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Background: Eukaryotic Initiation Factor 4E-Binding Protein (EIF4EBP1, 4EBP1) is overexpressed in many human
cancers including breast cancer, yet the role of 4EBP1 in breast cancer remains understudied. Despite the known
role of 4EBP1 as a negative regulator of cap-dependent protein translation, 4EBP1 is predicted to be an essential
driving oncogene in many cancer cell lines in vitro, and can act as a driver of cancer cell proliferation. EIF4EBPT is
located within the 8p11-p12 genomic locus, which is frequently amplified in breast cancer and is known to predict

Methods: Here we evaluated the effect of 4EBP1 targeting using shRNA knock-down of expression of 4EBP1, as
well as response to the mTORC targeted drug everolimus in cell lines representing different breast cancer subtypes,
including breast cancer cells with the 8p11-p12 amplicon, to better define a context and mechanism for oncogenic

Results: Using a genome-scale shRNA screen on the SUM panel of breast cancer cell lines, we found 4EBP1 to be a
strong hit in the 8p11 amplified SUM-44 cells, which have amplification and overexpression of 4EBP1. We then
found that knock-down of 4EBP1 resulted in dramatic reductions in cell proliferation in 8p11 amplified breast
cancer cells as well as in other luminal breast cancer cell lines, but had little or no effect on the proliferation of
immortalized but non-tumorigenic human mammary epithelial cells. Kaplan-Meier analysis of FIF4EBP1 expression in
breast cancer patients demonstrated that overexpression of this gene was associated with reduced relapse free

Conclusions: These results are consistent with an oncogenic role of 4EBP1 in luminal breast cancer and suggests a
role for this protein in cell proliferation distinct from its more well-known role as a regulator of cap-dependent
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Background

Estrogen Receptor-positive (ER+) breast cancer accounts
for ~70% of all breast cancers. Currently, this subtype of
breast cancer is treated with endocrine therapy as the
standard of care. However, resistance to endocrine therapy
is a significant clinical problem and is a leading cause of
breast cancer mortality. Amplification of the 8pll-p12
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region of the human genome, which occurs in ~ 20-30%
of metastatic ER+ breast cancers, is associated with resist-
ance to endocrine therapy and poor prognosis [1].

Our laboratory and others have demonstrated the im-
portance of the 8p11-p12 amplicon and many of its genes
in the development and pathogenesis of breast cancer [2—
33], including its role in endocrine resistance. The ampli-
con is composed of four distinct regions, designated
A1-A4, each of which contains a number of overexpressed
genes [5, 11]. At least 11 genes are associated with the A2
region of the amplicon [5]. The Eukaryotic Initiation Fac-
tor 4E-Binding Protein (EIF4EBPI) sequence is located on
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the short arm of chromosome 8: 38,030,502—-38,060,365
(GRCh38.p7; current assembly) and is amplified along
with other A1 and A2 region genes. The protein product
(herein referred to as 4EBP1) encoded by EIF4EBPI is ca-
nonically regarded as a translational repressor protein that
interacts with eukaryotic initiation factor 4E (eIF4E) and
represses translation by inhibiting eIF4E from recruiting
40S ribosomal subunits during translation [34—36]. Upon
phosphorylation, 4EBP1 dissociates from eIF4E allowing
for active cap-dependent translation [37-40].

Interestingly, many human cancers [41, 42], and particu-
larly breast cancers with the 8p11-p12 amplicon overex-
press 4EBP1 [43] [44]. Since 4EBP1 inhibits translation, it
is expected that overexpression of 4EBP1 would act as a
tumor suppressor. However, overexpression of 4EBP1 re-
sults in high levels of phosphorylated 4EBP1 which may
contribute to breast cancer development [43, 45] [44-47].
Indeed, proteins that can regulate 4EBP1 phosphorylation,
like Casein kinase 1° [48, 49], Glycogen synthase kinase
(GSK)-3p [50], G1 To S phase transition 2 (eRF3b) [51,
52], Mammalian target of rapamycin complex 1
(mTORC1) [39, 40, 53-60], Polo like kinase 1 (PLK1)
[61-63], Family with sequence similarity 129 member A
(Niban) [64], PI3-kinase isoforms [65, 66|,
Cyclin-dependent kinase 1 (CDK1) [59, 67-70], ATM
serine/threonine kinase (ATM) [71, 72], Mitogen activated
protein kinase (MAPK) [73, 74], Protein kinase B (AKT)
[75], and others [68, 74, 76] have been suggested as thera-
peutic targets for cancer. Given the relationship between
expression of 4EBP1 in the 8p11-p12 amplicon and hyper-
activation of mTORCI1 observed in endocrine resistant
breast cancers, PI3K/AKT/mTORC1 targeted therapies
have been suggested for 4EBP1 expressing breast cancers
[46, 77-81]. Furthermore, genes within the amplicon as
well as mTORC]1, which phosphorylates 4EBP1, have been
shown to activate ER, potentially contributing to the abil-
ity of amplicon bearing breast cancer cells to circumvent
endocrine therapy.

