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Abstract: Snakebite envenomation is considered a neglected tropical disease, affecting tens of thou-
sands of people each year. The recommended treatment is the use of antivenom, which is composed
of immunoglobulins or immunoglobulin fragments obtained from the plasma of animals hyperim-
munized with one (monospecific) or several (polyspecific) venoms. In this review, the efforts made
in the improvement of the already available antivenoms and the development of new antivenoms,
focusing on snakes of medical importance from sub-Saharan Africa and Latin America, are described.
Some antivenoms currently used are composed of whole IgGs, whereas others use F(ab’)2 fragments.
The classic methods of attaining snake antivenoms are presented, in addition to new strategies to
improve their effectiveness. Punctual changes in immunization protocols, in addition to the use
of cross-reactivity between venoms from different snakes for the manufacture of more potent and
widely used antivenoms, are presented. It is known that venoms are a complex mixture of compo-
nents; however, advances in the field of antivenoms have shown that there are key toxins that, if
effectively blocked, are capable of reversing the condition of in vivo envenomation. These studies
provide an opportunity for the use of monoclonal antibodies in the development of new-generation
antivenoms. Thus, monoclonal antibodies and their fragments are described as a possible alternative
for the production of antivenoms, regardless of the venom. This review also highlights the challenges
associated with their development.

Keywords: antivenom; venom; antibodies; snake bites; antivenom design; neglected tropical disease

Key Contribution: This review aims to contribute to the understanding of the development of serum
therapy in recent decades, showing its importance over the years and the need for its improvement.
The advance in the quality of antivenoms and the search for alternatives for the treatment of snakebites
are also covered.

1. Snakebites and Serum Therapy

The estimated number of snakebites in the world is about 400,000/year with
approximately 20,000 deaths/year [1]. Another estimate shows that there are around
1.8–2.7 million snake envenomations annually, resulting in around 81,000–138,000 deaths,
and that there may be as many as 400,000 people with permanent disabilities resulting from
snakebite each year [2–4].

The greatest burden of snakebite envenomation occurs in Asia, sub-Saharan Africa,
Latin America, and parts of Oceania [1]. In 2017, the World Health Organization considered
ophidism a neglected tropical disease of the highest priority, and set a commitment with
several countries to reduce snakebite accidents by 50% by 2030 [5].

In the Middle East and North Africa, 17 snake species are found, and, in sub-Saharan
Africa, encompassing the Central, East, South, and West regions of the African continent,
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26 species are found. Among these, the most medically relevant snakes belong to the genera
Echis spp., Naja spp., Dendroaspis spp., and Bitis spp. (Figure 1) [6]. In Latin America, the
most important snakes belong to the genera Bothrops spp., Lachesis spp., Crotalus spp., and
Micrurus spp. [7,8].
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The Bitis genus includes six species responsible for a large number of bites: B. arietans,
B. somalica, B. parviocula, B. gabonica, B. rhinoceros, and B. nasicornis [9,10].

B. arietans, a snake of great medical importance, is responsible for a large number
of serious accidents, mainly in children and rural workers in Africa [10,11]. The Bitis
arietans bite causes local damage, such as necrosis, and systemic symptoms, such as fever,
neutrophilic leukocytosis, thrombocytopenia, hemolysis, and bleeding, which can result
in anemia, reduced resistance to infections, diffuse hemorrhage, myocardial damage,
coagulopathy, hypotension, and death [9,10].

Regarding the genus Dendroaspis, D. polylepis stands out and is popularly known
as black mamba, whereas D. angusticeps and D. viridis are called green mambas. The
envenomation may cause hypotension, tachycardia, paresthesia in superior and inferior
limbs, and respiratory failure in their victims [12]. Proteomics studies reveled that the
D. polylepis venom is mainly composed of Kunitz-type molecules, which include mamba
dendrotoxins (63%), three-finger toxins (31%), and metalloproteases (3%) [13].

The genus Naja is composed of a large number of snakes, totaling 33 species [14],
including N. naja, N. annulifera, N. melanoleuca, N. mossambica, and N. nigricollis. Most
species have neurotoxic venom, acting on the nervous system, causing paralysis. In
addition, many venoms from Naja spp. have cytotoxic characteristics that cause swelling
and necrosis, in addition to cardiotoxic components [15].

According to reports, cases of human casualties resulting from E. ocellatus envenoming
are higher than those of all other African snakes combined, accounting for 90% of bites and
over 60% of mortalities, and several thousand permanent disabilities [16,17].

