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Abstract

Establishing a link between RNA structure and function remains a great challenge in RNA biology. The emergence of
high-throughput structure profiling experiments is revolutionizing our ability to decipher structure, yet principled
approaches for extracting information on structural elements directly from these data sets are lacking. We present
PATTERNA, an unsupervised pattern recognition algorithm that rapidly mines RNA structure motifs from profiling data.
We demonstrate that PATTERNA detects motifs with an accuracy comparable to commonly used thermodynamic
models and highlight its utility in automating data-directed structure modeling from large data sets. PATTERNA is
versatile and compatible with diverse profiling techniques and experimental conditions.
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Background
RNA plays a central role in various aspects of a cell’s
machinery, from gene expression and regulation to pro-
tein synthesis [1, 2]. While an RNA sequence is informa-
tive, it is widely accepted that its functionality is directly
attributable to the formation of specific and intricate
secondary and tertiary structures, highlighting the impor-
tance of accurate structure models at high resolution [3].
High-resolution RNA structures can be obtained experi-
mentally using X-ray crystallography [4] or nuclear mag-
netic resonance [5], or computationally using comparative
sequence analysis [6, 7]. However, these methods have
shortcomings, most notably in terms of cost or man-
ual labor, rendering them low throughput. To circumvent
these limitations, models of folding energetics, such as the
nearest-neighbor thermodynamic model (NNTM) [8, 9],
have been used to predict secondary structure compu-
tationally from sequence information. Despite their pop-
ularity, predicted structures generally suffer from poor
accuracy [10], especially when applied in an in vivo con-
text or to long RNAs. Additional insights into RNA
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structure have been gleaned from structure profiling (SP)
experiments, which recently emerged as an affordable and
high-throughput approach to structure analysis. SP meth-
ods provide snapshots of structural states at nucleotide
resolution in vivo or in vitro and shed light on the role of
structures in governing biological functions [2].
SP experiments can be performed in many ways. How-

ever, they all aim at interrogating structural characteris-
tics, at nucleotide resolution, for all RNAs in a sample
while relying on common principles [11, 12]. To this end,
SP methods utilize chemical reagents or enzymes that are
sensitive to the local stereochemistry in the vicinity of a
nucleotide and result in the formation of chemical adducts
or cleavage events on the RNA backbone [13–21]. Con-
sequently, these reagents induce either terminations or
mutations during reverse transcription, enabling detec-
tion of modifications by primer extension analyses. The
resulting cDNA products undergo sequencing to quantify
termination or mutation events, which are then converted
into a reaction rate for each nucleotide. The advent of
next-generation sequencing has scaled this paradigm to
the transcriptome-wide level and has also resulted in
a plethora of available techniques [11]. Methods differ
in choice of probing reagent and strategies for sample
and library preparation, modification detection, and data
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analysis. Consequently, they generate data with disparate
statistical properties. To date, one can profile the structure
of an entire transcriptome, called the structurome, both
in vitro and in vivo, which opens up new opportunities
for data-driven structure–function studies. For instance,
these methods have revealed significant insights into the
key role of structure in regulating the transcriptomes of
bacteria, yeasts, Arabidopsis, mice, and humans [11].
These new capabilities are revolutionizing our ability

to decipher structures, link them to biological functions,
and harness them to engineer novel functional RNAs,
with new applications constantly emerging [2, 22–28].
However, to date, principled and universal approaches for
interpreting and mining information from SP data sets
are severely lacking, with experimentalists resorting to
methods tailored ad hoc to each experiment and biolog-
ical question [26, 29]. For instance, no general method
has been developed for harnessing SP data to search for
user-specified functional elements at the transcriptome
scale. At present, such elements are found by leveraging
homologies between a sought-after target motif and tran-
scriptomic regions. In these approaches, motifs take the
form of sequence or predicted structures [3, 30–39], or
combinations thereof [40–42]. While powerful, they rely
on structure modeling assumptions that fail to capture the
full complexity of a cell, including biomolecular interac-
tions and changing cellular conditions, which commonly
affect the stability of structures. Importantly, these aspects
are captured by SP data. Notable examples of regulatory
elements for which consensus structure models exist and
which are also impacted by cellular conditions include
RNA regions that respond to ligands (aptamers and
riboswitches) [43–45] or temperature (thermosensors)
[46, 47], G-quadruplexes [48, 49], and other non-coding
RNAs [50]. Very recently, it also became evident that epi-
transcriptomic modifications, known to affect structure
stability, are far more dynamic and prevalent than pre-
viously thought [51, 52]. Moreover, SP data are valuable
when gauging structural kinetics, which are notoriously
difficult to predict in silico [53–57]. For example, SP was
recently used to elucidate cotranscriptional folding path-
ways in vitro [23] and in vivo at a transcriptome-wide scale
[28]. To infer the kinetics, the experimentalists resorted to
manual inspection and qualitative comparisons of reactiv-
ities at select nucleotides, which they combined with prior
knowledge to model structural rearrangements. Hence-
forth, the discovery of new functional structures depends
upon the development of new approaches that transcend
traditional prediction algorithms and interpret SP data
within the context of a functional domain as opposed to
individual nucleotides [26].
Bridging the gap between an RNA’s structure and

its biological function critically requires statistically
sound methods and novel computational frameworks