Consequently, we set out to evaluate the effect of
4EBP1 targeting in ER+, 8pll-pl2 expressing breast
cancer cells as well as other breast cancer cell lines, and
non-tumorigenic but immortalized human mammary
epithelial cells. We first found that 4EBP1 is an essential
gene in the SUM-44 cells based on results of a
genome-scale shRNA screen, and then found that 4EBP1
targeting reduced proliferation of not only amplicon
bearing cells (SUM-44, Cama-1, SUM-52) but also
non-amplicon ER+ breast cancer cells as well (MCF7,
T47D). This effect was also seen in ER-negative (ER-)
8p11-p12 cells (SUM-52) as well as non-amplicon bear-
ing cells (SUM-229, SUM-149), but to a lesser extent.
There was no effect of 4EBP1 targeting on the prolifera-
tion of immortalized but non-tumorigenic mammary
epithelial cells (MCF10A, H16N2). Consistent with our
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findings, Kaplan-Meier analysis shows that high levels of
4EBP1 correlates with worsened prognosis in ER+ co-
horts (ER+, ER+ Luminal A, and ER+ Luminal B) as well
as cohorts that received chemotherapy, tamoxifen, or
endocrine therapy. Taken together, our findings suggest
that 4EBP1 plays an important role in in breast cancer
and may be particularly important in breast cancers with
the 8p11-p12 amplicon regardless of ER status.

Methods

Antibodies and inhibitors

The mTOR inhibitor, Everolimus (RADO0O01), was pur-
chased from Selleckchem (S1120, A112024). The anti-
bodies against 4EBP1 (9644), phospho-4EBP1 Ser65
(9451), phospho-4EBP1 Thr37/46 (2855), phospho-4EBP1
Thr70 (9455) were purchased from Cell Signaling. Anti-
body against [B-actin (A5441) was purchased from
Sigma-Aldrich. The CyclinD1 (2978) and p27 Kipl (3686)
antibodies were purchased from Cell Signaling. The ERa
antibody (sc-543) was purchased from Santa Cruz
Biotechnology.

Cell culture

The SUM-44 (ER+), Cama-1 (ER+), and SUM-52 (ER-)
cell lines represent luminal breast cancer and have the
8pll-pl12 genomic locus amplified. T47D (ER+),
HCC1500 (ER+), and MCF7 (ER+) cells are also luminal
but 8p11-pl2 is not amplified. SUM-229 and SUM-149
are triple-negative breast cancer cell lines. Normal breast
epithelial are represented by immortalized but non
-tumorigenic MCF10A and H16N2 cell lines. All cell
lines were maintained at 37 °C with 10% CO,. SUM cell
lines and culture requirements for maintenance with
Hams F12 cell culture medium (Hyclone SH30026FS,
Thermo Fisher Scientific) with supplementation have
been previously described [82—84] (please refer to the
SLKBase (https://sumlineknowledgebase.com/) for add-
itional information about these cell lines). The Cama-1
cell line (obtained from ATCC) and MCF7 cell line (ob-
tained from the Michigan Cancer Foundation) were
grown in Dulbecco’s Modified Eagle’s (DMEM) medium
(obtained from Thermo Fisher Scientific) containing
10% Fetal Bovine Serum (FBS) purchased from Gemini
Bioproducts (900-108) or Atlanta Biologicals (S11050).
The T47D cell line (obtained from ATCC) was grown in
Roswell Park Memorial Institute (RPMI) medium
(Thermo Fisher Scientific) containing 10% FBS. The
MCF10A cells were obtained from Dr. Herb Soule at the
Michigan Cancer Foundation [85] and were maintained
in serum-free Hams F12 supplemented with Bovine
serum albumin (BSA) (126,579, Millipore), 5 pg/mL Insu-
lin (700-112P, Gemini Bioproducts), 1 pg/mL Hydrocorti-
sone (H-4001, Sigma-Aldrich), and 10 ng/mL Epidermal
Growth Factor (E9644, Sigma-Aldrich) (SFIHE medium).
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H16N2 cells [86, 87] (immortalized by human papilloma-
virus (HPV) E6 and E7 oncoproteins) were also grown in
SFIHE medium. When trypsinizing cells grown in
serum-free medium, 2% FBS was added for the first 24 h.
The SUM cell lines were developed in the author’s labora-
tory and are routinely validated for identity by STR profil-
ing. The remaining cell lines were obtained from ATCC
and were used immediately upon arrival. All cell lines are
routinely tested for mycoplasma.

