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Beatquency domain and machine 
learning improve prediction of 
cardiovascular death after acute 
coronary syndrome
Yun Liu1, Benjamin M. Scirica2, Collin M. Stultz1,3 & John V. Guttag3,4

Frequency domain measures of heart rate variability (HRV) are associated with adverse events after 
a myocardial infarction. However, patterns in the traditional frequency domain (measured in Hz, or 
cycles per second) may capture different cardiac phenomena at different heart rates. An alternative is 
to consider frequency with respect to heartbeats, or beatquency. We compared the use of frequency 
and beatquency domains to predict patient risk after an acute coronary syndrome. We then determined 
whether machine learning could further improve the predictive performance. We first evaluated 
the use of pre-defined frequency and beatquency bands in a clinical trial dataset (N = 2302) for the 
HRV risk measure LF/HF (the ratio of low frequency to high frequency power). Relative to frequency, 
beatquency improved the ability of LF/HF to predict cardiovascular death within one year (Area Under 
the Curve, or AUC, of 0.730 vs. 0.704, p < 0.001). Next, we used machine learning to learn frequency 
and beatquency bands with optimal predictive power, which further improved the AUC for beatquency 
to 0.753 (p < 0.001), but not for frequency. Results in additional validation datasets (N = 2255 and 
N = 765) were similar. Our results suggest that beatquency and machine learning provide valuable tools 
in physiological studies of HRV.

Frequency domain measures of heart rate variability (HRV)1 identify patients who are at increased risk of adverse 
medical outcomes2–7. Most frequency domain measures are in units of cycles per second (Hz). However, “fre-
quency” can also be measured with respect to heartbeats, in units of cycles/beat – which is sometimes expressed 
as “equivalent Hz” (cycles/beat * mean heart rate) in the literature8–16. In this work, our goal is to compare these 
two frequency domains in the context of predicting cardiovascular death after a non-ST-elevation acute coronary 
syndrome (NSTEACS).

To illustrate the difference between frequency (Hz) and beatquency (cycles/beat), assume that there are two 
patients with constant heart rates of 60 and 120 beats per minute respectively. A frequency of 0.5 Hz corresponds 
to every 2 beats in the first patient but every 4 beats in the second. Use of the beatquency domain may result in 
more consistent predictive frequency bands between patients with different heart rates, and across different times 
for a given patient.

As recommended by the HRV Task Force1, most studies that analyze frequency domain HRV do so in the 
frequency domain. Interestingly, however, the beatquency domain is associated with greater intra-subject and 
inter-subject consistency in humans8 as well as across rats and dogs15. Remarkably, to our knowledge, there have 
been no published studies of the utility of beatquency in predicting adverse outcomes.

In this study we tested the hypothesis that beatquency applied to an established HRV measure, Low Frequency 
High Frequency (LF/HF, a ratio of energy in two bands)1 will improve prediction performance for cardiovas-
cular death post NSTEACS. We focused on frequency domain measures and LF/HF because LF/HF was the 
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best performing HRV measure on our datasets relative to other frequency domain measures (e.g., the Standard 
Deviation of normal RR intervals, or SDNN) in our datasets17,18. Because these original frequency bands were not 
explicitly selected for optimal risk stratification, we further used machine learning to discover the frequency and 
beatquency bands most useful in predicting cardiovascular death post NSTEACS.

Clinical Data and Outcomes
Our work primarily utilized electrocardiographic (ECG) recordings obtained from a clinical trial of patients 
after NSTEACS19. The dataset consists of all 2,302 patients in the placebo arm, and contains 93 cardiovascular 
deaths within the median follow-up of one year. We focused on the placebo arm because the treatment arm was 
prescribed ranolazine, a drug that may have anti-arrhythmic properties20 and thus affect ECG measures. We used 
this dataset to compare frequency and beatquency LF/HF and to train and test machine learning models. If not 
otherwise indicated, all results in this work refer to this dataset. In addition, we employed two additional “holdout 
datasets”, for further validation of the machine learning models that were developed, using the dataset described 
above. These datasets are described in the Supplementary Information. Patient characteristics are reported in 
Table 1. For all three datasets, up to 7 days of ambulatory ECG signals recorded at 128 Hz are available for each 
patient. In this work, we used the first 24 hours from each patient to compute the heart rate time series. The pro-
tocol was approved by the local or central Institutional Review Board at all participating centers.

