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Abstract
Global competitiveness creates a challenge formanufacturing companies tomaintain theirmarket sharewith dynamic customer
requirements. Capital investment in machinery does not allow facility expansion to accommodate large orders from customers
but to reconfigure the manufacturing enterprise. Distributed manufacturing (DM) is embraced in order to increase facility
utilization by decentralizing production. An enterprise in charge of a DM network allows customers to choose the best
manufacturers available for their order based on their track record,which is available through historical and online performance
data. Furthermore, manufacturers as members of this network may receive orders based on their past performance. Industry
4.0 with all necessary Industrial Internet of Things (IIoT) enables the online monitoring of production key parameters of
manufacturers subscribed to a DM network. We develop a new network model of manufacturers teamed under specific terms
and conditions to support a group of customers who have specific needs. The proposed model, known as the continuous
supervised model, is created with the ARENA simulation software. We demonstrate the effectiveness of our model by
contrasting it with the standard practice approach. To ensure the best possible performance, we continuously monitor the
cost, quality, delivery time, and production rate indicators of the various manufacturers and update their performance ranking
for current and future orders. Furthermore, using the analytic hierarchy process (AHP) approach, a single performance
measure based on the four indicators is developed. Implementing the proposed model showed an improvement in the average
performance by 51.3%.

Keywords Distributed manufacturing · Discrete production model · Production line · Supply chain · International load
sharing (ILS) system

Abbreviations

AHP Analytic hierarchy process
Avg. Average
CA Conveying agent
DM Distributed manufacturing
I 4.0 Industry 4.0
ILS International Load Sharing
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MA Machining agent
MCDM Multi-criteria decision making
PA Product agent
RFID Radio frequency identification
WH Warehouse

Symbols

a Importance factor of cost
ai j Number of production attempts by ith manufac-

turer with the jth assigned order
A Production allowance time
ACi Average production cost of manufacturer i
ADi Average delivery time of manufacturer i
APMi Average performance measure of the ith manufac-

turer
APi Average productivity of manufacturer i
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AQi Average quality of manufacturer i
b Importance factor of quality
c Importance factor of delivery time
ci Cost of single production attempt by the ith man-

ufacturer
Ci j Product cost of the ith manufacturer with the jth

assigned order
CIij Cost indicator of the ith manufacturer with the jth

assigned order
Cth Cost indicator threshold above which assigned

order is shifted
d Importance factor of productivity
Di j Delivery time of the ith manufacturer with the jth

assigned order
DIij Delivery time indicator of the ith manufacturer

with the jth assigned order
Dth Delivery time indicator threshold above which

assigned order is shifted
gi j Number of goods produced by the ithmanufacturer

with the jth assigned order
i Represents the ith manufacturer
j th Represents the jth assigned order
K Currently delivered batch by a manufacturer
M Batch size of good item produced by manufacturer
N Number of registeredmanufacturers in theDMnet-

work
NAM Number of assigned manufacturers for an order
NSi Total number of assigned orders to the ith manu-

facturer
PMi j Performance measure of the ith manufacturer with

the jth assigned order
PIij Productivity indicator of the ith manufacturer with

the jth assigned order
PM j Performance measure for the jth assigned order
Pi j Productivity of the ith manufacturer with jth

assigned order
Pth Productivity indicator threshold above which

assigned order is shifted
Q Order size
QT Total number of orders placed
Qi j Quality of the ith manufacturer with the jth

assigned order
QIij Quality indicator of the ith manufacturer with jth

assigned order
Qth Quality indicator threshold above which assigned

order is shifted
Ri j The jth ordered quantity assigned to manufacturer

i
SAC System average cost
SAD System average delivery time
SAP System average productivity
SAPM System average performance
SAQ System average quality

Sth Threshold of remaining parts for shifting order
T BO Time between orders or time frequency for online

order
T Bi jk Time at which the manufacturer i completed the

production of the kth batch of good items for the
jth assigned order

TCi Time for cleaning the part of the ith manufacturer
TFi Time for minor failure (maintenance time) of the

ith manufacturer
TI i Time for inspection of part of the ith manufacturer
TMi Time formachining the part of the ithmanufacturer
TMFi Time for major failure of the ith manufacturer
TMT i Time for material ordering of the ith manufacturer
Ti j Time at which manufacturer i start production for

jth assigned order
Tnow Current time
wc Weight for cost
wd Weight for delivery
wp Weight for productivity
wq Weight for quality

1 Introduction

In recent years, the concept of distributed manufacturing
(DM) emerged in production planning and operations. In
DM, the main idea is centered around the load sharing of a
manufacturing facility among different manufacturers (sup-
pliers) to accomplish the planned order in reduced time
according to the specified standards [1]. The authors have sur-
veyed large production lines in various factories serving local
large users. The expected large number of parts in thousands
was difficult to meet initial specs including time delivery,
cost and recently covid-19 effects.

DM are the scenarios needed to support the discrete pro-
duction. Continuous production has obvious routing with
very little decision and transport time. Challenges faced by
discretemanufacturing, such as increased globalization,mar-
ket volatility, workforce shortages, and mass personalization
have necessitated scalable solutions that improve the agility
of production systems. These challenges have driven the need
for better collaboration and coordination in production via
improved integration of production systems across the prod-
uct life cycle. It becomes important to motivate the research
and development needed for distributed production in dis-
crete manufacturing. Initially, more advanced approaches
seek to successfully link shop floor operations to their front-
end systems, such as ERPs (Enterprise Resource Planning)
and SCM (Supply Chain Management) applications. But
even these approaches do not successfully provide a holistic

123



Arabian Journal for Science and Engineering

solution in which all relevant internal and external informa-
tion, from the topmost business system all the way down to
the shop floor, can be shared, in real time. Hence, the need
for international load distribution (ILS) in DM.