Generation of EIF4EBP1 knockdown cells

Lentivirus was produced in 293FT cells which were
transfected in Opti-MEM with Lipofectamine 2000,
pLKO.1-puro gene-targeting plasmid, and Mission
packaging mix (Sigma-Aldrich) under optimal condi-
tions. Collected virus was filtered through a 0.2 um
filter before storage at —80°C. Efficient viral titer
production was confirmed by a Lenti-X p24 Rapid
Titer Kit (Takara) and 4EBP1 western blot. All BSL-2
safety protocols were performed during production,
storage, and continued use. Optimization was per-
formed with listed (Table 1) 4EBP1-targeting plasmids
wherein ~ TRCN0000040206  (4EBP  sh_1) and
TRCN0000298904 (4EBP_sh_2) produced efficient
knockdown and were used for subsequent studies.
These were obtained from the shRNA Technology
Shared Resource (Hollings Cancer Center, the Medical
University of South Carolina).

Cells were reverse transfected with lentivirus, with ap-
propriate growth medium, and polybrene. Virus was re-
moved 24 h later and cells were fed with media. Cells
began selection with appropriate concentration of antibiotics
48 h following transfection. Antibiotic concentration at 2 pg/
ml Puromycin (invivoGen) was sufficient to ensure selection.
The SUM-44 cell line requires 3 pg/ml Puromycin selection.

Table 1
Plasmid Genotype Region Sequence
shLACZ pLKO.1-puro:LACZ  n/a [€ca)
AAATACTGGCAGGCGTT
Sh4EBP1 plLKO.1- DS CCGG
#1 puro:EIF4EBP1 CGGTGAAGAGTCACAGT
TRCN0000040206 TTGA
CTCGAGTCAAACTGTGA
CTCTTCACCG G
Sh4EBP1 pLKO.1- 3UTR  CCGGGCCAGGCCTTATGAAA
#2 puro:EIF4EBPT GTGATCTCGAGATCAC C
TRCN0000040203 ATAAGGCCTGGC G
Sh4EBP1 pLKO.1- 3UTR  CCGGGCCAGGCCTTATGAAA
#3 puro:EIF4EBPT GTGATCTCGAGATCAC C
TRCN0000310343 ATAAGGCCTGGC G
Sh4EBP1 pLKO.1- DS CCGG
#4 puro:EIF4EBPT CGGTGAAGAGTCACAG
TRCN0000298904 TTTGACTCGAGTCAAACTGT
GACTCTTCACCG G
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Control cells without the addition of lentivirus were plated
alongside lentivirus infected cells to ensure the appropriate
concentration of antibiotic was used. Cells were continu-
ously maintained in the resistance marker. All further pa-
rameters were tested after four days of selection in
Puromycin.

Cell proliferation

Cells were plated in 12-well plates at [1E5 cells/well],
washed with 1X Phosphate Buffered Saline (PBS), then
0.5 mL HEPES/MgCl, buffer (Isoton) was added to each
dish and agitated for 5 min. Cell swelling was confirmed
and 50 uL ZAP (Bretol Solution) was added and incu-
bated for 10 min with agitation. Cells were visualized to
confirm bursting and nuclei release, 10 mL NaCl-
Formalin Solution was added to prevent deterioration,
and read using a Coulter Acuvette. The Coulter Counter
was set to count nuclei between 4 and 8 um diameter
through a 100 um aperture. Each sample was counted
twice and then averaged. The counts were multiplied by
20 to obtain the total number of nuclei, and background
counts with NaCl-Formalin were performed with
analysis.

Statistical analysis

Growth results were analyzed using a two-way ANOVA
model with an interaction effect between day and condi-
tion. Each cell line was analyzed individually and all ana-
lyses were done on the log scale. Differences between
conditions were exponentiated to obtain fold change es-
timates. Significance testing was completed using
Tukey’s honestly significant difference method to main-
tain a family-wise alpha of 0.05 within each cell line.

Immunoblotting

Cells were continuously maintained on ice and harvested
using Radioimmunoprecipitation assay (RIPA) buffer (Sig-
ma-Aldrich) supplemented with a protease inhibitor cock-
tail (Millipore, #539131) and PhosSTOP (Roche).
Bradford Protein Assay was used to fit samples to a stand-
ard curve and determine protein concentrations prior to
SDS-PAGE. After transfer, PVDF membrane was blocked
1h with 5% skim milk in 1X TBST at room temperature
and incubated overnight with antibody per the manufac-
turer’s instructions. The membrane was visualized with
SuperSignal West Pico Chemiluminescent Substrate
(Thermo Fisher Scientific). The membrane was developed
using the Li-COR Odyssey Fc.

Flow cytometry of live cells

Cells were trypsinized, counted, and analyzed at [1E6
cells/mL]. Vybrant DyeCycle Orange (V35005, Thermo
Scientific) was used according to the manufacturer’s
protocol for live cell-cycle analysis. Conditions were
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optimized to a final stain concentration of 5puM in 1X
PBS in all cell lines tested. Cells were promptly analyzed
using a BSL2 FACSAria Cell Sorter. Verity ModFit LT
4.1 was used to analyze and visualize the generated data.