Results
LF/HF in Frequency and Beatquency. The frequency domain quantifies changes that are periodic with 
respect to time, while the beatquency domain quantifies changes that are periodic with respect to heartbeats. 
For example, a beatquency of 0.5 cycles/beat quantifies events that alternate with each heartbeat. In terms of 
frequency, this would correspond to 0.5 Hz at a heart rate of 60 beats per minute, but 1 Hz at a heart rate of 120 
beats per minute. The calculation of frequency and beatquency domain metrics is schematically outlined in Fig. 1. 
The initial steps of both calculations are similar: we obtained a heart rate time series, divided it into 5-minute 
windows, and converted each window into each of the two frequency domains. For the “pre-defined bands” cal-
culation (blue in lower half of Fig. 1), we computed the frequency LF/HF using the established LF (0.04 to 0.15 Hz) 
and HF (0.15 to 0.40 Hz) bands1. Diagnostic bands for beatquency LF/HF were based on a prior study that applied 
LF and HF beatquency bands to normal adults as well as those with coronary artery disease and congestive heart 
failure: 0.03 to 0.14 (LF band) and 0.14 to 0.40 cycles/beat (HF band)14.

The Area Under the Curve (AUC) for LF/HF in frequency and beatquency in the entire cohort were sig-
nificantly different, 0.713 for frequency and 0.731 for beatquency, p <  0.01 (the receiver operating charac-
teristic curves are shown in Supplementary Fig. S1). Using the quartile as high-risk cutoffs for time and beat 
frequency (0.841 and 0.832 respectively) resulted in hazard ratios (HRs)21 of 3.7 and 4.6. After adjusting for the 
Thrombolysis in Myocardial Infarction Risk Score (TRS)22, the HRs were 3.0 and 3.9 respectively. After adjusting 
for TRS, ejection fraction (EF), and B-type natriuretic peptide (BNP)23, both HRs were 2.4. All HRs were statis-
tically significant (p <  0.01). The category-free net reclassification improvement24 for beatquency relative to time 
frequency was 75% (95% confidence interval 42–93%).

Machine Learning (WHRV) in Frequency and Beatquency. The LF and HF frequency and beatquency 
bands above were not optimized for prediction of adverse events, but were instead based on previous physio-
logical studies and observations of where peaks are located in the power spectra. In this section, we evaluate a 
machine learning procedure to learn the predictive frequency and beatquency bands as well as the relative impor-
tance (weights) of each band. We term this approach Weighted HRV (WHRV), and outline the approach in red 
in the lower half of Fig. 1.

In the WHRV approach we first obtained a heart rate time series, divided it into 5-minute windows, and 
converted each window into each of the two frequency domains. Unlike the computation of frequency LF/HF 
where we computed the energy in pre-specified bands, here we estimated the power spectral density from 0.01 
to 0.50 Hz in 0.01 increments – yielding 50 frequency bands. An identical approach applied to the heart rate time 
series with “beats” on the x-axis yields 50 beatquency bands ranging from 0.01 to 0.50 cycles/beat. In each case, 
these 50 values formed a feature vector for each patient. We first applied unsupervised approaches (Methods) to 

Dataset D1 D2 D3

N 2302 2255 765

1-year cardiovascular death (CVD) 93 (4.0%) 77 (3.4) 14 (1.8)

Median follow-up 1 year 1 year 90 days

Age, years, median (IQR) 64 (55–72) 63 (55–72) 62 (54–71)

