit ZIKV polymerase.25,26 This

was based on structural similarity between HCV and ZIKV polymer-

ases. In this study, the authors simulated the dynamics of ZIKV

polymerase in water over 444 ns. The results supported our previous

suggestion. In addition, four new compounds were introduced as

promising binders to ZIKV polymerase active site based on the

calculated binding affinities. On the other hand, the arm movement

that occurred after 200 ns did not affect the binding of all of the

small molecules. Future work is suggested to test the arm movement

effect on the viral RNA upon polymerase binding.

FIGURE 4 Average binding affinities calculated using
AutoDock Vina for all of the small molecules upon binding ZIKV
polymerase model over 444 ns of MDS. Standard Deviation
values are represented by error bars. The four suggested
compounds are represented in green circles, anti-HCV drugs in
orange while GTP is in red

FIGURE 5 An example showing the binding of GTP to ZIKV polymerase at different dynamics states. Extended arm at 141 ns (A) and
flexed arm at 243 ns (B). The binding affinities are reported in the bottom of the figures. Figures were prepared using PyMOL software
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