KM plotter database analysis

The KM plotter for breast cancer (http://kmplot.com)
[88] was used on all releases available from the database
accessed spring 2018. Restricted analyses of different pop-
ulations are indicated and altered the number of breast
cancer patients with available survival data as shown by
the number at risk. The determined and represented prog-
nostic values by relapse free survival (RFS) of EIF4EBPI in
all analyses were more than 500 samples, indicating highly
reliable analysis using all parameters presented. The JetSet
best probe set for EIF4EBPI (probe ID: 221539_at) was
used for all analyses. Patients were divided into a high and
low expression group by median mRNA expression
values, all possible cutoff values between the lower and
upper quartiles were computed and the best performing
threshold was determined by using auto select the best
cutoff. RFS was plotted using suggested quality controls.
This excluded biased arrays, removed redundant samples,
and checked proportional hazards assumptions. The cut-
off values, probe expression range, false discovery rate
(FDR), and p-value were extracted from the KM plotter
webpage and each analysis is represented.
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cBioPortal database analysis

The cBioPortal(http://www.cbioportal.org/) [89, 90] was
used to generate the overall survival curve (shown in
Fig. 1b) for breast tumors with and without A2
8pl1-p12 region alterations using The Cancer Genome
Atlas (TCGA) provisional data. The Amplification fre-
quency of 4EBP1 in the TCGA or the Molecular Tax-
onomy of Breast Cancer International Consortium
(METABRIC) breast data cohorts were also determined
using the cBioPortal. Data was accessed spring 2018.

Results

Frequency and prognostic significance of 4EBP1
amplification in breast cancer

EIF4EBPI, the gene that encodes the 4EBP1 protein, re-
sides within the 8p11-p12 genomic locus. It is frequently
amplified in endocrine resistant luminal breast cancers,
rarely coincides with PIK3CA mutations, and is asso-
ciated with poor prognosis. The frequency of
EIF4EBPI amplification across all breast cancer sub-
types is approximately 13% according to data from
The Cancer Genome Atlas (TCGA) and 14% accord-
ing to data from the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC) [91]
(Fig. 1la & b). Furthermore, we found that expression
analysis of the TCGA provisional data shows that
high expression of the genes in the A2 region of the
8pl1-p12 amplicon, which includes EIF4EBPI, BRF2,

EIFAEBP1, BRF2, RAB11FIP1, ASH2L, LSM1, BAG4
DDHD2, PLPP5, NSD3, FGFR1, TACC1, ADAM9, ADAM32
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RABIIFIPI, ASH2L, LSM1, BAG4, DDHD2, PLPPS,
NSD3, FGFR1, TACC1, ADAMY, and ADAMa32, corre-
lates with reduced overall survival (Fig. 1c).

4EBP1 is highly expressed and phosphorylated in 8p11-
p12 breast cancer cells
To investigate the significance of 4EBP1 overexpression in
breast cancer, we employed a set of human breast cancer
cell lines representing ER+ and ER- samples, including
SUM-44, SUM-52, and Cama-1 (ER+, amplicon bearing),
MCE-7, T47D, and HCC1500 (ER+, non-amplicon bear-
ing), and SUM-229, as well as two non-tumorigenic but
immortalized mammary epithelial cell lines, MCF10A,
and H16N2 cells. As expected, SUM-44, Cama-1, and
SUM-52 expressed high levels of 4EBP1 due to the ampli-
fication of the EIF4EBPI gene, whereas MCF10A and
H16N2 did not express any more or less 4EBP1 protein
than the T47D, HCC1500, MCF7, or SUM-229 cell lines
(Fig. 2a). High levels of phosphorylated 4EBP1 were also
readily detected in the SUM-44, Cama-1 and SUM-52
cells compared to the other cell lines tested (Fig. 2a).
4EBP1 is thought to be phosphorylated by mTORC1
in a hierarchical fashion [39, 40]. Our findings that
4EBP1 expression and phosphorylation levels are high
on multiple residues in SUM-44, Cama-1, and SUM-52
cells, as well as our observation of high levels of
phospho-S6 (not shown) suggest active mTORC]1 signal-
ing in these 8pll-p12 models. Therefore, we tested the
effect of mTOR pathway inhibition on cell proliferation
of the 8pl1-p12 cell lines. Cells were plated in equal
number and on day 1 after plating, cells were exposed to
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1uM of the inhibitor everolimus (Affinitor). To assess
proliferation, the total number of cells was quantitated
for each group at day 1, prior to treatment, and on day
4, 72h after exposure to everolimus. Treatment with
everolimus significantly reduced the proliferation of all
three cell lines, however the fold-change observed for
the SUM-44 cells and the Cama-1 cells (0.49 and 0.43
respectively) were significantly greater than the fold
change observed in the SUM-52 cells (0.9). The differ-
ence in response to everolimus between the SUM-52
cells and the other two cell lines was significant with a
p-value of <0.0001. (Fig. 2b). This result suggests that
ER expression plays a role in the responsiveness of
breast cancer cells to everolimus.