Age ≥  75 (%) 17 17 14

Female (%) 35 34 36

Diabetes mellitus (%) 34 33 24

Hypertension (%) 74 73 69

Current smoker (%) 25 27 56

Previous myocardial infarction (%) 33 33 25

Table 1.  Patient characteristics. IQR indicates interquartile range.
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understand if dimensionality reduction based on these frequency and beatquency features would reveal differ-
ences between the two types of frequency (Table 2). Since we tested several different unsupervised methods for 
assessing patient risk (e.g., centered and non-centered PCA and MCE), we only report the AUCs for the method 

Figure 1. Schematic of calculation of heart rate variability (HRV) metrics in frequency and beatquency. 
The input ECG signal is used to compute the heart rate time series with time and beat index as the x-axis. Next, 
this heart rate time series is converted to the frequency or beatquency domain. The final metrics measure 
the energy in pre-defined bands (Low Frequency High Frequency, LF/HF), or weighted by machine learning 
(Weighted HRV, WHRV).

Dataset D2 D3

Type of frequency Beat Time Beat Time

LF/HF 0.725 0.710 0.733 0.709

PCA 0.726 0.620 0.680 0.669

MCE 0.687 0.652 0.767 0.713

WHRV* 0.728 0.691 0.738 0.679

Random 0.500

Table 2.  Prediction performance (AUC, area under receiver operating characteristic curve) for 
cardiovascular death. Bold indicates the higher AUC in each pair (time vs beat). *Indicates WHRV (the 
supervised approach) was trained on dataset D1 and the reported results are averaged over patients that the 
model was not trained on.
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that yielded the best results in Table 2. (Details of the performance of each of the methods we investigated are 
shown in Supplementary Figs S3–S5). In all cases (particularly in the larger validation dataset D2), the discrim-
inatory performance was improved in beatquency relative to frequency (see Table 2). Furthermore, these data 
demonstrate that these techniques can perform remarkably well, yielding AUCs as high as 0.726 in the larger 
validation dataset D2 (using principle component analysis), and as high as 0.767 in the smaller dataset D3 (using 
minimum curvilinear embedding25). The fact that dimensionality reduction using beatquency features can yield 
improved performance argues that a combined approach that uses both a dimensionality reduction approach 
coupled with supervised learning may further improve the performance of the beatquency approach.

Based on these encouraging findings, we adopted a supervised learning approach by feeding the feature vec-
tors to an L1-regularized logistic regression algorithm, which selects the most important features (frequency or 
beatquency bands). The algorithm outputs a weight vector, which quantifies the relative importance of each fre-
quency band in the prediction. For each patient, the WHRV is the scalar valued dot product of the feature vector 
with the weight vector, and higher values indicate higher risk. The machine learning protocol is described in more 
detail in the Methods.

We trained separate models on each of 1,000 randomly chosen training sets and evaluated the results averaged 
across the 1,000 test sets to ensure results were not dependent on the randomness of each split (Methods). The 
AUC for beatquency WHRV was significantly higher than that of frequency in the test sets taken from dataset 
D1 (Table S2, 0.753 versus 0.704, p <  0.001). Applying the same trained models to two additional holdout sets 
demonstrated similar trends (0.728 versus 0.691, and 0.738 versus 0.679, p <  0.001, see Table 2). Moreover, while 
machine learning left the AUC of frequency LF/HF unchanged, it increased the AUC of beatquency LF/HF using 
test sets from dataset D1 (0.704 to 0.730, p <  0.001, Table S2) and in the validation sets (Table 2). These values are 
significantly higher than those of another HRV metric, SDNN (standard deviation of NN intervals).