for analyzing and interpreting SP data [58–62]. In that
context, we describe PATTERNA, a fast pattern recog-
nition algorithm that mines user-specified RNA struc-
ture motifs in SP data sets. Our approach is based on a
Gaussian mixture model-hidden Markov model (GMM-
HMM) statistical learning framework, inspired by auto-
mated speech recognition, which captures key properties
of SP signals in any given data set. PATTERNA learns
parameters for the model directly from the data with-
out relying on knowledge of the underlying structures,
whereas existing data-directed methods must be trained
from experiment-specific structure profiles of RNAs with
known reference structures [29, 63, 64]. Once trained,
the model is used exclusively for structural inference,
thereby presenting an additional advance by transcending
the current thermodynamics-based structure prediction
paradigm [26]. Its NNTM-free approach also confers PAT-
TERNA with the flexibility to mine complex structural
elements, such as pseudoknots (PKs) and self-contained
tertiary interactions. Overall, PATTERNA’s design princi-
ples render it a reference-free and NNTM-free method,
which is versatile and compatible with virtually all SP
techniques conducted at any scale and probing con-
ditions, from a handful of RNAs probed in vitro to
transcriptome-wide in vivo data sets. We demonstrate
that it accurately detects structural motifs in real and
diverse data sets at multiple scales and that it facilitates
and automates structure inference in a dynamic biolog-
ical system. Our findings highlight that PATTERNA aids
in gaining structural insights into complex systems, which
we believe will greatly accelerate the discovery of novel
functional RNAs.

Results
Overview of statistical model and inference
At the core of PATTERNA is a GMM-HMM that learns the
statistical properties of RNA secondary structures from
SP data alone. Key to our model is a representation of
secondary structure as a sequence of nucleotide pairing
states, where each nucleotide assumes one of two states:
paired or unpaired. This is a simplification of the standard
notion of structure, which is defined by a list of base-
pairing partners and unpaired nucleotides. Here, we do
not require any knowledge of pairing partners because SP
data does not reveal them (Fig. 1a, b). The objective of
our method is to detect a user-specified structural motif
across a data set.

PATTERNA runs in two distinct phases: training and
scoring. During training, we fit the GMM-HMM to the
SP data using the Baum–Welch algorithm, an itera-
tive expectation-maximization (EM) algorithm that max-
imizes the likelihood of the data given the model (Fig. 1c).
The GMM part captures SP data properties, specifi-
cally, the data distributions associated with each pairing
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Fig. 1 Overview of structure profiling data and PATTERNA. a, b Schematic representation of an RNA secondary structure with paired and unpaired
nucleotides highlighted in blue and orange, respectively. Structure diagrams were obtained with Forna [100]. a SHAPE experiments entail
structure-dependent formation of chemical adducts, indicated by black pins on the RNA, which are subsequently detected by sequencing and used
to produce a reactivity for each nucleotide. High/low reactivities correspond to unpaired/paired nucleotides. b PARS experiments use two
nucleases: RNAse S1 cleaves single-stranded RNA while RNAse V1 cleaves double-stranded RNA. Cleavage sites are detected by sequencing and
summarized into a single score, where negative/positive scores indicate unpaired/paired nucleotides. c Cartoon overview of PATTERNA. PATTERNA is
trained on input structure profiles using an iterative expectation-maximization algorithm that learns the statistical properties of nucleotide pairing
states and the data distributions associated with each pairing state. The illustrated GMMmodel uses three Gaussian components per pairing state.
Once trained, PATTERNA can be applied to the same transcripts used for training or to new transcripts. The scoring phase uses the structure profiling
data and the trained model to infer the posterior probabilities of each pairing state, which are then used to score the state sequence that represents
the motif. Motifs are scored across all starting nucleotides and input transcripts. Optionally, sequence constraints can be applied to restrict the
search to regions that permit the formation of the motif’s base pairs. GMM Gaussian mixture model, P paired, U unpaired

state, which describe the probability of observing a value
given the underlying pairing state. The HMM part mod-
els unknown (hidden) pairing states and the probability of
transitioning from one to another. This intuitively results
in learning general RNA structure characteristics. For
instance, very long stretches of unpaired nucleotides are

unlikely to occur in real structures. Once PATTERNA
is trained, the scoring phase can be accomplished on
either the same data set used for training or a new input
data set. The first step in scoring is to use our trained
model to estimate pairing state probabilities, for each
nucleotide, from the input data. These probabilities and
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the most likely state sequence given the trained model
(Viterbi path) can be requested as an output. Since SP
collects data at the nucleotide level, whereas motifs span
stretches of nucleotides, we must bridge the resolution
of measurements and that of sought-after patterns. To
accomplish this, a motif is encoded as a binary sequence
of pairing states (the motif path) and the trained GMM-
HMM is used to estimate the probability of the motif,
given the data, across input transcripts. RNA sequences
can be additionally provided, in which case PATTERNA
outputs only regions whose sequence permits the forma-
tion of Watson–Crick and Wobble base pairs that are
present in the motif. Complete details are available in
“Methods” section and in Additional file 1.