4EBP1 is essential to breast cancer cell lines

Our laboratory recently completed a genomic scale
shRNA screen for the entire panel of SUM breast cancer
cell lines, and some of the results from these screens
have been reported elsewhere [92] and can be found at
The SUM Breast Cancer Cell Line Knowledge Base
(SLKBase) (https://sumlineknowledgebase.com/) [93].
Interestingly, despite the fact that the SUM-44 cells have
been shown to overexpress several genes from the
8pl1-p12 amplicon that can behave as transforming on-
cogenes in vitro, EIF4AEBP1 was the strongest hit among
all 8p11 amplified genes in this RNA interference screen.
The DepMap [111, 112, 113] crispr (Avana) gene essen-
tiality screens also predict 4EBP1 as a driver of cancer
cell lines including all of the breast cancer cell line
models currently represented within the portal (https://

cell lines is <0.0001
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Fig. 2 4EBP1 is highly expressed and phosphorylated in 8p11-p12 breast cancer cells. (a) Western blot of 4EBP1 and phospho-4EBP1 on residues
Thr 37/37, Thr 70, and Ser 65 in SUM-44 (ER+), Cama-1 (ER+), and SUM-52 (ER-) cells with amplification of the 8p11-p12 genomic locus (8p11-12
CNA) as well as T47D (ER+), HCC1500 (ER+), MCF7 (ER+), and SUM-229 (ER-) cells without amplification of the 8p11-p12 genomic locus. Immortalized
but non-tumorigenic breast epithelial cells are represented by MCF10A and H16N2 cells. (b) Cell proliferation was assessed in SUM-44, Cama-1, and
SUM-52 cells in the presence or absence of 1 uM everolimus treatment for 72 h. Error bars represent standard deviation among replicates and p values
are for the difference in cell proliferation in control versus treated cells. The p-value for the difference between the effect in SUM-52 cells and the other
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depmap.org/portal/) [94] Therefore, we performed ex-
periments to validate the importance of 4EBP1 knock-
down in SUM-44 cells and extended that to other breast
cancer cell lines. To gain a broader understanding of
4EBP1 in different settings, we performed experiments
to assess the effect of 4EBP1 knock-down on prolifera-
tion of cell lines that represent different subtypes of
breast cancer.

To determine the effect of directly targeting 4EBP1 in
breast cancer cells, we first tested the two ER+ 8p11-p12
cell lines, SUM-44 and Cama-1, and used lentiviral vec-
tors for two different shRNAs against EIF4EBP1. shRNA
targeting lacZ was used as a control. Fig. 3 shows that
both shRNAs were effective at reducing levels of 4EBP1
protein, and there was a concomitant decrease in the
levels of phosphorylated 4EBP1 (Fig. 3 a & b). We then
measured proliferation of cells expressing EIF4EBPI
shRNA compared to control cells. Cells were evaluated
by counting the number of nuclei at day 1 and day 4
after plating. The data shown in Fig. 3 ¢ and d show that
there as a significant increase in cell number in the LacZ
control cells over the 4-day culture period, there was lit-
tle or no proliferation in the sh4EBP1 groups in either
cell line. Indeed, there was a significant reduction in cell
number over the 4 day period in the SUM-44 cells (fold
change = 0.5, p<0.001, 0.002), whereas in the Cama-1
cells, there was a smaller (approximately 0.8 fold) but
still significant difference in cell number over the same
period (p <0.002, and 0.07). The largest and most statis-
tically significant difference was detected in the day 4
cell counts between control LacZ cells and the sh4EBP1
cells in both cell lines, with fold-differences of approxi-
mately 4 and 6-fold, and p-values ranging from 10~ ° to
107'* The full ANOVA analysis of the data for all groups
and all time points are shown in Additional file 3: Table S1.

Prior studies from our lab and others have demon-
strated the effects of genes associated with the 8p11-p12
amplicon on ERa expression [1, 28-31, 100]. Therefore,
we next evaluated ERa expression in the SUM-44 and
Cama-1 EIF4EBPI knockdown cell lines and found that
ERa levels were reduced (Fig. 3 a & b) compared to con-
trol cells expressing lacZ shRNA. These findings show
that reducing 4EBP1 levels impairs proliferation of the
ER+ 8pll-pl2 breast cancer cell models and results in
downregulation of ERa.