Lastly we note that since the AUC may be deceptive in the setting of significant class imbalance (i.e., a rela-
tively small number of positive examples)16,25–27, we also calculated the AUPR for each of the predictive methods 
we examined (Table 3). While the AUPRs on the smaller validation dataset, D3, do not show an improvement in 
performance when a beat-space analysis is used, in most cases the performance on the larger dataset, D2, shows 
an improvement in the beatquency domain. The fact that the overall AUPRs are low highlights the fact that there 
is room for improvement with respect to development of a model with true clinical utility. Nevertheless, we were 
encouraged by the fact that beatquency improves the AUC in all of our applied methods.

To further explore the utility of our methods, we evaluated them on patients who would not be identified as 
high risk by TRS (TRS ≤  4). The AUC for beatquency WHRV increased to 0.773 in this population, and this per-
formance was preserved in both males (0.772) and females (0.758) (Table S2). Similarly, these AUCs were higher 
than that those in frequency, and substantially higher than SDNN.

We present the HRs of the models before and after adjusting for clinical variables in Table 4. The unadjusted 
HR’s were 3.70 and 5.19 for frequency and beatquency respectively. In multivariable analysis, the HRs were 3.13 
and 4.38 after adjusting for TRS, and 1.99 and 2.91 after adjusting for TRS, EF and BNP. After adjusting for all 
three variables, the WHRV beatquency metric had a confidence interval that excluded 1. In addition, the adjusted 
HR using machine learning was higher than those using pre-defined bands for beatquency; i.e., the LF/HF 
beatquency HR is 2.45 vs. a beatquency WHRV HR of 2.91 (where only the latter has a 95% CI that excludes 1).  
This was not the case when machine learning was applied to the frequency domain; i.e., the LF/HF frequency HR 
is 2.28 vs. a WHRV frequency HR of 1.99.

Dataset D2 D3

Type of frequency Beat Time Beat Time

LF/HF 0.080 0.076 0.054 0.064

PCA 0.070 0.058 0.072 0.085

MCE 0.067 0.070 0.066 0.071

WHRV* 0.080 0.067 0.050 0.054

Random 0.034 0.018

Table 3.  Prediction performance (AUPR, area under precision recall curve) for cardiovascular death. Bold 
indicates the higher AUC in each pair (time vs beat). *Indicates WHRV (the supervised approach) was trained 
on dataset D1 and the reported results are averaged over patients that the model was not trained on.

WHRV HR (95% CI) LF/HF HR (95% CI)

Beat Time Beat Time

Unadjusted 5.19 (2.60,9.45) 3.70 (1.98,6.76) 4.44 (2.51,7.92) 3.73 (2.20,6.68)

Adj. for TRS 4.38 (2.23,8.62) 3.13 (1.72,5.89) 3.74 (2.01,7.07) 3.09 (1.73,5.84)

Adj. for TRS,EF,BNP† 2.91 (1.05,8.68) 1.99 (0.69,5.73) 2.45 (0.98,6.90) 2.28 (0.86,6.72)

Table 4.  Hazard Ratio (HR) averaged over 1,000 test sets in D1. 95% confidence intervals (CI) reported in 
parenthesis. Bold indicates the highest HR in each row (p <  0.001 for unadjusted and adjusted for TRS; in the 
last row only WHRV in beatquency has a CI that does not include 1). †In 7 out of 1,000 test sets, less than 30%  
of the patients had measured values of both EF and BNP, and therefore these test sets were excluded.
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The results above used the quartile as the high-risk cutoff. To explore the utility of using other cutoffs, we com-
pared the positive predictive values and negative predictive values of these four metrics over all possible cutoffs 
from the 5th to the 95th percentile, in increments of 10 percentiles (Supplementary information, Figs S7 and S8).  
Beatquency WHRV demonstrated the highest positive predictive value from the 25th to the 85th percentile, 
demonstrating robustness to the choice of the cutoff. The negative predictive values of all the measures were above 
96% at all cutoffs, suggesting utility in identifying patients who are not at high-risk.