Dynamic selection of the right manufacturer available
for the right product is a challenging task for companies.
Customers look for quality products with minimal cost and
appropriate lead time when ordering manufacturing parts. In
general, a quality product comes at a higher cost or larger lead
time. DM helps in providing the production process control
by utilizing the latest technologies in monitoring and sensing
[2]. Furthermore, it increases the utilization ofmanufacturing
facilities by adopting a continuous improvement strategy of
their productivity to keep competitive in the market. Global-
ization amplified the need for distributed production across
different manufacturers possibly located in different coun-
tries. The DM concept results in the load sharing of needed
production using different approaches and methodologies.
In DM, a new recent paradigm was introduced in 2019 and
named as international load sharing (ILS) system by Mekid
and Akbar [3].

In this paper, they defined the protocols and architecture to
facilitate the local and global production load sharing system
aimed at maximizing the machines utilization and improving
productivity. Also, they have clearly shown the detailed rela-
tionship between the proposed ILS and I4.0 as it is tightly
related.

A distributed/load sharing manufacturing system reduces
the centralization and the rigidity of a manufacturing system
while increasing flexibility, reconfiguration, and scalability
[4]. For a decentralized decision/control, it is incumbent
that all participants in the system have access to the rel-
evant information and efficiently communicate with each
other. The benefit of decentralized decisions is just-in-time
actions with less computational time and superior services.
To share the DM resources for achieving good performance,
two multi-agent systems are built named as enterprise multi-
agent system and enterprise alliance multi-agent system [5].
For load balancing and efficient production, a smart structure
is proposed with top and bottom loops. The top loop con-
tains the users’ layer and is networkedwith a cloud assistance
layer. The bottom loop contains the resource interaction layer
and is connected to the cloud assistant layer [6]. In this smart
manufacturing network, agents are divided into three cate-
gories: machining agent (MA), conveying agent (CA), and
product agent (PA).MAs are responsible formachining, stor-
ing, testing, and processing, while CAs are responsible for
loading, unloading, conveying with manipulators and auto-
matic guided vehicles. PA defines and identifies the product
with RFID and microcontroller tags for storage information.

The implementationofDMrequires all elements in a smart
factory to be fully integrated and connected in real-time.
The network of machines consists of data networks, data

servers, sensors, actuators, and control components [7]. The
historical data of previous years can be analyzed to forecast
future demand. This also helps in predicting the machine’s
failure and communicating with the responsible operator to
fix it proactively before failure occurrence [8, 9]. This sys-
tem allows collecting the accurate information of ongoing
manufacturing tasks, whereas in traditional manufacturing,
manufacturers can manipulate and falsify the production sta-
tus. This facilitates the timely taking actions and saves not
only time but also the cost of late delivery to customers [10,
11]. The production information of a complete cycle from
ordering to delivery in ILS is presented in Fig. 1 [3]. Cus-
tomers order online through a website/application for the
parts to be manufactured by uploading the computer-aided
design (CAD) file and the manufactured products are deliv-
ered by the production company after inspection andpacking.

The DM advantages consist of access to global busi-
ness, profitability, spare capacity utilization, access to recent
trends, and ease of communication with manufacturers.
Similarly, the benefits for customers are easy access to
manufacturing companies, competitive cost, better quality,
access to real-time information, and instant coordination
and communication [12]. Smart manufacturing, robotics,
M2M (machine-to-machine) communication, and smart sup-
ply chain involve production in batches to optimize cost and
time, and use of sensors to record, account, share, and ana-
lyze the data in an effective way [13]. Decisions are made
digitally by collecting the data by smart sensors and analyz-
ing it to make meaningful decisions [14]. These are all terms
illustrated in Industry 4.0 (I4.0) to obtainmaximumeffective-
ness. The effectiveness is not only the target, ILS enabled
by I4.0 also widely promote the traditional relationships
among producers, suppliers, and its consumers. Implemen-
tation of advanced manufacturing and artificial intelligence
technologies has positive effects and opens new ways for
manufacturing. The completion time, cost, and quality of the
manufacturing tasks have been considered in the study for
flexible configuration of distributedmanufacturing resources
[15]. In the DM literature, there is a lack of detailed studies
on the operation sequences, and the performance calculation
of production line in manufacturing industries. This article
focuses on the performance evaluation of ILS with multi-
ple machining orders from one customer (or multiple) by
selecting the suitable manufacturers to be assigned and the
online monitoring of their performance. Discrete-event sim-
ulations in ARENA software are performed to gain insight
on the model behavior as function of the inputs. In addi-
tion, one overall performance measure is introduced to cover
the four indicators on cost, quality, production rate, and
delivery time. This is used to systematically guide the deci-
sions on the production of each manufacturer for the sake
of an efficient DM setup. The result of this activity helps
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Fig. 1 Part ordering cycle and steps involved for ordering in an international load system

the customer to select the best manufacturer available world-
wide/countrywide. Manufacturer with higher performance
on records will always be on top to be selected.

The evaluation and selection of the right supplier at the
right time becomes important here. This can be either for
the material suppliers or parts manufacturing suppliers. The
selection of a supplierwithminimumcost criteria is not effec-
tive in advanced supply management [16]. The multi-criteria
decision making (MCDM)method is now commonly used in
assessing and selecting supplierswith important criteria, e.g.,
quality, cost, delivery time, performance, technical capabil-
ity, communication and coordination, geographical location,
attitude, financial position, repair services, certifications, and
reputation [17]. Several methods are reported in the litera-
ture such as AHP [18], fuzzy AHP [19], VIKOR [20], fuzzy
axiomatic design [21], fuzzy TOPSIS [22], TODIM [23],
fuzzy grey relational analysis [24], fuzzy analytic network
process (ANP) [25], and data envelopment analysis (DEA)
[26]. These models can be used in a stand-alone as well as
combined ways to achieve the selection of the best possible
supplier by evaluating the different criteria.