We next wanted to evaluate the potential effects of
4EBP1 targeting in non-tumorigenic human breast epi-
thelial cells. 4EBP1 was knocked down in MCF10A
(Fig. 4a) and H16N2 cells (Fig. 4b). Cell proliferation
was then measured by counting the total number of cell
nuclei present at day 1 and day 4 after plating. All popu-
lations increased in number significantly over four days
and no statistically significant differences were observed
between control and EIF4EBPI knockdown in MCF10A
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cells (Fig. 4c) or H16N2 cells (Fig. 4d). These results in-
dicate that downregulation of 4EBP1 in non-tumorigenic
breast epithelial cell lines, at least to the same levels as
was achieved in the breast cancer cell lines does not
affect the proliferative capacity of these cells.

Downregulation of 4EBP1 in ER+ 8p11-p12 breast cancer
cells causes cell cycle arrest

Previous studies suggest that 4EBP1 regulates cell cycle
progression [59, 61, 68, 101-104]. To better understand
the cellular effects of 4EBP1 knockdown, SUM-44 and
Cama-1 cells were assessed by flow cytometry to evalu-
ate cell cycle progression. An increase in the number of
cells in G1 cell-cycle in both SUM-44 (Fig. 5a) and
Cama-1 cells (Fig. 5 b) was observed with EIF4EBPI
knockdown when compared to control cells. These re-
sults show that knockdown of 4EBP1 promotes G1 cell
cycle arrest.

To study the cell cycle arrest induced by 4EBP1
knock-down further, we evaluated the protein expression
levels of key cell cycle regulators. We found that Cyclin
D1 protein levels were decreased in SUM-44 and
Cama-1 cells following EIF4EBPI knockdown (Fig. 5¢ &
d). Additionally, we observed a slight increase in p27
levels in the EIF4EBPI knockdown cells compared to
control cells (Fig. 5¢ & d). The alterations of Cyclin D1
and p27 expression that we found are consistent with
the cell cycle arrest phenotype that we observed in
4EBP1 knockdown cells.

4EBP1 knockdown inhibits proliferation of ER- 8p11-p12
amplified breast cancer cells

Because we saw only a small effect of everolimus on
the proliferation of the ER- 8pl1-pl2 SUM-52 breast
cancer cell line, we also wanted to test the effect of
EIF4EBPI knockdown on these cells. Using the same
two shRNAs targeted to EIF4EBPI as we used on the
previous cell lines, we knocked down 4EBP1 mRNA
in the SUM-52 cells and likewise, saw a reduction in
4EBP1 protein levels (Fig. 6a). EIF4EBPI1 knockdown
in SUM-52 cells resulted in a dramatic reduction in
proliferation of SUM-52 cells, similar to what we ob-
served with the two ER+ cell lines. In LacZ control
cells, there was a highly significant increase in cell
number between days 1 and 4, whereas in the
sh4EBP1 cells, there was a slight reduction in cell
number in the shl group and a slight increase in cell
number is the sh2 group. These differences most
likely reflect different levels of knockdown achieved
with the two vectors. Of greatest importance is the
three to four-fold difference in the number of cells
per dish at the 4 day time point between the shLacZ
and sh4EBP1 groups again with p-values on the order
of 10™'*, (Fig. 6b). We also probed these control and
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Fig. 3 4EBP1 knockdown inhibits proliferation of ER+ 8p11-p12 breast cancer cells. (@) Western blot of 4EBP1, phospho-4EBP1 on residues Thr 37/
46, and ERa in SUM-44 cells engineered with either control shRNA to lacZ or two individual shRNAs to EIF4EBPT (4EBP sh_1 or sh_2). (b) Western
blot of 4EBP1, phospho-4EBP1 on residues Thr 37/46, and ERa in Cama-1 cells engineered with either control sShRNA to /acZ or two individual
ShRNAs to EIF4EBPT (4EBP sh_1 or sh_2). (c) Cell proliferation was assessed in SUM-44 and (d) Cama-1 control and EIF4EBPT knockdown cells on
day 1 and day 4 in culture following selection in puromycin containing media. Error bars represent standard deviation among replicates and
p-values represent the statistical comparison between each corresponding group

knockdown cells for Cyclin D1 and p27 expression. non-amplicon bearing models, MCF7 (ER+) (Additional
We saw a similar effect on these two proteins as in file 1: Figure S1 a), T47D (ER+) (Additional file 1: Figure
the SUM-44 and Cama-1 cells where Cyclin D1 levels  S1, b), SUM-229 (ER-) (Additional file 2: Figure S2 a), and
were decreased and p27 levels were increased (Fig. 6a). SUM-149 (ER-) (Additional file 2: Figure S2 b). These
We also evaluated the effect of 4EBP1 knockdown on the  experiments showed that knockdown of 4EBP1 in MCF7
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Fig. 4 4EBP1 knockdown does not affect proliferation of MCF10A and H16N2 non-transformed breast epithelial cells. (@) Western blot of 4EBP1 in
MCF10A cells and (b) H16N2 cells engineered with either control ShRNA to lacZ or two individual shRNAs to EIF4EBPT (4EBP sh_1 or sh_2). (c) Cell
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corresponding group
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and T47D also significantly inhibited proliferation
(Additional file 1: Figure S1 ¢ & d). By contrast, 4EBP1
knock-down in the triple negative SUM-149 and
SUM-229 cells was less effective at reducing proliferation
of these cells (Additional file 2: Figure S2 ¢ & d).