Each of the 1,000 randomly chosen training sets generated a distinct weight vector. We observed a greater 
consistency in beatquency features compared to frequency in these 1,000 weight vectors: the average stand-
ard deviation of the normalized beatquency feature weights is less than half that of the frequency value (Fig. 2, 
0.057 versus 0.153, p <  0.001). Moreover, beatquencies between 0.03–0.07 cycles/beat have consistently negative 
weights across the 1,000 different models – suggesting that high power in these bands is associated with decreased 
rate of one-year cardiovascular death. By contrast, beatquencies between 0.18–0.24 cycles/beat are associated 
with positive weights – suggesting that high power in these bands is associated with an increased rate of one-year 
cardiovascular death. Since the models built using frequency features show much more variation across the 1,000 
different models, it is difficult to make reliable inferences about the relative importance of different frequency 
bands.

Discussion
Since the autonomic nervous system is an important regulator of heart rate, analysis of heart rate variability can 
provide useful information about autonomic tone. Quantitative metrics like HRV that provide insight into the 
autonomic tone are often calculated using the frequency domain. Frequency domain HRV metrics have been 
shown to provide useful prognostic information after a myocardial infarction in multiple studies2–7 and after 
NSTEACS17,18. However, though frequency HRV measures are associated with elevated risk after NSTEACS, 
these risk measures miss significant numbers of deaths18. Our results suggest that quantifying LF/HF in terms of 
beatquency instead of frequency improves the ability to identify high-risk patients after a NSTEACS.

Analysis of the relationship between the frequency spectrum and the average heart rate provides insight into 
the improved performance of measures that are calculated from the beatquency spectrum. In a study by Perini 
et al., young male subjects exercised on a cycle ergometer at pre-specified exercise intensities28. With increasing 
exercise intensity, the center frequency of the HF band increased from 0.24 to 0.48 Hz (Fig. 3). By contrast, our 
estimate of the center frequency of the corresponding HF band in beatquency varies from 0.17 to 0.19 cycles/beat 
over the same range of heart rates (Fig. 3). Because beatquency bands are less sensitive to changes in average heart 
rate, they allow patients and ECG segments with different average heart rates to be directly compared.

Because the location of the HF band is influenced by the respiratory rate29,30, and heart rate and respiratory 
rate are correlated, beatquency may be correcting for respiratory rate. There exist sophisticated algorithms to 
extract the respiratory rate from the ECG, for example in ref. 31, and to adjust the frequency bands based on the 
respiratory rate32,33. These methods may improve risk stratification further, however we note that the simplicity 
of beatquency enables it to be easily applied to existing large HRV datasets and also to new HRV studies without 
additional equipment or expert oversight in selecting appropriate frequency bands.

Figure 2. Boxplot of normalized weights of frequency and beatquency machine learning models trained on 
the same 1,000 training splits. Quartiles are represented by the edges of lines, box, and central dot, while circles 
indicate outliers. The average standard deviations of the weights are 0.057 in beatquency and 0.153 in frequency.
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The fact that beatquency WHRV (using machine learning) outperformed beatquency LF/HF (using 
pre-defined bands) highlights the benefit of adopting a data-driven, machine learning approach to analyzing heart 
rate spectra. An analysis of the weights of the beatquency bands finds trends that are similar to what has been 
observed with trends in standard frequency LF/HF measurements. In particular, the signs of the beatquency bands 
weights (negative at 0.03 to 0.07 cycles/beat and positive at 0.18 to 0.24 cycles/beat) are consistent with the notion 
that in patients post myocardial infarction, lower values of LF/HF are associated with adverse events in some 
patient populations34. Our data also demonstrate that using features derived from the beatquency spectrum yields 
logistic regression models that have improved performance relative to models derived from the frequency spec-
trum. Thus beatquency may also have utility in other machine learning models that leverage frequency domain 
ECG features, such as for arrhythmia classification35. One limitation of our observations is that we used Holter 
data that were collected at the standard frequency of 128 Hz. Higher sampling rates may improve the accuracy of 
our measured RR intervals and further improve results, especially for standard frequency domain HRV measures.