One of the powerful software for conducting discrete-
event simulations as a first approach is ARENA. This
software helps in considering the stochastic nature of real-life
systems. Many researchers have used it to perform simula-
tions and solving problems in manufacturing, production,
supply chain, and materials handling. This software gives
access to the user to enter values and blocks, as well as user-
defined functions as per the requirements for each activity

of the system. Awasthi et al. in [27] proposed the frame-
work of modeling and simulations for part selection and
routing in automated guided vehicle (AVG) systems using
ARENA. Berman et al. also simulated the management sys-
tem of AVGS by using this software. For the systems that are
complex to build and systems with a long time to complete,
simulation is one of the best ways to evaluate and predict
the performance by varying numerous parameters [28]. The
simulation is not only used to check the system behavior,
but also to expedite the system development and optimiza-
tion. In [28], a study was performed for a manufacturing
system prone to failures and optimized to reduce the cost
by controlling the production rates of different machines.
This failure-prone manufacturing system (FPMS) was simu-
lated in ARENA and optimized using a simulated annealing
algorithm. In [29], a case study was presented of tires man-
ufacturing company by simulating the model in ARENA
to find the bottleneck, processing time, and the non-value-
added activities. Machine modification was proposed after
root cause analysis to increase productivity and eliminate
the bottleneck point [30].

The proposed new network model is based international
load sharing supported by the availability of necessary per-
formance data through I4.0 amembership condition required
for each company to be in the network. The overall per-
formance of this proposed model has several components
including productivity, quality, cost, and delivery time. This
model secures continuous production to meet worldwide
orders on time. Examples of usefulness are critical stocks
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Manufacturer 2Manufacturer 1 Manufacturer 3 Manufacturer 4 Manufacturer i
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confirmation
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• Quality indicator, QIij
• Productivity indicator, PIij
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Yes

No

Delivery to warehouse in batches

End

Fig. 2 Description of continuous supervised model for distributed manufacturing network

fulfilled for immediate assemblies. The comparison with tra-
ditional system has shown an improvement for specific cases
by an average of 50%—refer to Figs. 5 and 6. The superiority
of the proposed model is exhibited through the comparison
with conventional techniques with very clear novelty since
no similar work was found in the open public literature.

This paper presents the proof of concept of the continuous
supervised ILS model by showing its superior performance
using simulations. The simulation is based on the workflow
of a production load-sharing environment as described in
Fig. 2. In the continuous supervisedmodel, significant indica-
tors are considered as productivity, quality, cost, and delivery
time. The preference in selection of manufacturers is merely
dependent on performance measure which considers all indi-
cators jointly.

The rest of the paper is structured in four sections.
Section 2 is dedicated to detailed description and assump-
tions of the proposed continuous supervisedmodel. Section 3
contains the model formulations to describe the performance
measures and indicators. In Sect. 4, the results generated
by the model are represented and compared with traditional
manufacturing. The results demonstrate that the continuous
supervised model has higher performance measure in terms
of quality, cost, productivity, and delivery in comparisonwith
other models. Lastly, Sect. 5summarizes the importance of
the proposed model in the form of conclusions and potential
applications in global manufacturing industries.
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Fig. 4 Typical representation of flow activities in a manufacturing unit

2 Model Description: Continuous Supervised
Model (Case 1)

We consider a production problem in an enterprise where
the selection of manufacturers is based on their performance
with continuous monitoring of the production activities.
The continuous supervised model presented seeks to take
timely actions to improve the overall efficiency of produc-
tion. Consider a DM network consisting of N registered
manufacturers. Once a customer places an online order of
size Q through the enterprise, it will be assigned to a num-
ber of the available manufacturer/s (NAM) with the highest
average performance measure APMi . The selected manu-
facturerswill order the required rawmaterials from a supplier
Si . Once the raw materials are delivered by the supplier, the
manufacturer starts production, and the performance of the

manufacturer is monitored and continuously updated. The
performancemeasure is defined for amanufacturer i for order
j based on four indicators namely cost (CIij), quality (QIij),
productivity (PIij), and delivery time (DIij). These indicators
are combined in one performance measure to help managers
in the selection decision. Toward this end, weight should be
assigned to each indicator; the weights are calculated based
on the analytic hierarchyprocess (AHP).The indicators of the
manufacturers are continuously monitored and updated. So,
if the current manufacturer is violating one of the indicators
defined thresholds (Cth , Qth , Pth , or Dth) and the remaining
quantity is greater than a shift threshold, Sth , the remaining
order will be shifted and assigned to another available man-
ufacturer with higher performance. If the order is fulfilled
and produced parts are of good quality, then items will be
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Table 1 Manufacturer’s data for the simulation

Machining
time,TMi

Cleaning
time,TCi

Inspection
time,T I i

Time between
failures for
machine,T Fi

Maintenance
time for
machine failure

Time between
major
failures,TMFi

Recovery
time from
major
failure

mints mints mints mints mints mints mints

Manufacturers
(M1 to M10)

Normal (μ,
0.1)

Normal (μ,
0.05)

Normal (μ,
0.05)

Exponential (λ) Normal (μ, 5) Exponential (λ) Normal (μ,
30)

μ μ μ 1/λ μ 1/λ μ

M1 2.5 0.3 2 160 60 50,000 5000

M2 2.6 0.3 2 160 60 48,000 5200

M3 2.7 0.3 2 160 60 46,000 5400

M4 2.8 0.3 2 150 60 44,000 5600

M5 2.9 0.3 2 150 60 42,000 5800

M6 3.0 0.3 2 150 60 40,000 6000

M7 3.1 0.3 2 140 60 38,000 6200

M8 3.2 0.3 2 140 60 36,000 6400

M9 3.3 0.3 2 140 60 34,000 6300

M10 3.4 0.3 2 130 60 32,000 6400

sent to the customer in batches of size M by the manufac-
turers. Manufacturers will continue their production until the
required order size is met. At the end of the manufacturing
activity, the manufacturer indicators will be updated for the
next order. The whole process of the continuous supervised
model is shown in Fig. 2 for a distributed manufacturing
network. The details and descriptions of parameters used in
model are defined in Sect. 3.

In this paper, we consider one product type, and all man-
ufacturers are using the same production flow, but they
are different in the production line characteristics such as
machinery speed, probability of having defective items,
failure rate, and cost. Continuous monitoring enables the
customer to see the effect of the early mentioned characteris-
tics on the performance. A typical part will be manufactured
with computerized numerical control (CNC) followed by
an inspection of the final product. Products are shipped in
batches of size M items per batch. Therefore, once a batch
is ready it will be shipped directly to the customer. Figure 3
shows a schematic diagram for the system including cus-
tomer warehouse, manufacturers, and enterprise.