EIF4EBP1 expression levels correlate with reduced relapse

free survival in human breast cancer

To determine the overall impact of EIF4EBP1 on sur-
vival and to assess whether treatment affects the out-
comes, we used the online Kaplan-Meier plotter
database tool (kmplot.com) to assess the relationship be-
tween EIF4EBP1 gene expression and relapse free sur-
vival. This tool uses gene expression data from Gene
Expression Omnibus (GEO), the European Genome-
phenome Archive (EGA), and The Cancer Genome Atlas
(TCGA) [88].The JetSet probe set for EIF4EBPI1 (probe
ID: 221539_at) was used for all analyses. We found that
high EIF4EBPI gene expression significantly correlated
with reduced relapse free survival not only in ER+ popu-
lations (Fig. 7a), including when separated by luminal A
(Fig. 7b) and luminal B (Fig. 7c) subtypes, but also across
all subtypes (Fig. 7d). Furthermore, this was also true
post treatment with chemotherapy (Fig. 7e) and follow-
ing either tamoxifen (Fig. 7f) or other endocrine therapy
(Fig. 7g). Altogether, these analyses point to a role of
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4EBP1 overexpression in breast cancer development and
response to therapy.

Discussion

We and others have determined that a number of onco-
genes reside within the 8pl1-p12 region and are ampli-
fied in human breast cancer. Genes found within this
region such as WHSCILI [11], DDHD?2 [11], LSM1 [10,
11, 18], BAG4 [10, 11], and KAT6A [16, 28] have all been
shown to have transforming properties in vitro. Of sig-
nificance, the 8p11-p12 amplicon is implicated in endo-
crine resistance [1]. Consistent with this implication,
NSD3 (aka WHSCI1LI) was shown to drive high levels of
ER expression, and to enhance proliferation in an estro-
gen independent manner [29]. Reminiscent of this find-
ing, hyperactive mTOR is often observed in endocrine
resistant cells and can activate ERa [95-99]. Interest-
ingly, the EIF4EBPI gene which encodes the mTOR ef-
fector protein 4EBP1 is located on the short arm of
chromosome 8 within the 8pl1 region of the amplicon.
It is highly overexpressed but rarely mutated in breast
cancer, regardless of amplification, and has been sug-
gested to be an essential driving gene in many cancer
cell lines in vitro which we [93]and others have wit-
nessed [94]using genome-wide gene essentiality screens.
Consequently, our study initially aimed to determine
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whether 4EBP1 overexpression influences proliferation
in ER+ 8pl1-p12 amplicon positive breast cancer cells.
Our findings show that 4EBP1 is a critical protein for lu-
minal breast cancer cell proliferation regardless of
amplicon and/or ER status. However, shRNA mediated
knockdown of 4EBP1 in non-transformed mammary epi-
thelial cells did not affect proliferation. It is possible that
complete knock-out of 4EBP1 in non-tumorigenic breast
epithelial cells could affect their proliferative capacity,
but our results indicate that the changes in 4EBP1
expression in luminal breast cancer cells achieved by
shRNA knockdown is sufficient to profoundly affect
their proliferative capacity. Consistent with the idea
that 4EBP1 has a potential role in regulating ERa ex-
pression, as well as a potential role outside of ERa
regulation, we found that downregulation of 4EBP1
reduces not only ERa expression but also affects Cyc-
lin D1 expression and p27 expression. These observa-
tions are consistent with the reduced proliferation
and cell cycle arrest phenotypes that we report in our
present study. There is no indication that Cyclin D1
or p27 levels would change in non-transformed cells
because cell proliferation was not compromised with
4EBP1 knockdown in these models. Future studies
should further explore the relationship between
4EBP1 and Cyclin D1 in cancer cells and non-trans-
formed cells. There is a consistently demonstrated oc-
currence between co-amplification of genomic loci
harboring 4EBP1 (EIF4EBPI) and Cyclin D1 (CCNDI)
in breast cancer patients such as the recent report by
Giltnane and colleagues [27], so further studies
should assess how these two oncogenes together can
influence cell cycle states, meiotic progression, and
the regulation of aneuploidy. Because 4EBP1 is re-
quired for coupling mTORCI signaling to Cyclin D1
expression [101] and translational inhibition can re-
sult in the loss of cell cycle regulators like the
D-cyclins [105], we plan to determine the predictive
value of 4EBP1 levels to CDK inhibition in breast tu-
mors, especially in the context of dual inhibition with
PI3K/AKT/mTOR inhibitors.