Applying machine learning to frequency bands does not yield a significant improvement in either the AUC 
or the unadjusted or adjusted hazard ratios relative to the pre-defined frequency bands. That machine learning 
improves risk stratification with beatquency bands but not frequency bands can be explained by the greater con-
sistency of feature weights in beat- compared to frequency. Since differences in average heart rate are associated 
with shifts in the frequency domain spectra, the predictive frequencies may differ between patients and across 
time for each patient. Thus frequency features may not generalize across patients or even between segments of dif-
ferent heart rates for the same patient. This leads to unchanged or even decreased performance despite an attempt 
to learn the predictive frequencies.

Overall, applying beatquency and machine learning to heart rate variability metrics improves our ability 
to identify patients at elevated risk of cardiovascular death post NSTEACS. Our machine learning approach 
in beatquency also reveals predictive bands that can be studied in more detail in physiological studies, and 
more generally, showcases a data driven approach to selecting frequency bands for analysis. Our discrimina-
tory results could be improved further by including other variables (both based on HRV and otherwise) in 
the machine-learning model. As already mentioned, the objective of this work was to compare the ability of 
two different methods for representing the heart rate time series. Our data demonstrate the relative power of a 
beatquency approach for identifying patients at high risk of death post ACS. Effective risk metrics may arise from 
models that combine beatquency variables with other non-linear metrics that have been applied medical data36–38. 
Beyond predicting patient risk, future work would be required to further validate these risk metrics and to find 
the most effective therapies in high risk patients highlighted by these risk metrics.

Methods
Frequency LF/HF. We first segmented the 24-hour long ECG signal to find individual heartbeats, and used the 
Signal Quality Index39 to extract the normal beats. To ensure that only normal beats were analyzed, the two beats 
adjacent to each abnormal beat were removed as well. We performed manual checks to ensure these segmentation 
and beat classification steps were appropriate. These steps are described in detail in our previously published work40.

To calculate the frequency LF/HF we divided the heart rate time series into 5-minute intervals and estimated 
the power spectral density in the frequency domain. There are many ways to compute the frequency domain 
power spectrum; we use the Lomb-Scargle periodogram, which provides a natural way to handle unevenly sam-
pled data41,42. For the RR time series, this uneven sampling has two sources: the inherent heart rate variations in 
the underlying ECG, and the removal of ectopic beats or artifacts. We then computed the ratio of the energy in the 
LF band to the HF band for each 5-minute window, and defined the median value of all these LF/HF ratios to be 
the LF/HF for that patient. A low LF/HF ratio is known to be associated with poorer prognosis34.

Figure 3. Location of high frequency band in exercising subjects. Frequency data are from ref. 28; 
beatquencies are estimated by dividing the frequency value by the heart rate in Hz. Error bars represent 
standard error.
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Beatquency LF/HF. Frequency LF/HF was obtained from the power spectrum of the heart rate time 
series, where the time points of the beats were used as a temporal reference in the Lomb-Scargle periodogram. 
Beatquency LF/HF was also obtained from the power spectrum of the heart rate time series, however, the heart-
beat indices were used as the “temporal” reference. Where beats or parts of the signal were removed (as described 
in the previous section), the number of removed beats was estimated using the average time intervals of the heart-
beats immediately adjacent to the gap18. As mentioned in the results section, diagnostic bands for beatquency 
LF/HF were based on a prior study that applied LF and HF beatquency bands to normal adults as well as those 
with coronary artery disease and congestive heart failure: 0.03 to 0.14 (LF band) and 0.14 to 0.40 cycles/beat (HF 
band)14. The remaining steps in beatquency LF/HF computation were identical to the frequency construction. 
Figure 1 compares the two approaches.