In Latin America, the prominent genera are Bothrops spp. and Crotalus spp., as they
account for more than 95% of reported accidents. Bothrops species are abundant [18], with
a wide geographic distribution, since they have successfully colonized most of the South
American territory [19,20]. The Bothrops genus is responsible for the majority of accidents in
Brazil (around 85%). The accidents gain attention because of the gravity of the symptoms
resulting from the complex mechanism of action of many toxins, such as Snake Venom
Metallo Proteases (SVMPs), Snake Venom Serine Proteases (SVSPs) and phospholipases A2
(PLA2s) [21–23]. Accidents caused by the Bothrops genus result in symptoms characterized
by hemorrhage, inflammation, and disturbances in the coagulation cascade [24], with local
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and systemic clinical manifestations. The local manifestations are characterized by edema,
ecchymosis, pain, and blisters with serous, hemorrhagic, or necrotic content that may occur.
In systemic manifestations, gingivorrhagia, microscopic hematuria, purpura, bleeding in
recent wounds, intense hemorrhage, shock, and renal failure are observed in the most
severe cases [24–27].

Other snakes of medical importance in Brazil belong to the genus Crotalus (i.e.,
C. durissus terrificus, C. d. cascavela, C. d. collineatus, C. d. ruruima, C. vergandis, C. d.
ruruima, C. d. marajoensis). Usually, their venoms are mainly composed of neurotoxins
and myotoxins, such as crotoxin [27,28], crotamin [29,30], and gyroxin [28,30]. Respon-
sible for both the neurotoxic and systemic myotoxic effects characteristic of this venom,
crotoxin comprises two sub-units that are non-covalently linked: the non-catalytic A (CA),
or crotapotin, and the catalytic unit, crotoxin B (CB) and phospholipase A2 (PLA2) [31].
Crotapotin is an acidic polypeptide with no detectable enzymatic activity. PLA2 catalyzes
the hydrolysis of the sn-2-acyl chain of phospholipids resulting in fatty acids and lysophos-
pholipids. Crotapotin, working as a chaperon, potentiates the toxicity of PLA2 by about
35-fold [25,32,33]. It is important to note that snakes of the Crotalus genus, commonly called
rattlesnakes, are the cause of a large number of accidents in North America, especially in
the United States. Fortunately, accidents rarely cause morbidity or fatalities [31].

Thus, snake venoms are a complex mixture, composed mainly of proteins (±90–95%),
in addition to peptides, carbohydrates, segments derived from nucleic acids, metal ions,
biogenic amines, lipids, and free amino acids, which have different biological activities [32].
Effective antivenoms are expected to be able to neutralize the major toxins in a venom.

The only treatment for snakebite is the use of antivenoms, or serum therapy, which,
when injected into an envenomed human bitten by a snake, mainly neutralizes the toxins
of the venom used in its production. Snake antivenoms are specific immunoglobulins
produced by fractionation of plasma generally obtained from large domestic animals,
mainly horses, hyperimmunized with the venoms of interest.

Specific neutralizing antibodies were first identified in the serum of experimental
animals, i.e., rabbits or guinea pigs, immunized against diphtheria or tetanus toxins [34]. In
1894, the serum was successfully used for treating children suffering from severe diphtheria,
and was manufactured by Burroughs Welcome, United Kingdom. In the same year, two
groups, simultaneously but independently, described the antitoxic properties of the serum
from rabbits and guinea pigs immunized against cobra and viper venoms [34,35]. In 1895,
a similar procedure was repeated with horses immunized with snake venoms in India by
Haffkine and in Vietnam by Lépnay [36]. The snake antivenom specificity—whose range
includes the biting species—was demonstrated by Vital Brazil [37,38].

Antivenoms can be raised against the venom of a single species (monospecific) or
against multiple species (polyspecific), and have already proven to be effective in preventing
many of the lethal and damaging effects of envenomation [4]. Antivenom administration
can reverse the major effects of envenomation, such as anti-hemostasis, neurotoxicity,
and hypotension [4]. In contrast, venom-induced local damage is not well prevented by
antivenoms unless it is administered soon after the bite [39]. In addition, despite being
therapeutically efficient, some antivenoms currently used can induce adverse reactions.