Once the manufacturer is chosen for an order, the raw
material is ordered from the supplier. The time for material
procurement includes time spent for defining specifications
(based on material requisition, customer/client specifica-
tions, international codes, and standards), ordering, supply,
and inspection of material. The shipment/transportation time
is directly proportional to the required quantity and the dis-
tance between the supplier and themanufacturer.On the other
hand, manufacturers may produce imperfect items that will

be excluded, and each manufacturer has a different probabil-
ity of having an imperfect itemout of production attempt. The
imperfect items are identified through an error-free inspec-
tion process. The proportion of imperfect items is merely
depending on the condition of the machine, cutting tool,
and machining conditions. The flow of activities and factors
affecting the production process is shown in Fig. 4.

The advantages of continuous supervised model are as
follows:

• On time actions are taken without any delay in the case
when a manufacturer violates the performance thresholds
agreed upon, the assigned order will be shifted to a new
manufacturer with better performance.

• Implementing the proposedmodelwill increase the system
performance. According to numerical results, the timely
actions improved the performance by 51.3%. For more
details see Table 2.

• Continuous supervised model enhances the visibility and
transparency in supply chains and this will force themanu-
facturers to improve their production performance aspects
such as quality, cost, productivity, and delivery time.

• Improve the production planning adherence of large assets
manufacturer bymaking sure the critical subassemblies are
readily available.

In addition to the manufacturers performance, many other
input parameters and decisions making are there to highly
affect the system under study. Managers need to consider the
following factors in order to secure best performance.
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Fig. 5 Data collection layer
description for production
activities by each manufacturer

Layer 1 Layer 2

• Companies selected for suppliers order
• Manufacturers eliminated during production
• Productivity
• Availability
• Quality
• Cost
• Delivered parts

• Downtime for each manufacturer
• Number of rejected parts
• Number of manufacturers selected for each 

order
• Increase in cost over production period
• Delayed deliveries
• Quality and satisfaction of suppliers

Fig. 6 Avg. performance for case 1 and case 2 (a1 and a2)- manufacturer 1, (b1 and b2)- manufacturer 2, (c1 and c2)- manufacturer 3, (d1 and d2)-
manufacturer 4, and (e1 and e2)- manufacturer 5

1. Order’s variability: covering variability in both quantities
ordered and ordering frequency.

2. The number of assigned manufacturers (NAM) for a sin-
gle order. This ismainly depending on the productivity of
the manufacturers included, the quantities ordered, and
the variability of the orders.

3. Indicator’s thresholds (Cth , Qth , Pth , andDth) these
thresholds should be defined reasonably based on the
performance of the set of manufacturers registered in the
network.

4. Shift threshold, Sth : the systemmust include shift thresh-
old as the minimum remaining quantity below which no
shift for order from a current manufacturer even if indi-
cators thresholds are violated. Consider a case at which
a manufacturer fails to satisfy one or more of the indi-
cators thresholds then the remaining ordered quantity is
shifted to another manufacturer. But the remaining quan-
tity could be small, and the newly assigned manufacturer
has to order the raw material from supplier and has a
required setup. The time needed for such activities can
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Fig. 7 Avg. performance for case 1 and case 2 (a1 and a2)- manufacturer 6, (b1 and b2)- manufacturer 7, (c1 and c2)- manufacturer 8, (d1 and d2)-
manufacturer 9, and (e1 and e2)- manufacturer 10

be greater than the time needed for the current manufac-
turer to finish the order and there is no guarantee on the
new performance indicators to be better than the older
ones. On the other hand, this threshold could represent
the minimum ordered quantity accepted by a manufac-
turer such that manufacturers are not accepting orders
less than this threshold because of profit issues.

5. WH delivery batch size,M: this represents the minimum
batch of good items produced to deliver to WH.

6. Production allowance time, A: Usually in real life it is
fair enough to give the manufacturer some time at the
beginning before start applying decisions based on the
monitored performance.

3 Model Formulation

The selection of the proper manufacturer i for a customer
order is based on the average performance measure (APMi )
that needs to be high when the manufacturer is selected.
APMi represents the average performance of a manu-
facturer depending on all previous experience (completed
orders) with that manufacturer. Whenever a manufacturer

finishes from the j th assigned order, the performance mea-
sure (PMi j ) and the average performance measure (APMi )
are updated. PMi j should cover the four indicators: cost,
quality, productivity, and delivery. Hence, it is calculated as
per Eq. (1);

PMi j � wc.C I i j + wq .QI i j + wp.P I i j + wd .DI i j (1)

where wc, wq , wp, and wd are the weights for cost, qual-
ity, productivity, and delivery, respectively.C I i j , QI i j , P I i j
and DI i j are performance indicators for cost, quality, pro-
ductivity, and delivery, respectively. In order to identify the
indicators, their respective thresholds are taken as a reference.
Hence, for the cost and delivery the smaller is the better but
for quality andproductivity the larger is the better. Theperfor-
mance indicators for cost, quality, productivity, and delivery
are normalized using Eqs. (2), (3), (4) and (5), respectively,
and are monitored and updated.