Automated reference-free learning of structure from
profiling data
To test if our framework accurately models real data with-
out reference structures, we used a curated data set of 21
RNAs with known structures and with SHAPE profiles
from the Weeks lab [59, 65, 66]. This data set, hereafter
called the Weeks set, consists of highly structured non-
coding RNAs (Additional file 2: Table S1) and therefore,
does not represent a typical transcriptome composition.
Nevertheless, it provides a ground truth of pairing states
against which we can benchmark our model-based pre-
dictions. We tested our framework with both raw and
log-transformed reactivities using ten Gaussian compo-
nents per state. We log-transformed the data because we
previously showed that log-transformed data are approx-
imated well by a normal distribution, and that this eases
and standardizes the statistical treatment of such data
[64]. Figure 2a and Additional file 2: Figure S1A–C show
that PATTERNA fits both reactivity distributions with high
fidelity. To investigate if PATTERNA can model state-
dependent distributions, we used the pairing information
provided by reference structures to partition the data
into two distinct distributions for unpaired and paired

nucleotides [29, 63]. Our results indicate that PATTERNA
is able to approximate these distributions, even in the
absence of reference structures (Fig. 2b,c). To determine
the stability of our estimates with respect to random ini-
tialization and the number of Gaussian components (see
“Methods” section), we repeated the training 100 times
on log-transformed data and using models ranging from
1 to 25 Gaussian components. Our results indicate strong
agreement between fitted models, suggesting that while
the log-likelihood of PATTERNA may be non-convex,
therefore, not guaranteeing a universal unique solution,
in practice, we achieve stable estimates with well-behaved
data (Additional file 2: Figure S2).
Having established that PATTERNA effectively learns

the statistical properties of SP signals directly from the
data, we next assessed its ability to call nucleotide pair-
ing states correctly. We considered both the posterior
probabilities of pairing states as well as the most likely
secondary structure given our model, which we generated
using the Viterbi algorithm (see “Methods” section). In
our benchmark, we included minimum free energy (MFE)
state sequences predicted by RNAprob [64] as well as
state sequences predicted from SHAPE data alone using
a cutoff-based classifier that uses an optimized threshold
to classify SHAPE reactivities into paired and unpaired
states. The threshold is optimized with respect to the ref-
erence structures. To accommodate posteriors and the
optimized cutoff classifier, we chose the �1-norm distance
between predicted and reference structures as an accuracy
metric. Our results show that we obtain similar accuracies
between raw and log-transformed SHAPE data for both
the optimized cutoff classifier and PATTERNA (Table 1),
suggesting that our framework produces consistent out-
puts even when the shapes of the data distributions differ
significantly. Furthermore, we observed no major differ-
ences in accuracy between PATTERNA’s Viterbi path, its
posterior path, and the optimized cutoff classifier. This is
encouraging because both PATTERNA and the optimized

Fig. 2Model of SHAPE data from the Weeks set. a Log-transformed SHAPE reactivities (grey bars) were fitted by PATTERNA using a Gaussian mixture
model (black line) summed across ten Gaussian components per state. Reactivities were subsequently broken down into each pairing state using
reference structures to assess the accuracy of PATTERNA’s state-dependent models at unpaired (b) and paired (c) nucleotides. Dashed lines
correspond to individual Gaussian components
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Table 1 Accuracy of predicted secondary structures using the Weeks set

Raw Log transformed Fragmented

�1-norm Accuracy [%] �1-norm Accuracy [%] �1-norm Accuracy [%]

Optimized cutoff 2843 73.0 2810 73.3 – –

patteRNA - Viterbi 2916 72.3 2939 72.1 – –

patteRNA - posteriors 2962.3 71.9 2981.9 71.7 – –

MFE 2406 77.2 – – 2964 71.9

MFE+SP 1890 82.1 – – 2588 75.4

MFE minimum free energy, SP structure profiling

cutoff classifiers do not make any thermodynamic model-
ing assumptions but rather rely solely on SP data to draw
inferences. However, the latter is also informed by the true
structural states in the reference structures. As such, it
signifies the maximal information that can be extracted
from SHAPE data alone, thus the comparable accuracies
suggest that our model generates near-optimal posterior
estimates.
Overall, the best performance is obtained using NNTM-

based predictions, with SHAPE-directed predictions pro-
viding the best results. This is expected, as this approach
is informed by both folding thermodynamics modeling
and SP data. However, when we generatedMFE structures
using 100 nt (nucleotides) fragments in place of full-length
sequences to mimic strategies used for transcriptome-
wide searches using NNTM-based methods, the perfor-
mance using MFE structures dropped significantly. Under
these conditions, MFE predictions from sequence alone
perform comparably to the optimized cutoff classifier
and PATTERNA while data-drivenMFE predictions main-
tain a smaller advantage. Overall, our results demonstrate
that structural information can be gleaned from SHAPE
data directly, thereby obviating the need for reference
structures.

Detecting canonical motifs
The primary goal of our work is to detect a user-defined
structural motif rapidly in SP data. To evaluate PAT-
TERNA’s detection accuracy, we searched for various
RNA motifs in the Weeks set. We started by identifying
loops ranging from 3 to 10 nt and padded on each side by
at least one paired nucleotide (Fig. 3a). The true presence
or absence of loops was determined from reference struc-
tures. To compare our results, we performed a similar
search on MFE structures predicted by RNAprob as well
as 1000 structures statistically sampled from a Boltzmann
ensemble by GTfold [67] (see “Methods” section for
details). For both methods, we compared sequence-only
as well as SHAPE-directed predictions. The Weeks set
contains 619 loops that match our size constraints and
PATTERNA scored regions containing a loop significantly
better than regions that did not contain one (Fig. 3b,