The vast majority of antivenom manufacturers refine IgG extracted from animal
plasma, producing F(ab’)2 fragments through enzymatic digestion with pepsin. Other
industries use papain to produce even smaller Fab fragments, improving safety and tissue
distribution. This IgG format, however, has the disadvantage of rapid renal clearance.
Removal of the Fc fraction of the antigen-binding fragment reduces the risk of adverse
reactions [40]. Nonetheless, some antivenoms are made by whole IgG molecules, which
are purified from plasma by caprylic acid precipitation or affinity chromatography, which
yield a safer product but at a higher cost [4].
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2. Immunoglobulins for Therapeutic and Diagnostic Applications

The most widely used immunoglobulin for therapeutic and diagnostic applications [41],
human IgG (Figure 2), is a protein made up of two identical heavy chains and two identical
light chains, κ or λ, that are interconnected by a series of disulfide bonds. Each heavy chain
contains three constant domains (i.e., CH1, CH2, and CH3) and one variable domain (VH).
The light chain contains one constant domain (CL) and one variable domain (VH). The
variable regions, at the N-terminus of the antigen-binding fragment (Fab), determine the
specificity, diversity, and affinity of antigen binding. Within each variable domain, there
are three hypervariable regions called complementary determining regions (CDR1, CDR2,
and CDR3), which are primarily responsible for antigen recognition and binding. The
remainder of the VH and VL domains are the framework regions that act as a scaffold
to support the CDR’s loops. The CDRs and framework regions in each of the variable
domains contribute to antigen binding [41].
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Regarding formats, IgGs are the most abundant class of monoclonal antibodies (mAbs)
approved for therapeutic use, accounting for 82% of the total [42]. FDA-approved anti-
bodies can be classified as humanized (46%), human (41%), chimeric (10%), or murine
(3%) [42], and are powerful tools for use in therapy and diagnosis. mAbs are one of
the fastest growing classes of therapeutic biomolecules, with a market valued at USD
168.70 billion in 2021, and projected to reach USD 188.18 billion in 2022, recording a growth
rate of 11.5% [43].

The first mAb approved for human use by the FDA was muromonab-CD3 (Orthoclone
OKT3) in 1986, a murine mAb that acts as an immunosuppressant for acute transplant
rejection, targeting CD3 expressed by T cells [42]. Currently, more than 100 monoclonal
antibodies are approved by the FDA, with 6–12 approvals per year [44]. These numbers are
expected to increase as technological advances have made research and development of
monoclonal antibodies cheaper, faster, and more efficient.

Antibody engineering has also focused its attention on the development of functional
antibody fragments, which have more favorable features, such as a smaller molecular size
and higher affinity, when compared with whole IgGs (Figure 2) [45]. Currently, antibody
fragments represent 9% of the total number of antibodies approved for therapeutic or
diagnostic purposes [44]. Several antibody fragments are already in clinical trials, with
antigen-binding fragments and single-chain variable fragments (scFvs) representing the
majority [46].

There has also been a growing interest in heavy-chain only antibodies (HcAbs),
the smallest naturally occurring antigen-binding fragment formed by a single heavy
chain with a variable domain found in camelids or sharks (Figure 2). As the smallest
known functional antibody fragments, nanobodies (VhHs) are molecules of approximately
15 kDa. Their small size, high solubility, tissue permeability, and stability to changes in
pH and temperature, allow interaction with sites inaccessible to conventional antibodies
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and having low immunogenicity. Thus, nanobodies are promising candidates for different
applications in biomedical research, diagnosis, and therapy [47].

Unlike Fab or (Fab’)2, an scFv is not a fragment of an antibody, but rather a protein
formed by the fusion of VH and VL variable regions, connected by a short linker (Figure 2).
This linker is rich in glycine, to provide flexibility, in addition to serine or threonine, to
increase solubility and to also allow the connection from the N-terminus of the VL to the
C-terminus of the VH, or vice versa [48]. This fusion protein retains the specificity of the
original IgGs despite the removal of constant regions and the linker introduction.

ScFvs have some advantages when compared to chimeric or humanized antibodies,
since these molecules maintain binding specificity and, due to their size and absence of a
constant region, have little immunogenicity, better tissue penetration, and do not activate
the complement system. Furthermore, scFvs can be produced in a prokaryotic expression
system, as these molecules do not require glycosylation. However, their binding affinities
and half-lives can be reduced [48]. As of June 2022, there were 4 Fabs, 2 scFvs, and only
one humanized nanobody approved by the FDA for use [49].