C I i j � Cth − Ci j

Cth
(2)

QI i j � Qi j − Qth

Qth
(3)
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Fig. 8 Percentage improvement
comparison of (a) overall
performance, (b) overall
productivity, and (c) delivery
time for 10 manufacturers in case
1 and case 2

Table 2 Sum performance of all manufacturers (M1 to M10) for case 1 and case 2

Result description No. of simulation replications Manufacturers Case 1 Case 2

System average performance (SAPM) 10 M1 to M10 0.56 0.37

System average cost (SAC), [$] 10 M1 to M10 2.18 2.24

System average quality (SAQ) 10 M1 to M10 0.95 0.89

System average productivity (SAP) 10 M1 to M10 0.24 0.19

System average delivery (SAD), [min] 10 M1 to M10 219.29 293.22

System average order waiting time OWT , [min] 10 M1 to M10 6631.13 8050.48

P I i j � Pi j − Pth
Pth

(4)

DI i j � Dth − Di j

Dth
(5)

Next, we propose a simple approach to update these indi-
cators.All parameters are time dependent but to avoid clumsy

notations, the time index is excluded from the notations. We
assume that the profit margin is the same for all manufactur-
ers. Hence, the cost parameter is represented by the cost of
producing a good item. Production process may yield imper-
fect items. So, the cost of total production attempts will be
assigned to the good items produced. The cost of a good item
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Table 3 Values set for optimization of average performance and order waiting time

Values
set

Variable Type Low bound
value

Step
size

Upper bound
value

Simulation
runs

Objective Constraints

Set No.
1

NAM Discrete 1 1 4 168 Max (APM) &
Min. (OWT )

–

A (min) Discrete 300 100 800

Sth(parts) Discrete 200 50 500

Set No.
2

cw Discrete 0.125 0.125 0.5 31 Max (APM) &
Min. (OWT )

cw + pw + qw +
dw � 1pw Discrete 0.125 0.125 0.5

qw Discrete 0.125 0.125 0.5

dw Discrete 0.125 0.125 0.5

Set No.
3

NAM Discrete 1 1 3 1134 Max (APM) &
Min. (OWT)

Q−Qdev
NAM > Sth

Sth(parts) Discrete 100 100 700

Q Discrete 900 300 2400

TBO (min) Discrete 1800 300 4200

produced by manufacturer i is formulated as per Eq. (6);

Ci j � ci ∗ ai j
gi j

(6)

where ci is the cost of a single production attempt for man-
ufacturer i, ai j is the number of production attempts done
by manufacturer i for the j th assigned order, and gi j is the
number of good items produced by manufacturer i for the
assigned order j.

Quality parameter can be measured as the proportion of
good items produced by manufacturer i and is calculated as
per Eq. (7);

Qi j � gi j
ai j

(7)

Productivity Pi j is defined as the number of good items
produced per unit of time and calculated as per Eq. (8);

Pi j � gi j
Tnow − Ti j

(8)

where Tnow is the current time, and Ti j is the time at which
manufacturer i starts production for the j th assigned order.

The delivery parameter is associated with time required
to produce the batch of M good items that will be shipped
directly to the customer. This parameter is updated onlywhen
a batch is ready, not like the other parameters. It can be
calculated after each batch by Di jk � T Bi jk − T Bi j(k−1),
where T Bi jk is the time at which themanufacturer i produces
the kth batch of good items for the j th assigned order with
T Bi j0 � Ti j . To be realistic and avoid biasness to a single
batch delivery, the parameter used to calculate the perfor-
mance after delivering the last batch should cover all batches
delivered. Hence, Di j is the average delivery time for all

delivered batches is used and calculated by using Eq. (9);

Di j � 1

K

∑K

k�1
T Bi jk − T Bi j(k−1) (9)

whereK is the current delivered batch, and it has a maximum
value of �Ri j/M� if the manufacturer succeeds in delivering
the ordered quantity without violating the thresholds. Ri j is
the j th ordered quantity from manufacturer i and M is the
batch size.

Customers have different preferences for the four men-
tioned parameters. In order to reflect these preferences, AHP
can be used to identify the weights for the different parame-
ters [31, 32]. Importance factor is given to each attribute from
1 to 9, with 1 representing equal important and 9 as extreme
important. a, b, c, and d represent the importance factor of
cost, quality, delivery time, and productivity, respectively. A
pairwise comparison matrix can be formed to compute the
value of each attribute in decision making process. These
normalized equations with weighted average of cost (wc),
quality (wq), productivity (wp), and delivery time (wd) are
given in Eqs. (10), (11), (12), and (13), respectively.

(10)

Weight o f cost , wc

�
1

1+ b
a +

c
a +

d
a
+ a

a
b +1+

c
b +

d
b
+ a

a
c +

b
c +1+

d
c
+ a

a
d +

b
d +

c
d +1

4

(11)

Weight o f quali t y, wq

�
b

1+ b
a +

c
a +

d
a
+ 1

a
b +1+

c
b +

d
b
+ b

a
c +

b
c +1+

d
c
+ b

a
d +

b
d +

c
d +1

4

(12)

Weight o f productivi t y, wp

�
c

1+ b
a +

c
a +

d
a
+ c

a
b +1+

c
b +

d
b
+ 1

a
c +

b
c +1+

d
c
+ c

a
d +

b
d +

c
d +1

4
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Fig. 9 Contour plots for average performance at (a) NAM � 1, (b) NAM � 2, (c) NAM � 3, and (d) NAM � 4 at varying values of the shift
threshold (Sth) and production allowance (A)

(13)

Weight o f delivery, wd

�
d

1+ b
a +

c
a +

d
a
+ d

a
b +1+

c
b +

d
b
+ d

a
c +

b
c +1+

d
c
+ 1

a
d +

b
d +

c
d +1

4

The values obtained are the weights for the corresponding
attributes, which will be used to select the manufacturer with
the best criteria as per customer demand. Customer may be
interested in one or more attributes compared to others so
he/she can reflect this interest in his/her performancemeasure
by using these weights and preferences.

Once a manufacturer i delivers the required quantity or if
one of the thresholds is violated then the average performance
measure, average cost, average quality, average productivity,

and average delivery for the manufacturer should be updated
using Eqs. (14), (15), (16), (17), and (18), respectively. These
equations take into consideration that the updated average
depends on the required quantity such that larger quantity
will have more weight compared to smaller ones.