one-sided Mann–Whitney U p value = 7.52 × 10−149).
Receiver operating characteristic (ROC) analysis further
showed that the best accuracy is obtained by ensemble
sampling, with or without SHAPE constraints [Fig. 3c,
ROC area under the curve (AUC) = 0.90–0.92]. Interest-
ingly, our results also reveal that PATTERNA (AUC = 0.80)
sensibly outperformsMFE predictions (AUC = 0.65–0.67)
(Fig. 3c). We next searched for two additional motifs: a
single hairpin (stem: 2–20 nt, loop: 3–10 nt) and a similar
hairpin followed by a small bulge (1–5 nt) (Fig. 3a). Since
these motifs do not involve long-range interactions and
can be folded locally, we also used the RNA sequences to
exclude regions where motifs could not form. The set con-
tains 792matching hairpins, and again, PATTERNA scored
regions containing the target motif significantly better
than other regions, with Mann–Whitney U p value =
1.95×10−274 and= 8.87×10−21 for hairpins and hairpin-
bulge motifs, respectively (Fig. 3b). The best performance
is attained by ensemble sampling, followed by PATTERNA,
whileMFE predictions fall short (Fig. 3c). Similarly, for the
hairpin-bulge compositemotif, present 58 times in the set,
PATTERNA shows substantially higher detection accuracy
compared to MFE prediction, highlighting a weakness of
the NNTM whose parameters might not be universally
accurate [68] (Fig. 3c).
Overall, these results are not surprising as an ensemble-

based approach considers many competing alternative
structures while anMFE approach encapsulates structural
dynamics into a single structure [69]. Nevertheless, our
results also indicate that PATTERNA performs surpris-
ingly well, given that no sequence information is used,
and can even outperform thermodynamics modeling on
occasions. These results would initially suggest that an
ensemble-based method should be used to detect struc-
tural motifs. However, the computational burden asso-
ciated with sampling the ensemble, which is cubic in
the length of the RNA [i.e., O

(
n3

)
for length n], ren-

ders transcriptome-scale analysis impractical due to the
multitude of long transcripts that must be considered.
For practical examples, we used runtime benchmarks

with simulated data sets and included PATTERNA,
GTfold, ViennaRNA [70, 71], and RNAstructure [72]
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Fig. 3 PATTERNA accurately detects canonical motifs in SHAPE data. The performances of five methods with the Weeks SHAPE data set are
compared: PATTERNA, MFE structure prediction using NNTM (MFE), data-directed MFE structure prediction using NNTM (MFE+SP), Boltzmann
ensemble sampling (Ensemble), and data-directed Boltzmann ensemble sampling (Ensemble+SP). a Schematic secondary structures of three
scored motifs (loops, haipins, and hairpin-bulges). Allowed variations in loop and stem lengths are indicated by grey double arrows. b PATTERNA’s
score histograms at regions where the tested motif was present (positive) or absent (negative) in reference structures. The p value corresponds to a
one-sided Mann–Whitney U test between the two distributions. c, d ROC curves of performance of motif detection for each method when applied
to complete (c) and fragmented (d) RNAs. The area under the curve (AUC) is reported in the legend. The dashed lines correspond to the
performance expected from a random classifier. AUC area under the curve, MFE minimum free energy, NNTM nearest-neighbor thermodynamic
model, ROC receiver operating characteristic, SP structure profiling

(see Additional file 2: “Runtime benchmarks,” Figure S3,
and Tables S4–S7). We used simulations to examine run-
time dependence both on RNA length and data set size.
Results show that GTfold, the fastest ensemble-sampling
method we tested, would take over a year to process
a single transcriptome-wide data set (Additional file 2:
Table S7). To equip users with the option to pre-evaluate
time requirements readily for their data sets, we fur-
ther provide a formula to estimate the time requirements
for large data sets using these popular NNTM predic-
tion algorithms (see Additional file 2: “Runtime bench-
marks” and Table S5). In addition, long RNAs (>1000 nt)

generally require deeper sampling of the ensemble, com-
pared to short RNAs, to ensure that all biologically rele-
vant structures are represented in the sampled pool and
that sample frequencies reliably approximate their theo-
retical counterparts. Therefore, this approach is typically
reserved for small-scale studies of small RNAs [69], or
alternatively, for small targeted regions within transcripts
(e.g., 100 nt long), as these are easily folded computation-
ally. MFE prediction suffers a similar drawback given its
complexity is alsoO

(
n3

)
(Additional file 2: Figure S3) and,

while faster compared to ensemble sampling, it would still
require about a month for a typical transcriptome-wide
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data set (Additional file 2: Table S7). Therefore, for both
methods, at transcriptome scale, one must either restrict
the analysis to a manageable subset of the data or per-
form motif searches in the absence of the entire sequence
context of an RNA, for example within 100-nt windows
to minimize the burden associated with computational
complexity. To emulate this method, we fragmented each
RNA in the Weeks set into 100-nt segments and repeated
our entire analysis. As expected, PATTERNA’s perfor-
mance was closer to ensemble-based predictions on the
Weeks set (Fig. 3d). Importantly, it should be noted that
the impact of folding locally, i.e., without considering
the entire sequence context, on prediction performance
is currently poorly characterized and may also be case-
specific.
In summary, we demonstrated the feasibility of detect-