We verified that frequency and beatquency bands were meaningfully different by computing the correlation 
coefficient of the LF and HF bands in frequency with bands in beatquency. The most similar beatquency bands 
had correlations of 0.63 (0.04 to 0.13) and 0.81 (0.10 to 0.37) for frequency LF and HF respectively. These corre-
spond to 40% and 66% of the explained variance, respectively.

Machine Learning. In this section, we describe a machine learning procedure to learn predictive frequency 
and beatquency bands as well as the relative importance (weights) associated with each band. First, we will 
describe the feature construction for each patient, where each feature is related to a frequency or beatquency 
band. These features were then used to train a model, which outputs a weight vector and a prediction for each 
patient. The weight vector quantifies the importance of each frequency band in the prediction, and for each 
patient the prediction was the dot product of the feature vector with the weight vector. We term the resulting 
scalar-valued prediction the Weighted HRV (WHRV).

The initial steps were similar to the LF/HF computation (Fig. 1). We obtained a heart rate time series, divided 
it into 5-minute windows, and converted each window into the frequency domain. Unlike the computation of 
frequency LF/HF where we computed the energy in pre-specified bands, here we estimated the power spectral 
density from 0.01 to 0.50 Hz in 0.01 increments. After this was done for all 5-minute windows for that patient, 
we defined each feature as the 90th percentile of the power for that frequency over all 5-minute windows. This 
90th percentile value was used in previous ECG measures, and is intended to capture the maximum variability in 
a particular frequency while excluding outliers17,18. These 50 features quantify the heart rate variability at each 
frequency from 0.01 to 0.50 Hz.

The beatquency features were constructed in a similar fashion, except that beat indices were used as the tem-
poral reference in the Lomb-Scargle periodogram instead of time points. The other steps of preprocessing (i.e., 
division into 5-minute windows, and taking the 90th percentile) were identical. The 50 features obtained quantify 
the heart rate variability in 50 beatquency bands from 0.01 to 0.50 cycles/beat. We visualized these frequency 
and beatquency features using principle component analysis (PCA) and non-centered Minimum Curvilinear 
Embedding (MCE, a type of topological-based nonlinear kernel PCA25, and found promising discriminatory 
performance (Tables 2 and 3, Supplementary Figs S3–S5). These unsupervised results encouraged us to apply 
supervised machine learning methods, as described in the next sections.

The machine learning protocol consists of randomly dividing the initial dataset into a training set and a test 
set in a 2:1 ratio, stratified by outcome; i.e., training sets and test sets have the same percentage of cardiovascu-
lar deaths. A L1-regularized logistic regression model (Equation 1) as implemented in LIBLINEAR43, was then 
trained on the training set and tested on the test set.
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where ŵ is the optimum weight vector that minimizes the expression in square braces in equation 1, ||• ||1 is the L1 
norm, D− and D+ are data (patients) in the negative (alive) and positive (dead) classes, C− and C+ are cost param-
eters for the two classes, yi and yj are the scalar class labels for patients i and j, and assumes a value of either − 1 or + 1. 
The variables xi and xj denote the feature vectors for patients i and j, respectively.

Because we expected only a relatively small subset of the frequency domain to contain pertinent prognos-
tic information, we applied L1 regularization to perform implicit feature selection. Within the training set, five 
repeats of 5-fold cross validation were used to optimize the cost parameters C− and C+, for patients in the neg-
ative (alive) and positive (dead) classes respectively. This asymmetric cost was necessary because only 4% of the 
patients experienced an event. C− is optimized from the range 10−6 to 10−2 in exponential steps, while keeping 
C+ =  k * C−, where k is the class imbalance ratio. We standardized each frequency domain feature by subtracting 
the mean value of that feature and dividing by its standard deviation across all patients.