APMi �
∑Ji

j�1 gi j .PMi j
∑Ji

j�1 gi j
(14)

ACi �
∑Ji

j�1 gi j .Ci j
∑Ji

j�1 gi j
(15)

AQi �
∑Ji

j�1 gi j .Qi j
∑Ji

j�1 gi j
(16)
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Fig. 10 Contour plots for optimal values of order waiting time at (a) NAM � 1, (b) NAM � 2, (c) NAM � 3, and (d) NAM � 4 at varying values
of Sth and A

Fig. 11 Optimization results for case 1 by varying Sth, A and NAM (a) all solution points (b) pareto front solutions
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Table 4 Maximum and minimum values of avg. performance and order waiting time, respectively, at different weights

Avg. performance cw dw pw qw Order waiting time, (min) cw dw pw qw

0.859 0.125 0.25 0.5 0.125 6524 0.5 0.125 0.125 0.25

0.850 0.25 0.125 0.5 0.125 6524 0.25 0.25 0.125 0.375

0.817 0.125 0.125 0.5 0.25 6545 0.25 0.125 0.25 0.375

0.746 0.125 0.375 0.375 0.125 6555 0.125 0.375 0.375 0.125

0.716 0.25 0.25 0.375 0.125 6557 0.375 0.125 0.25 0.25

0.704 0.375 0.125 0.375 0.125 6573 0.125 0.375 0.125 0.375

0.697 0.125 0.25 0.375 0.25 6577 0.375 0.25 0.25 0.125

0.685 0.25 0.125 0.375 0.25 6580 0.125 0.125 0.25 0.5

0.658 0.125 0.125 0.375 0.375 6583 0.125 0.25 0.125 0.5

0.629 0.125 0.5 0.25 0.125 6588 0.25 0.25 0.25 0.25

0.598 0.25 0.375 0.25 0.125 6598 0.5 0.125 0.25 0.125

0.588 0.375 0.25 0.25 0.125 6602 0.375 0.125 0.375 0.125

0.579 0.125 0.375 0.25 0.25 6605 0.125 0.5 0.25 0.125

0.573 0.25 0.25 0.25 0.25 6606 0.125 0.5 0.125 0.25

0.560 0.5 0.125 0.25 0.125 6607 0.25 0.125 0.5 0.125

APi �
∑Ji

j�1 gi j .Pi j
∑Ji

j�1 gi j
(17)

ADi �
∑Ji

j�1 gi j .Di j
∑Ji

j�1 gi j
(18)

where Ji is the total number of assigned orders for man-
ufacturer i at the current time, and gi j is representing the
number of good items produced and at the same time it is
representing the quantity delivered by manufacturer i for the
j th assigned order. If the manufacturer does not violate any
of the thresholds, then gi j � Ri j , otherwise gi j < Ri j .

The above averages are important to evaluate the whole
system performance over time and the final performance of
the system in case of comparing between different system
setups. Since the system consists of N manufacturers, Eqs.
(19), (20), (21), (22), and (23) are used to find the system
average performance, average cost, average quality, average
productivity, and average delivery, respectively.

SAPM �
∑N

i�1

(
APMi ∗ ∑Ji

j�1 gi j
)

∑N
i�1

∑Ji
j�1 gi j

(19)

SAC �
∑N

i�1

(
ACi ∗ ∑Ji

j�1 gi j
)

∑N
i�1

∑Ji
j�1 gi j

(20)

SAQ �
∑N

i�1

(
AQi ∗ ∑Ji

j�1 gi j
)

∑N
i�1

∑Ji
j�1 gi j

(21)

SAP �
∑N

i�1

(
APi ∗ ∑Ji

j�1 gi j
)

∑N
i�1

∑Ji
j�1 gi j

(22)

SAD �
∑N

i�1

(
ADi ∗ ∑Ji

j�1 gi j
)

∑N
i�1

∑Ji
j�1 gi j

(23)

For simulation, N manufacturers are considered for an
online order size of Q. It is considered that order will be
placed in a stochastic manner with a mean time between
orders of T BOmean and simulation model will run until QT

orders are completed. TMT i , TMi , TCi , TI i , TFi , and TMFi

represents material order time, machining time, cleaning
time, inspection time, minor failure time, and major failure
time for manufacturer i , respectively. The values assigned
for machining, inspection, transportation, maintenance time
(minor failures), and major failure are normally distributed
for each manufacturer to observe stochastic behavior. The
parametric values for simulations with standard deviations
are defined in Table 1.

4 SimulationModel, Result, Optimization,
and Sensitivity Analysis

4.1 Simulationmodel and results

The continuous supervised model is built in ARENA soft-
ware and the results are compared to the model that follows
the traditional manufacturing setup without shifting the
assigned order. In the “continuous supervised model”, orders
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Fig. 12 Avg. performance plot
against time between order
(TBO) at NAM � 1 with varying
thresholds at (a) Sth � 100,
(b) Sth � 300, (c) Sth � 500, and
(d) Sth � 700 and order size (Q)
of 900 to 2400

arrival follows a Poisson process with a mean time between
orders of T BOmean � 3000min. The order size Q is ran-
dom with three possible values 900, 1200, and 1500 items
with probability 0.25, 0.5, 0.25, respectively. Once an order
is placed on the enterprise, NAM manufacturers are assigned
to fulfill the ordered quantity. The time required to supply the
raw material to the manufacturer from the supplier TMT i is
normally distributed with μ � 1000min and σ � 200min.
It is depending on the ordered quantity such that the early
mentioned time is for supplying quantity of Q units and the
time will differ as quantity differs from Q in case of shifting
orders. The values assigned for machining time, cleaning
time, inspection time, maintenance time for a minor fail-
ure, and recovery time from a major failure are normally
distributed. Note the time between failures is exponentially
distributed as shown in Table 1.

If amanufacturer fails to provide satisfactory results based
on criteria, the order will be automatically shifted to a
new manufacturer for the remaining quantity of the order.
The order will only shift if the remaining parts are greater
thanSth > 300. This condition will help in reducing the

total waiting time for the orders plus taking into consider-
ation the limitations of the minimum order size that can be
accepted by a manufacturer. The eliminated manufacturer
will be considered for the next order in case of availability.
Similarly, if the new assigned manufacturer fails to deliver
the required units with the required specifications, the order
will be automatically sent to the next manufacturer in the
waiting list. Produced units are shipped in batches to the cus-
tomer and the batch size isM � 50. The thresholds values
are chosen to be Cth � $3,Qth � 0.85,Pth � 0.1unit/min,
andDth � 1000. The values for wc, wq, wp, and wd are con-
sidered as 0.25 each. Sum of all weights shall be equal to
1.