ing a user-specified structural motif in SHAPE data with
no additional information. In other words, we can relax
constraints based on transcript sequences, effectively
alleviating the requirement for complex and resource-
demanding NNTM-based secondary structure predic-
tions, while having a relatively small impact on the
performance of motif detection. Furthermore, because we
do not use a thermodynamic model, the computational
complexity of motif detection is reduced by two orders of
magnitude compared to alternative NNTM-based meth-
ods, such that it is linear in RNA length, O(n), even
without sequence constraints (Additional file 2: Figure
S3). At such complexity, large transcriptome-wide data
sets can be processed within a few days at worst, com-
pared to months or years with NNTM-based methods
(Additional file 2: Table S7). Also note that PATTERNA
is trained only once for each data set considered, fol-
lowing which it can be used to score as many motifs as
required. Although EM algorithms sometimes suffer from
slow convergence, PATTERNA does not need to be trained
on entire data sets. A small subset of transcripts (<1000)
with a high data density and quality will have sufficiently
robust data and structure characteristics that generalize
to the entire data set. An additional shortcoming of ther-
modynamics modeling is its inability to consider inter- or
intra-molecular interactions, which stabilize or destabilize
particular secondary structures or motifs. Such interac-
tions are common in vivo, yet they are largely absent
in the in vitro conditions in which the Weeks set was
obtained. This highlights another advantage of making
predictions from SP data alone, especially in complex
cellular environments. We, thus, expect PATTERNA to
generate even more accurate predictions when applied
to in vivo data. Moreover, note that the Weeks data
set contains RNAs for which NNTM-based predictions
are remarkably improved when directed by SHAPE data
[59, 64, 65]. However, this does not generalize to all RNAs,
as performance gains for data-driven NNTM predictions

can vary significantly [63]. It, thus, remains unclear
how data-driven NNTM performs across large sets of
diverse RNAs.

Motif detection in a bi-stable regulatory system
To investigate further our ability to detect structural
motifs from SP data, we used in vitro cotranscriptional
SHAPE-seq data collected from the Bacillus cereus flu-
oride riboswitch—an RNA domain that changes confor-
mation upon binding of a small molecule—in the absence
and presence of 10mM NaF [23]. In this method, protein
roadblocks are embedded into DNA templates and ter-
minate transcription, henceforth producing intermediate
transcripts that are subsequently profiled by SHAPE-seq
[73]. This series of increasingly longer profiles can be used
to infer folding trajectories of elongating transcripts. The
conformational changes triggered upon fluoride binding
involve extensive structural rearrangements of hairpin
motifs (Fig. 4a, b) [74, 75]. In the absence of NaF, three
consecutive hairpins form, but upon binding of a fluo-
ride anion, the first helix (P1) unwinds in favor of the
formation of a PK, whereas the third helix (P3) is greatly
shortened. Such a dynamic environment is ideal for test-
ing PATTERNA because the RNA sequence remains fixed
across conditions and therefore, structural differences can
be gleaned only from the data.
As before, we used ten Gaussian components per state

when training our model (Additional file 2: Figure S1D).
We started by searching for hairpins of variable sizes, with
loop size ranging from 4 to 6 nt and stem size ranging from
1 to 20 nt, while enforcing sequence constraints (results
without sequence constraints are available in Additional
file 2: Figure S4). We then conducted a differential anal-
ysis between conditions by subtracting the score of each
hairpin in 0mMNaF from its score in 10mMNaF. A nega-
tive differential score indicates that a hairpin is more likely
to be present in 0mM NaF compared to 10mM NaF and
inversely for a positive score. Our results indicate that,
as expected, the first hairpin (P1) is more likely without
fluoride whereas the scores do not differ for the second
hairpin (P3), which is known to exist in both conditions
(Fig. 4c,d). For the third hairpin, the results are depen-
dent on length. For shorter hairpins (stem length ≤7), the
scores are about equal between conditions, while longer
hairpins (stem length >7) are more likely to form without
fluoride. This transition manifests as a hinge-like rela-
tionship between the stem size and the differential score,
with the transition occurring at hairpins of stem length 7
(Fig. 4e). Interestingly, these results are in perfect agree-
ment with the structures proposed in [23, 74, 75], where
the third hairpin is present in both conditions up to stem
length 7 and longer stems only form in the absence of a PK
(see CT and PT in Fig. 4a, b). Conceptually, this analysis
captures the mixed composition of hairpins with varying
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Fig. 4Motif detection in a bi-stable fluoride riboswitch. a The accepted structure of the terminated fold, associated with the transcription off state,
features three hairpins: P1, P3, and CT (complete terminator). b The accepted structure of the anti-terminated fold, associated with the transcription
on state, features a pseudoknot domain (dashed box) and a partial terminator (PT) hairpin. c, d Differential scores between fluoride conditions.
Hairpins of loop size 4 and 6 and variable stem size were scored across all possible starting nucleotides of the full-length transcript (100 nt). The
x-axis indicates the position of the motif’s start. The y-axis corresponds to hairpins with stems of variable lengths. As sequence constraints were
applied, only regions that permit base pairings in the stem were scored. Reds indicate that the motif is more likely in 10mM NaF, and blues that it is
more likely in 0mM NaF. Dashed lines highlight the location of the P1, P3, and PT/CT hairpins. e Differential scores at the terminator hairpin site as a
function of increasing stem size. f, g Pseudoknot scored at each possible starting nucleotide and across all intermediate transcripts without (f) and
with (g) fluoride. Reds indicate higher scores. Dashed boxes highlight regions where a pseudoknot is likely present. PK pseudoknot