Evaluation of Machine Learning Models. We evaluated the performance of WHRV by randomly split-
ting the dataset into a training set and a test set in a 2:1 ratio. This training/test split procedure ensures that mod-
els are evaluated based on their performance on patients that the models have previously not “seen”. We trained a 
machine learning model on the training set and measured the discriminatory performance on the test set using 
the area under the receiver operating characteristic curve (AUC)44 for the outcome of cardiovascular death within 
1 year. The AUC can be interpreted as a probability: given a patient who eventually experienced the outcome of 
interest (e.g. cardiovascular death within 1 year) and another who did not, what is the probability that the model 
ranks the patient who died as at a higher risk than the patient who did not45?

We repeated this training/test split 1,000 times to reduce the effects of selecting an overly optimistic or pes-
simistic test set, i.e. we constructed 1,000 training sets and 1,000 test sets. We report results averaged over the 
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1,000 test sets. To evaluate the performance of these models in the additional holdout datasets (as described in the 
supplement), we computed the AUC for each of the 1,000 models in the holdout dataset, and report the average 
AUC. In addition, we also evaluated the trained models on two additional datasets (reported in the Supplement) 
and summarize the results in the main text.

The relative importance of the 50 frequency and beatquency features were analyzed across the 1,000 different 
models by dividing the weight of each feature by the maximum absolute weight in each model (i.e., the largest 
absolute value of the normalized weights will be 1). We estimated the variation in feature weights by first comput-
ing the standard deviation of each normalized feature weight across all 1,000 models to obtain a standard devia-
tion for each feature. We summarized these 50 standard deviations by taking the average. A higher value indicates 
a higher variation of feature weights across different training sets.

Comparison with Clinical Measures. We evaluated the performance of our model relative to several clini-
cal variables, the Thrombolysis In Myocardial Infarction Risk Score22 (TRS), left ventricular ejection fraction (EF), 
and B-type natriuretic peptide23 (BNP). The TRS summarizes the effects of numerous risk factors, including age, 
elevated biomarkers, and presence of coronary artery disease. The score is defined as the number of risk factors 
(out of 7) that a person has, and thus ranges from 0 to 7. Patients with TRS ≥  5 are considered to be at high risk22. 
EF quantifies the fraction of blood ejected in each cardiac cycle; we use ≤ 40% as the threshold for high risk18.  
BNP is a blood marker indicating ventricular stretch, and > 80 pg/ml is considered a high-risk cutoff 23. Because 
EF and BNP were only measured in 47% of the patients18, we build separate multivariable models: a model that 
includes only TRS and uses all the patients, and a model that includes TRS, EF, and BNP, and uses only the 
patients with measured values of both EF and BNP.

Statistical Analysis. In the LF/HF section, we assess the statistical significance of differences between the AUCs 
of two metrics (frequency and beatquency versions) on the entire dataset46. In addition, we computed the category-free 
net reclassification improvement to assess the difference between the frequency and beatquency LF/HF24.  
In the machine learning section, we assess the difference of AUCs across 1,000 test sets using a two-tailed paired 
t-test. Because of the known issues with the AUC in imbalanced datasets16,25–27, we also report the area under the pre-
cision recall curve (AUPR). Because dataset D3 has few outcomes (distinct from low proportion of outcomes), flipping 
the prediction in a single positive patient can cause a large change in precision and recall and “raggedness” in the pre-
cision recall curve. Thus, we place more emphasis on performance measurements on the larger datasets D1 and D2.

In addition, we computed the hazard ratio (HR) of the different HRV risk metrics using the Cox proportional 
hazards regression model21. We dichotomized the continuous machine learning predictions at the upper quartile of 
each test set; thus the HR indicates the hazard ratio of the upper quartile compared to the remaining patients. We 
adjusted the HR for TRS, EF, and BNP using binary variables defined by the high-risk cutoffs described in the pre-
vious section. Thus, we present three HRs: unadjusted, adjusted for TRS, and adjusted for all of TRS, EF, and BNP.
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