Essentially, there are two ways in which antibodies can neutralize toxins, either by
directly or indirectly inhibiting them. In direct inhibition, the antibody binds to the toxin
and competes for the site of interaction, whether of an enzymatic toxin or not [50]. Indirect
inhibition can occur through three different mechanisms: (i) allosteric inhibition, where
the antibody binding to the toxin induces a conformational change, losing activity [51];
(ii) through a steric hindrance effect where there is binding of the antibody to a region close
to the active site; or (iii) by preventing the dissociation of toxin complexes, preventing the
formation of active toxins [52]. Considering the remarkable progress in the mechanisms
underlying the immune response, and the immunochemistry of immunoglobulins and the
high number of snakebites, studies have been designed with the objective of improving the
neutralizing properties of antibody-antitoxins.

3. Classic Methods for Improving Serum Therapy

Currently, about 31 antivenoms are available worldwide for the treatment of snakebites,
as listed by Laustsen et al. [53]. Despite their importance for the current treatment enven-
omation, conventional antivenoms are partially ineffective in neutralizing some effects
caused by snake venoms in vitro and in vivo [54,55], and they can also cause some side
effects [56,57]. In in vivo studies, the neutralization potential of the anti-bothropic serum,
either with the treatment of the animals before or immediately after the application of
the bothropic venom, was studied by Battellino et al. (2003), where different application
schedules of the anti-bothropic serum produced by the Butantan Institute were analyzed:
before (15 min), at the same time, and after (15 min) the application of B. jararaca venom [58].
The authors concluded that the low neutralization did not occur due to the lack of specific
antibodies, but due to the low interaction of the antibodies with the venom components,
probably due to the difficulty in distributing the F(ab’)2 fragments in the tissues. It is
important to emphasize that the results indicate the formation of hemorrhagic lesions even
with the in vitro pre-incubation procedure, but with a proportion almost six times lower
when compared to the control. Blind studies with humans envenomed by the snake Echis
ocellatus in Ghana showed that a new antivenom was ineffective in combating lethality,
demonstrating the need for pilot tests before its single and general distribution in a region
is initiated [54].

For this reason, new strategies have been used to optimize the treatment of snakebites,
whether designing experiments to obtain new high-quality antivenoms or improving the
effectiveness of current commercial antivenoms.

Some strategies for developing antivenoms are based on cross-reactivity. The evalua-
tion of the cross-reactivity of antivenoms, i.e., the ability of antibodies to neutralize toxins
from different snake species, yields the possibility of attaining paraspecific antivenoms,
which can be easier to produce and more profitable [59]. Some studies show that, although
antivenoms are produced from a limited number of species, they show very interesting
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cross-reactivity with other species from the same region. Among several examples [60,61],
the cross-reactivity between nine snake venoms of the genus Bothrops and a serum produced
against the venom of B. jararaca stands out [62]. In fact, despite the diversity of this genus
in Brazil, the victims are treated with the pentavalent serum produced by the Butantan
Institute, which is attained using the venoms of B. jararaca (50%), B. jararacussu (12.5%),
B. alternatus (12.5%), B. moojeni (12.5%), and B. neuwiedi (12.5%) [24,62] as antigens. More-
over, another study aiming at the development of antivenoms against eight snake species
found in Mozambique resulted in high titers of Abs against Bitis arietans, B. nasicornis, and
B. rhinoceros (5.18 × 106, 3.60 × 106, and 3.50 × 106 U-E/mL, respectively), and against Naja
melanoleuca, N. mossambica, and N. annulifera (7.41 × 106, 3.07 × 106, and 2.60 × 106 U-E/mL,
respectively), but lower titers against the Dendroaspis angusticeps and D. polylepis venoms
(1.87 × 106 and 1.67 × 106 U-E/m, respectively) [63].

An SVMP with hemorrhagic activity present in the venom of B. arietans was recognized
by antibodies present in a series of polyvalent antivenoms, composed of F(ab)’2 portions,
attained by horse and chicken immunizations. In addition to anti-Bitis spp. serum, anti-
Bothrops spp., anti-Lachesis muta, anti-Crotalus spp., and anti-Naja spp. recognized the
purified SVMPs. The observed cross-reactivity indicates that metalloproteases induce an
immunological signature, probably due to the presence of common epitopes among the
different SVMPs present in various snake venoms [64].