A traditional production model (case 2) is considered in
this paper, where themanufacturers are assigned randomly to
allocate customer’s order, with no shift of the order to other
manufacturer in case of violating any of the performance
thresholds. In practice, production data available in tradi-
tional manufacturing is noisy and unreliable. The real-time
data collection in this setup is not possible without imple-
menting I4.0 to ensure timely decisions to violations. In this
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Fig. 13 Avg. performance plot
against time between order
(TBO) at NAM � 3 with varying
thresholds at (a) Sth � 100,
(b) Sth � 300, (c) Sth � 500, and
(d) Sth � 700 with order size (Q)
of 900 to 2400

model production will continue until the required quantity
is produced and delivered to the customer. The performance
measures of thismodel are also calculated and comparedwith
the case 1, the continuous supervised model, to check the
improvement in performance. All the parameters are taken
same for both models except selection of manufacturer and
shifting the order. The parameters that can affect and interrupt
the production are unplanned downtime, machine failure,
human error, political crises, and protest/strikes. The continu-
ous supervised model is made to take timely action to handle
the failures of machines and other situations by rerouting
the order to other manufacturers to avoid any performance
issues.

The model has been verified by extracting the simula-
tion progress to an Excel sheet. The sheet is tracking the
order time, selected manufacturer, updates of the perfor-
mance indicators over time, violation of the thresholds and
shifting time if any, and the update of the performance mea-
sure. The information that is extracted from simulation can be
categorized in two layers. Layer 1 contains the information
about the companies selected for the supplier’s order, rejected

manufacturers, performance of manufacturers (productivity,
availability, quality, and cost), and delivered parts. Layer 2
consists of in-depth details and information during execu-
tion of production order. This contains the downtime for each
manufacturer, number of rejected parts, increase/decrease in
cost over the whole production time, delayed deliveries, and
quality of manufacturing. Figure 5 represents the data col-
lection in each layer for production activities.

The simulation results for individual manufacturers for
case 1 and case 2 are presented in Fig. 6 and 7 ranging from
manufacturer M1 to M10 by one-to-one comparison. It can
be seen from the results that the average performance of all
manufacturers to their correspondingmanufacturers in case 1
is better than case 2. In case 1,maximumnumber of orders are
assigned toM1 due to higher performance andM10 received
least order due to lower performancewhen compared to other
of manufacturers. The average performance for all manufac-
turers in case 2 plunges more than case 1 at many points due
to major failure and retaining the order until the resumption
of production. The improvement in the performance is the
result of shifting the order at major failure and selecting the
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Fig. 14 Order waiting time plot
against time between order
(TBO) at NAM � 1 with varying
thresholds at (a) Sth � 100,
(b) Sth � 300, (c) Sth � 50, and
(d) Sth � 700 and order size (Q)
of 900 to 2400

manufacturer based on higher performance. Results from a
single simulation are also presented in Fig. 8 to describe the
improvement of each manufacturer against overall perfor-
mance, overall productivity, and delivery time in case 1 with
comparison to case 2. It is clear that difference is more inM8,
M9, andM10,which is due to the lowperformance andhigher
failure rate inmeeting the production order. Continuousmon-
itoring enables case 1 to shift the order in case ofmajor failure
by selecting the manufacturers with higher performance to
improve overall performance parameters including cost and
delivery time.

To check the variation and stability of both cases, ten repli-
cations of simulation are performed, and results observed are
close and statistical as presented in Table 2. The simulation
is run for QT � 1000 with all other parameters as described
above for single simulation. Table 2 shows the difference in
average performance, average cost, average quality, average
productivity, average delivery, and order waiting time after
ten replications. Case 2 takes more time to finish the order
and hence the order waiting time is close to 8000 min when
compared to case 1 with 6500 min. The values of average
performance reflect the overall behavior of productivity, cost,

quality, and delivery. The higher values of performance and
its indicators are subjected to the production performance
of each manufacturer involved in the production. It can be
observed that in all replications, results are favorable for the
proposed model. This provides the proof of effectiveness of
the monitoring and shifting the production in case the thresh-
old values are violated.

As in case 2, the manufacturers are randomly selected to
assign orders from customers and the orderwill not be shifted
in case of any violation. This results in delayed production
leading to late deliveries, poor quality, and increased cost.
The parameters that can affect and interrupt production are
unplanned downtime, machine failure, human error, political
crises, and protests/strikes. Case 1 is made to take timely
action to handle the failures of machines and other situations
by rerouting the order to other manufacturers to avoid delay.

4.2 Optimization and Sensitivity Analysis

Case1 is simulated inARENAat different conditions as listed
in Table 3 to obtain optimized values and investigating the
effect of various parameters over a range of possible values.
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Fig. 15 Order waiting time plot
against time between order
(TBO) at NAM � 3 with varying
thresholds at (a) Sth � 100,
(b) Sth � 300, (c) Sth � 50, and
(d) Sth � 700 and order size (Q)
of 900 to 2400

All of this is doneusingOptQuestwhich is a “blackbox”opti-
mization tool in ARENA. Three sets of values are simulated
separately, and results are plotted and tabulated to visualize
the effects on average performance and order waiting time.
Parameters with initial values, incremental step size, final
values, and constraints are given in Table 3. The objective
of the simulation is to maximize the average performance
(APM) and decreasing the order waiting time (OWT).