Amplification of EIF4EBPI leads to increased 4EBP1 ex-
pression and phosphorylation suggesting that mechanisms
are in place to promote 4EBP1 mediated translation and
post-translational regulation during breast cancer initiation
and progression. Consequently, targeting of 4EBP1 either
directly or via inhibition of mTOR could relieve repressive
effects of phosphorylated 4EBP1 on translation as well as
any capacity of 4EBP1 to stabilize mTORCI1 [106] or other
proteins like p21 [107]. Several Phase II clinical trials have
evaluated use of mTOR inhibitors for ER+ breast cancer
[108-110]. While promising, results from trials in patients
with ER+ breast cancer who experience aromatase inhibitor
failure were only somewhat successful [108]. However, a
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current clinical trial is underway to determine if the phos-
phorylation status of 4EBP1 can be used to predict everoli-
mus response in breast tumors (NCT00855114).

Direct targeting of 4EBP1 or targeting of multiple up-
stream kinases that target 4EBP1 may provide additional
benefit. Recently, several kinases were identified to phos-
phorylate 4EBP1 in both mTOR dependent as well as in-
dependent manners [41, 42]. Of note, GSK3p
phosphorylation of 4EBP1 plays a similar role as mTOR,
whereby phosphorylation decreases 4EBP1 association
with eIF4E [50]. Contrary to this observation, CDK1 is a
mitotic kinase that also phosphorylates 4EBP1 [67, 70].
However, phosphorylation by CDK1 does not alter the
cap-dependent translation functions of 4EBPI1. Interest-
ingly, a phospho-deficient mutant of 4EBP1 that is resist-
ant to phosphorylation by CDK1 partially reverses rodent
cell transformation. It is suggested that 4EBP1 phosphor-
ylation by CDK1 could result in a gain of function, which
opposes the canonical form of regulation set forth by
studies evaluating mTOR-mediated inhibition of 4EBP1
through phosphorylation. Regulation of phosphorylated
4EBP1 especially the intertwined dynamics between
CDK1 and mTOR should be further explored, as CDK1
can phosphorylate mTOR and co-localize with phosphor-
ylated 4EBP1 [59]. Whether the distinct effects of the dif-
ferent phosphorylation states of 4EBP1, determined by
distinct phosphorylation events driven by individual ki-
nases, affects 4EBP1’s ability to drive breast cancer pro-
gression or endocrine resistance would be of significant
interest for future studies particular in the context of
therapeutic interventions.

Conclusions

EIF4EBP1 is a candidate oncogene in breast cancer be-
cause it is commonly amplified and overexpressed, and
is part of a genomic region that, when amplified, confers
poor prognosis for patients. Overexpression of 4EBP1
drives proliferation of luminal breast cancer cells by
mechanisms involving cell cycle regulators such as cyclin
D1 and the cdk inhibitor p27. In some cells, 4EBP1
phosphorylation occurs with high level activity of the
mTORC pathway, which also is common in estrogen-re-
ceptor positive breast cancer, and indeed, knockdown of
EIF4EBP1 results in reduced expression of ERa. Based
on these results, we conclude that 4EBP1, and particu-
larly phosphorylated 4EBP1 plays a dominant role in
breast cancer by mechanisms distinct from its role in
regulating cap-dependent translation.

Additional files

Additional file 1: Figure S1 4EBP1 knockdown inhibits proliferation of
MCF7 and T47D breast cancer cells. (@) Western blot of 4EBP1 in MCF7
cells and (b) T47D cells engineered with either control shRNA to lacZ or
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two individual shRNAs to EIF4EBPT (4EBP sh_1 or sh_2). (c) Cell
proliferation was assessed in MCF7 and (d) T47D control and EIF4EBPT
knockdown cells on day 1 and day 4 in culture. Error bars represent
standard deviation among replicates and p-values represent the
comparison between each corresponding group. (TIF 2538 kb)

Additional file 2: Figure S2 4EBP1 knockdown slows proliferation of
SUM-229 and SUM-149 breast cancer cells. (@) Western blot of 4EBP1 in
SUM-229 cells and (b) SUM-149 cells engineered with either control
ShRNA to lacZ or two individual shRNAs to EIF4EBP1 (4EBP sh_1 or sh_2).
() Cell proliferation was assessed in SUM-229 and (d) SUM-149 control
and EIF4EBPT knockdown cells on day 1 and day 4 in culture. Error bars
represent standard deviation among replicates and signficance is shown
between each corresponding group. (TIF 2688 kb)

Additional file 3: GrowthResults_2-15-19.xIsx Results and statistical
analysis of experiments in which EIF4EBP1 was knocked down in three
breast cancer cell lines. (XLSX 16 kb)
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