The use of adjuvants can also improve antivenom antibody titers. Using the venom
of Crotalus d. terrificus as an antigen and different immunization protocols, it was shown
that venom emulsified with Freund’s adjuvant induced a more protective and sustained
immune response compared to Al(OH)3 or liposome particles [65]. In addition to adjuvants,
chicken hyperimmunization has also demonstrated the effectiveness of IgYs in recognizing,
combining, and neutralizing the toxic and lethal components present in venoms from
snakes of the Bothrops and Crotalus genera [66].

Another simple strategy that can improve the quality of an antivenom is changing the
immunization protocol and the amount of immunogen injected. Increasing the interval
between boosters and using a smaller amount of venom appear to result in antibodies with
higher titers and affinity [67].

Several studies have indicated that, when purified toxins are used as antigens, instead
of the total venom where they are present, they favor the production of antibodies with
better titers and affinity [68]. In one study, the use of crude Crotalus venom, and purified
crotoxin and PLA2 present in this venom, as immunogens in horses were compared. The
results indicated that the serum obtained against the total venom showed both low titers
and neutralizing capacity. By comparison, immunization with crotoxin resulted in a serum
with greater specificity and, if used as an adjuvant, can prevent injuries and adverse
reactions in serum-producing animals. Finally, immunization with PLA2 resulted in less
neutralizing serum, especially when PLA2 epitopes are in their free form. In general,
antibodies with high titers and the ability to cross-react were produced, but there was no
increase in affinity [69]. Using purified toxins, a potential new antivenom was developed
against SVSPs from Bothrops jararaca venom with enzymes identified as unblocked by the
antivenom produced by the Butantan Institute. Isogenic C57BL/6 and BALB/c mice were
immunized with a pool of four purified serine proteases (KN-BJ2, BjSP, HS112, and BPA),
which were not inhibited by commercial antiserum. The results showed that the two sera
obtained were able to block the SVSPs of five bothropic venoms, indicating that the use of
purified toxins can further improve the quality of the sera [70,71].

4. Next-Generation Antivenom: Monoclonal Antibodies and Their Fragments

The discovery and development of monoclonal antibodies became cheaper, quicker,
and more efficient in recent years, paving the way for the development of “next-generation
antivenom”. This is the use of human monoclonal antibody mixtures that target the key
toxins in snake venoms. Toxins from snake venoms feature a synergic effect, so their action
provokes a greater toxification and/or lethality than the sum of their separate effects. As
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a consequence, neutralizing certain key toxins from the venom is enough to drastically
reduce the effects of the whole envenomation [72,73].

Various different monoclonal antibodies have been discovered and developed against
toxins from different venomous animals, such as snakes, scorpions, spiders, and bees, as
reviewed by Lausten and colleagues [53].

The first stage in these developments occurred in 1982, when Boulain and colleagues
developed the first homogeneous population of high-affinity monoclonal antibodies specif-
ically for Naja nigricollis snake α-toxin [74]. The spleen cells were fused with myeloma to
obtain a hybridoma, and the resulting toxin-binding antibodies were purified and tested.
This antibody neutralizes the biological activity of the toxin under both in vivo and in vitro
conditions [74]. In 1995, Meng and collaborators used, for the first time, the technique
of phage display to find monoclonal antibody fragments against animal toxins. In this
study, scFvs from the library of human semi-synthetic antibodies against crotoxin were
identified [75], and two years later Lafaye and colleagues developed the first human scFv
targeting venom toxins using phage display [52].

Another strategy gaining momentum is the use of humanized or human monoclonal
antibodies. These antibodies, which are compatible with the human organism, present
a lower risk of reducing the immune characteristics of the antivenom [76]. The first
fully human IgG was developed against hemorrhagic metalloproteases from Protobothrops
flavoviridis, and was attained from the fusion of myeloma cells SP2/0-Ag-14 and cells from
KM mice spleens previously immunized with the toxin. In this study, 300 hybridoma
cells were produced to attain IgGs for the toxin HR1a, and 80 reactive antibodies were
identified [77].

In 2018, the first development of fully human monoclonal IgGs against snake venom
using phage display was reported. The IgGs were selected from a naïve human library
of scFvs, and showed specificity to dendrotoxins from Dendroaspis polylepis. Monoclonal
antibodies were able to prevent lethality when pre-incubated with the toxin fraction and,
in addition, showed that an oligoclonal mixture of toxin-binding antibodies was able to
prevent lethality for the entire venom [53].