stem lengths that are found in the sample, from a sin-
gle base pair to a full 15 nt stem. This zipping/unzipping
effect also provides a glimpse into Boltzmann ensemble
dynamics.
We then continued our investigation with a larger and

more complex motif, namely, the PK in the aptamer
domain (see dashed box in Fig. 4b), which we encoded as
a binary path of paired and unpaired nucleotides. It was
scored in both conditions and for all transcript intermedi-
ates to test whether we could reproduce the folding trajec-
tories that were qualitatively inferred inWatters et al. Our
results indicate that without fluoride, the PK is present in
shorter transcripts (∼65–82 nt) but is destabilized as the
transcript elongates until it vanishes when the transcript

reaches its mature length (Fig. 4f). On the other hand, the
PK is stabilized upon fluoride binding and remains folded
as the transcript elongates (Fig. 4g). Also, as expected,
scores are generally higher with fluoride, indicating the
higher prevalence of the PK. Taken together, our results
are in strong agreement with previous studies [23, 74–76].
In summary, we showed that PATTERNA can be used
to deduce structural rearrangements in an automated
and straightforward manner rather than relying on man-
ual inspection and qualitatively integrating observations
from isolated single-nucleotide changes. Furthermore, the
capacity to detect PKs—a hallmark of riboswitch struc-
ture models—highlights PATTERNA’s potential in aiding
genome-scale searches for novel riboswitches [44].
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Hairpin in a haystack: transcriptome-wide search for motifs
Having established PATTERNA’s ability to mine target
motifs in small and high-quality data sets, we pro-
ceeded to investigate its performance in a more complex
transcriptome-wide scenario. To that end, we used PARS
data capturing structuromes in a family trio: a father, a
mother, and their child [77]. This data set was designed to
detect riboSNitches—single-nucleotide variants (SNVs)
that result in structural rearrangement within the tran-
script and can lead to changes in phenotypes [78]—at
transcriptome-wide scale. Of particular interest are two
riboSNitches, in genes MRSP21 and HLA-DRB1, which
were validated by targeted SP using different probes.
Allele-specific secondary structures were proposed in
Wan et al. This allows us to perform a transcriptome-
wide search for these specific structural motifs. We first
trained PATTERNA on transcripts filtered for high cov-
erage and sufficient data density and for each subject
individually (Additional file 2: Figure S1E–G). We then
spiked in synthetic transcripts consisting of the two allelic
variants of the MRPS21 motifs with perfect PARS infor-
mation, in the child data set. These synthetic transcripts
were then used as positive controls to ensure these motifs
were properly detected under optimal conditions.We per-
formed a search with no sequence constraints and looked
for the target motif ’s signature across all transcripts. We
used all motif scores to determine the rank of the spike-
in regions with perfect information. As expected, spiked
motifs ranked first, out of about 2 million scored regions,
in both a search for the A or C allele motifs in a pool
of 1000 randomly selected transcripts from the child data
set, highlighting our ability to readily distinguish them
(Additional file 2: Table S2).
We then searched for both allele-specific secondary

structures of the HLA-DRB1 riboSNitch (Fig. 5a, b) in a
pool of 1000 transcripts randomly selected from the orig-
inal data set and containing both transcripts of interest.
The HLA-DRB1 allele G motif scored highly and signif-
icantly better than the A allele for the father, which is
homozygote G at that SNV (Fig. 5c). In comparison, com-
pared to the father, the mother (homozygote A) scored
poorer for the G allele motif while better for the A allele
(Fig. 5d). Note that the structure proposed in Wan et al.
for allele A is not strongly supported by the PARS data.
Specifically, the proposed motif contains a 32-nt loop,
hence negative PARS values are expected in this region.
While the 5′ end of the loop (nucleotides 935–955) indeed
harbors negative values, PARS scores at 956–965 are more
consistent with the presence of a helix. This explains
why allele A’s motif scored lower than we expected for
the mother. The child (heterozygote A/G) did have data
more consistent with the G allele motif, yet to a sen-
sibly lesser extent compared to the father (Fig. 5e). For
the MRPS21 motif (Additional file 2: Figure S5A-B), the

high data sparsity at the predicted riboSNitch site pre-
vented us from comparing the results across the family
(Additional file 2: Figure S5C–E). Nevertheless, the child
(heterozygote A/C) provided the best score for the A allele
motif and had a profile consistent visually with the pro-
posed motif (Additional file 2: Figure S5E). Moreover, the
father (homozygote A) scored best for the A allele and
for the mother (homozygote C), there were no differences
between alleles (Additional file 2: Figure S5C,D).
Notably, while our results do not entirely support the

hypotheses ofWan et al. for the proposed structures of the
MRSP21 and HLA-DRB1 riboSNitches, we found that the
best-scoring regions in each subject and for each tested
motif had PARS profiles closely resembling the data sig-
natures expected for these motifs (Fig. 5c–e). This not
only suggests that a motif with the sought-after data sig-
nature could be present at these locations, which is prob-
able given the relative structural simplicity of the motifs,
but also that regions highlighted by PATTERNA are all
promising candidates. While PATTERNA does not guar-
antee the presence of a motif, even for the best-scoring
region, it can be used to produce a short list of can-
didate regions, thereby significantly reducing the search
space for motifs of interest, and consequently, simplify-
ing and expediting follow-up validation studies.Moreover,
a reduced subset of candidate regions is amenable to a
more time-consuming NNTM-based analysis, implying
that PATTERNA can be used in conjunction with, rather
than as a replacement of, NNTM approaches.