4.2.1 Optimization for Set No. 1

The results for values assigned as per set no. 1 are depicted in
Fig. 9: Contour plots for average performance at (a)- NAM
� 1, (b)- NAM � 2, (c)- NAM � 3, and (d)- NAM � 4
at varying values of the shift threshold (Sth) and production
allowance (A). and Fig. 10. The maximum values of the avg.
performance calculated is 0.527 at NAM � 1, A � 500 min,
and Sth� 300 followed by 0.569 at NAM� 1, A� 600 min,
and Sth� 250. Similarly, the minimum order waiting time is
calculated as 2633 min at NAM� 4, A� 400 min, and Sth�
200 followed by 2699min at NAM� 4,A� 700min, and Sth
� 200. FromFig. 9: Contour plots for average performance at

(a)- NAM� 1, (b)- NAM� 2, (c)- NAM� 3, and (d)- NAM
� 4 at varying values of the shift threshold (Sth) and produc-
tion allowance (A)., it is observed that increasing value of
Sth will reduce the avg. performance of the system and simi-
larly increasingNAM with same Sthwill also reduce the avg.
performance. However, Awill slightly decrease the avg. per-
formance and increasing NAM will further reduce this value.
As can be seen from Fig. 10, increasing NAM will sharply
reduce theOWT, and the lower values of Sth will also reduce
the OWT. Higher values of A will slightly reduce the OWT .
Red color is used to designate the maximum value of perfor-
mance in Fig. 9: Contour plots for average performance at
(a)-NAM � 1, (b)-NAM � 2, (c)-NAM � 3, and (d)-NAM �
4 at varying values of the shift threshold (Sth) and production
allowance (A).. However, the objective function of minimum
order waiting time is highlighted in red in Fig. 10. Lower val-
ues of shift threshold resulted in improved and better-quality
monitoring and increased performance. Order waiting time
is inversely proportional to the number of assigned manu-
facturers. An order distributed to four manufacturers will
result in quick delivery by decreasing the time between order
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assigned to manufacturers. Figure 11(a) represents the opti-
mization against set no. 1 values, and Fig. 11(b) gives a pareto
front solution of selected points to highlight the maximum
performance and minimum order waiting time. These two
objectives are conflicting.

4.2.2 Sensitivity Analysis for Set No. 2

For the values assigned as per set no. 2, the maximum value
calculated for avg. performance is 0.859 at cw � 0.125, dw
� 0.25, qw � 0.125, and pw � 0.5 followed by 0.851 at cw �
0.25, dw � 0.125, qw � 0.125, and pw � 0.5. Similarly, the
minimum order waiting time is equal to 6523 min at cw �
0.5, dw � 0.125, qw � 0.25, and pw � 0.125 and at another
combinatory values of cw � 0.25, dw � 0.25, qw � 0.375,
and pw � 0.125 followed by 6544.87 min at cw � 0.25, dw
� 0.125, qw � 0.375, and pw � 0.25. Some of the results
of maximum performance and OWT against various values
of weight are listed in Table 4. In this simulation, the weight
of productivity governs for higher performance compared to
others. Similarly, the weight of cost and weight of quality has
more influence in decreasing the OWT . Parts made of good
quality will be sent to WH; however, if parts are rejected,
production time will be higher to complete the order.

4.2.3 Sensitivity Analysis for Set No. 3

Finally, the simulation is run for the values in set 3 to check
the average performance over a wide range of Sth, Q, TBO,
and NAM. The maximum value of NAM is set to 3 and mini-
mum as 1. The Sth is varied from 100 to 700 with increasing
the step of 100 parts. Similarly, the value of Q is considered
as 900with an increment of 300 and up to 2400. The values of
TBO are taken in the range of 1800 to 4200with step size 200.
A total of 1134 combinations of calculations are simulated
and due to the constraint of Q−Qdev

N AM > Sth , some of the solu-
tions were infeasible. The remaining values are plotted to get
the avg. performance andOWT for varying values ofQ,TBO,
andNAM.The results are plotted inFigs. 12, 13, 14 and15 It is
clear fromFigs. 12, 13 that an increase in Sth andQwill lower
the average performance. Increasing NAM will decrease the
average performance slightly. This is due to selection of mul-
tiple higher performing manufacturers for a single order.
The remaining orders will be distributed among available
manufacturers with slightly lower performance compared to
the above assigned manufacturers. However, increasing the
TBO will increase the performance effectively. Due to the
increased time between orders, the frequency of selection and
availability of high-performancemanufacturers will increase
also. As we increaseNAM and Sth , the effect ofQ on average
performance becomes less significant and all lines approach
near to each other (as can be seen in part c and part d of

Fig. 13). This behavior can be explained as, higher thresh-
old value of Sth allows the manufacturer to retain the order
in large quantity without shifting it to another manufacturer.
This accumulatively decrease the average performance and
shifting of orders will reduce.

Figures 14 and 15 show theOWT plotswith varying values
of Q, TBO and NAM. For NAM � 1, the order waiting time
is increased tremendously for higher quantity and frequency
of order. IncreasingNAM will distribute the order to multiple
manufacturers, resulting in smaller OWT . Q, TBO, and Sth,
all have a significant impact on the OWT. A higher ordered
quantity will demand higher production time and upcoming
orders will have to wait for an extended time. Similarly, the
higher timebetweenorder placementwill give surplus time to
manufacturers to finish the order, as can be seen from trends
in Figs. 14 and 15

5 5. Conclusion

Distributed manufacturing (DM) was introduced and man-
aged by an enterprise to maximize the utilization of produc-
tion and manufacturing resources. A network of manufactur-
ing companies registered to this enterprisewill have access to
the orders worldwide making them prone to secure manufac-
turing orders under specifications. This is facilitated by I4.0
allowing access to manufacturers behavioral data and sup-
porting decision making for job dynamic allocation based
on performance. A simulation is performed to calculate the
maximum average performance of manufactures based on
four attributes: cost, quality, productivity, and delivery. The
proposedmodel in case 1 takes advantage of the performance
monitoring under I4.0 to shift the order once a manufacturer
has failed to satisfy the four attributes and the remaining
quantity to be produced is greater than a specified shift thresh-
old. This helps in improving the average performance with
decreased delivery time. The effect of several independent
input and design parameters are considered to obtain higher
average performance and lower order waiting time. The pro-
posed model outperforms the traditional model that is based
on random order assignment with no synchronization. Our
proposed model can be employed in different industries by
implementing Industry 4.0 to take advantage of real-time
monitoring, gathering, and analyzing data, and implementa-
tion of production strategies in case of failure to get better
results than traditional manufacturing management.
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