The firsts antibody formats for recombinant antivenom were monoclonal IgGs and
single-chain variable fragments. In vivo studies have shown that monoclonal IgGs tar-
geting snake toxins are able to neutralize myotoxic, hemorrhagic, and proteolytic effects.
Monoclonal IgGs that neutralize these effects were developed for some medically relevant
snakes from the genera Naja spp., Crotalus spp., Echis spp., Laticauda spp., and Bothrops
spp. [50,74,78–81]. Monoclonal antibodies against a phospholipase A2, in addition to a met-
alloproteinase and a thrombin-like via hybridoma, were obtained and, when used together,
prevented the in vivo lethality of Bothrops atrox venom [80]. Other studies have also been
published on monoclonal IgGs targeting Bothrops spp. toxins, such as the development
of a mAb that neutralizes the hemotoxic effects of Atroxlysin-I from B. atrox venom [82].
In 1988, Lomonte and Kahan developed the first mAb against B. asper, a murine IgG that
neutralizes the myotoxic effects from the venom [83]. In 2010, mAbs capable of neutralizing
B. asper BaP1 in the nanomolar range were developed, blocking its hemotoxic effects [84].
To our knowledge, no mAb-targeting Bitis spp. toxins have been developed.

Another antibody format widely used in snakebite immunotherapy is Fab, which
is mainly used in conventional serum therapy, in a polyclonal mixture. Two Fabs target-
ing snake toxins, cardiotoxin from Naja nigricollis and b1-bungarotoxin from Bungarus
multicinctuse, neutralize their in vitro and in vivo effects [85,86].

The single-chain variable fragment format has been extensively studied and developed
for snakebite immunotherapy, and several studies have identified human scFvs capable of
decreasing the effects on Bothrops jararacussu and Crotalus durissus toxins [75,87–93]. Due to
their small size, although most IgGs are expressed in hybridoma cells or mammalian cells,
different expression systems can be used to produce scFvs, with microbial systems being
the most used, and even plants have been used [94,95].
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The use of recombinant nanobodies that are able to recognize medically relevant
snake venom toxins has also gained attention [96–98]. Using a naive VHH library, clones
against α-cobrotoxin present in Naja kaouthia venom were identified [99]. Humanized-
single domain antibodies for the phospholipase present in the N. kaouthia venom were
able to inhibit this activity up to 50% [100]. Using a library of VHH immune genes, a
clone with high affinity for α-cobratoxin was selected and fused to a human Fc fragment
to create a VHH2-Fc antibody that, when pre-incubated with the toxin, neutralized its
lethality [101]. An immune VHH library for phospholipases A2 from Bothrops jararacussu
venom was constructed, and the selected clones neutralized in vivo myotoxic activity, and
presented cross-reactivity with PLA2 from different Bothrops species [102]. Moreover, from
an immune VHH library, clones against the hemorrhagic and myotoxic fractions of B. atrox
venom were selected and were able to neutralize these effects; however, the nanobodies
were not able to prevent lethality [98].

These studies show that monoclonal antibodies and/or antibody fragments, as an
innovative antivenom for viperid and elapid species, are feasible, and may be the next step
in snakebite therapy. Antibody fragments, due to their small size, diffuse rapidly through
the body, reaching a higher tissue biodistribution when compared to conventional serum
therapy [53].

Research regarding the improvement in heterologous antivenom is extremely im-
portant and, to this day, it is the only effective and available treatment for snakebite
envenomation. In countries that suffer the highest rate of snakebites, the production of
recombinant antivenom may seem unfeasible, since the research and development of mon-
oclonal antibodies requires a high level of technology [42]. However, the high investment
required can be offset by a cheaper final product compared to heterologous sera. Theoret-
ically, an oligoclonal mixture of antibodies with 25% cross-reactivity can equal the costs
of current treatment and, when taking into account different formats and even expression
strategies, the treatment can be up to 10 times cheaper [103]. The technology needed for
antibody research and development has become cheaper every year, with some estimates
even surpassing Moore’s law [104].

Finally, the use of animals for research, development, and manufacturing has been
a controversial topic for many years, and there is a public desire to reduce animal use,
particularly where non-animal-derived alternatives are present [105]. Since the treatment
of snakebites has historically used immunization of large mammals, the substitution by
recombinant sera, made from a cocktail of monoclonal antibodies, may be a safer—and
even cost-competitive—alternative for future therapy of envenomation [106,107].
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