Assumptions and limitations
A simplifying assumption in our model is that nucleotides
assume only two pairing states. Moreover, we assume that
all RNAs in a sample share similar structural character-
istics, namely that their architectures consist of stretches
of paired and unpaired nucleotides, such as helices and
loops. This is encapsulated by the HMM, which models
a nucleotide’s state as dependent on its adjacent neigh-
bor. To ensure robust estimation and reliable modeling,
high data density over transcripts used for training and
at scored sites is necessary. This is particularly important
because in vivo and transcriptome-wide data sets gener-
ally suffer from quality issues due to dramatic variations
in transcript coverage and a high prevalence of missing
values [79]. We, therefore, recommend applying quality
controls prior to training and scoring, similar to those
performed in this study. In terms of motif scoring, a tar-
get cannot have variable-length gaps in its state sequence,
as illustrated in Additional file 2: Figure S6A. Moreover,
the downside of the state-sequence representation we use
is the inability to discriminate between different motifs
whose state paths are identical, for instance, different
loop types (Additional file 2: Figure S6B). However, for
motifs whose structure is fully known within a contiguous
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Fig. 5 Transcriptome-wide search for the HLA-DRB1 riboSNitch motif in PARS data. Secondary structure models proposed in Wan et al. for allele
variants 945A (a) and 945G (b) of the HLA-DRB1 riboSNitch. Red circles highlight the single nucleotide polymorphism. Search results were obtained
for the father (homozygote G) (c), mother (homozygote A) (d), and child (heterozygote) (e) data sets. For each riboSNitch variant, PARS traces at
both the target location, i.e., the location where the riboSNitch was first reported, and the best-scoring location across tested transcripts are shown.
Blue regions indicate helices, i.e., paired nucleotides where positive PARS values are expected, and inversely for orange regions. The inset shows
both the score and rank of the scored region relative to all scored regions, where a smaller rank indicates a region is among the best scored ones,
with 0% indicating the top scored region

region, e.g., hairpins, sequence information can be used
to restrict the search to regions where the sought-after
base-pairing pattern is feasible. While this does not guar-
antee that considered regions contain themotif of interest,
sequence constraints greatly reduce the search space and
consequently the number of false positives.

Discussion
Data-driven structural motif recognition
The recent emergence of high-throughput SP experiments
has given rise to novel data-driven applications, which
parse transcriptomic data sets to gain insights into the
functional role of RNA structures while circumventing the
traditional approach of explicitly predicting these under-
lying structures [26]. This recent paradigm shift warrants
the development of new algorithms to glean quantitative
information rapidly from transcriptome-wide data sets or
large synthetic libraries both at nucleotide resolution and

within larger structural contexts. To address this need,
we developed PATTERNA, the first pattern recognition
algorithm that rapidly detects structural motifs in large-
scale SP data sets. It features a machine learning algorithm
that learns the statistical properties of SP signals directly
from the data, obviating the need for training from ref-
erence structures (reference-free) or for applying folding
thermodynamics considerations to determine secondary
structures explicitly (NNTM-free). PATTERNA utilizes
probabilistic modeling to expand the resolution of SP
data, which are collected at nucleotide resolution, to that
of functional RNA domains, which span at least several
nucleotides. This can aid data-driven structure–function
studies because often the structural effects of interest are
manifested across functional domains and could rarely be
reliably deduced from isolated single-nucleotide reactivity
changes. Moreover, the latter are often driven by biologi-
cal or technical noise rather than the underlying biology,
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rendering the integration of information even more chal-
lenging [12]. This point is illustrated well by our analysis of
the fluoride riboswitch, where structural rearrangements
were previously qualitatively and manually inferred from
single-nucleotide reactivity changes [23], but can instead
be readily mined when summarizing information over the
entire aptamer domain (Fig. 4c, d).

Probabilistic modeling and interpretation of SP data
PATTERNA’s design is inspired by an analogy between
RNA structure and natural language processing, where
speech sound units, called phonemes, are the basic build-
ing blocks of a word [80]. Similarly, RNA structures
(words) can be modeled as a sequence of structural motifs
(phonemes) that are themselves composed of a sequence
of individual nucleotides (sound waves). In speech recog-
nition, an HMM has traditionally been used to model
phonemes as a sequence of transformed sound waves,
modeled by a GMM, or more recently by deep neu-
ral networks [81, 82]. We adapted this methodology by
combining a generative HMM that produces a sequence
of pairing states emitting observed SP data, which we
also modeled using a mixture of Gaussians. The choice
of Gaussians was motivated by our previous observation
that applying a log-transformation to SHAPE data induces
near-Gaussianity [64].
We showed that our reference-free model performs

comparably to a reference-based classifier on SHAPE
data, indicating that we recover near-optimal pairing
state estimates from SHAPE data alone. Notably, because
we generate posteriors that are, by definition, confined
between 0 and 1, we are effectively normalizing SP data to
an immutable and easily interpretable scale (see Figure 6
in Deng et al. [64]). This is worth noting because there
is currently no consensus on how best to normalize SP
data [12]. Current approaches heuristically detect out-
liers to alleviate their impact on normalization [83–87].
Because of their heuristic nature, it is unclear if they (1) are
optimal, (2) generalize to diverse experimental contexts,
and (3) should be applied to each transcript individu-
ally or to an entire transcriptome [12]. In comparison,
our probabilistic approach is insensitive to outliers, is
remarkably robust to a random initialization of model
parameters (Additional file 2: Figure S2), and is broadly
applicable to any SP technique and probing condition
(Fig. 2 and Additional file 2: Figure S1). This sets a founda-
tion for robust and cross-platform comparative structure
analysis.

PATTERNA rapidly detects motifs in large data set
Using the Weeks benchmark data set, we established
that PATTERNA outperforms MFE prediction in detect-
ing motifs, even when predictions are informed by data.
This is not too surprising because MFE predictions do

not reveal the full complexity of the structure landscape,
whereas SP experiments provide an average snapshot of
all structures present in a solution. In other words, for a
given transcript, a motif might be absent from the MFE
structure, while simultaneously present in many other
prevalent conformations, hence substantially reducing
detection accuracy. This issue is remedied by ensemble-
based predictions, as reflected in their superior detection
accuracy. However, such predictions are computationally
demanding, requiring years at transcriptome-wide scale,
and are thus, impractical in the context of recent studies
of structuromes [2, 11, 88]. To circumvent this limita-
tion, studies have resorted to folding only a small sub-
set of candidate regions [47, 77, 87, 89] or alternatively
to folding smaller fragments [22, 90]. The trade-off in
such cases is the potential omission of relevant functional
regions or incorrect folding of regions in the absence
of their complete structural context [91]. Moreover, to
date, we are unaware of any published studies where the
Boltzmann ensemble was determined for an entire tran-
scriptome. With PATTERNA, we traded the full details
of a RNA secondary structure for its simplified repre-
sentation as a pairing-state sequence, or its shadow in
terms of data signature. This, in turn, greatly reduces com-
putational complexity, bringing down the time require-
ment to a few hours or days for large transcriptomes,
while only moderately affecting detection accuracy com-
pared to ensemble-based performance. Moreover, reduc-
ing structures to sequences of states broadens the scope
of motifs that PATTERNA can detect. Potential motifs
encompass non-nested secondary structures or tertiary
pairing interactions, such as the PK in the aptamer domain
of the fluoride riboswitch that PATTERNA detected in
SHAPE-seq data. This gives PATTERNA a significant
advantage over the NNTM paradigm, which cannot
consider such motifs efficiently, especially in searches
for riboswitches, as they often embed pseudoknotted
nucleotides.
We demonstrated that PATTERNA searches effectively

for putative functional motifs across an entire transcrip-
tome. Seeking such motifs in a variety of organisms is
not a novel endeavor and many methods have been pro-
posed to do so. These methods have in common a search
for homologies between the target and transcriptomic
regions, but nonetheless, they all consider RNA struc-
ture at its primary, secondary and tertiary levels but not
through the lens of SP data. SP data, however, delivers sup-
plemental information missed by existing methods, such
as the structural rearrangements triggered by changes in
the cellular environment. In contrast, PATTERNA offers
a solution to find homologies using SP data alone. Fur-
thermore, pattern finding that draws on both sequence
structure and SP homologies might prove even more
powerful.
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Conclusion
We described the implementation, applications, and lim-
itations of PATTERNA, a pattern recognition machine
learning algorithm that rapidly detects RNA structural
motifs in large-scale SP data sets. Our results indicate that
PATTERNA can effectively detect motifs in various data
sets, a task that has not been previously accomplished
in a principled and comprehensive manner. Furthermore,
PATTERNA can be used to narrow down a set of candidate
regions, which can then be used in more careful NNTM
analyses, therebymitigating the computational limitations
of NNTM-based methods to enable transcriptome-scale
analysis. In motif detection, PATTERNA integrates single-
nucleotide information into structural domain knowledge,
which has the potential to greatly accelerate the discovery
of structural elements of functional importance.
As PATTERNA models the SP signal directly from the

data, it is readily applicable to virtually any experimental
method that differentiates between paired and unpaired
nucleotides (as illustrated in Fig. 2 and Additional file 2:
Figure S1). Its flexibility and universality are timely in
an era of large-scale data with increasing diversity and
complexity, especially as it is becoming clear that many
SP methods are complementary rather than redundant
[92]. We envision that PATTERNA, as well as related
data-driven NNTM approaches [64, 71, 93], will play a
critical role in bridging differences within the rapidly
growing space of SP methods and their novel downstream
applications.

Methods
Overview of structure profiling experiments
SP experiments aim at interrogating all RNA struc-
tures in a sample at nucleotide resolution and make
use of chemical reagents (e.g., SHAPE) or enzymes (e.g.,
PARS) that are sensitive to the local stereochemistry
in the vicinity of a nucleotide [11, 86]. In selective 2′-
hydroxyl acylation analyzed by primer extension (SHAPE)
experiments, SHAPE reagents, commonly 1-methyl-7-
nitroisatoic anhydride (1M7), N-methyl isatoic anhydride
(NMIA), or 2-methylnicotinic acid imidazolide (NAI),
form chemical adducts on nucleotides, which interfere
with reverse transcription, leading to either reverse tran-
scription terminations or the introduction of mutations.
In the newest generation of experiments, these events
are assayed by sequencing and a modification rate, called
reactivity, is assigned to each nucleotide [60–62, 94].
Briefly, reactivities are obtained by adjusting read counts
to account for variations in coverage, yielding two detec-
tion rates per nucleotide: one with the reagent (treated
sample) and one without it (untreated sample). These
rates are combined to estimate the degree of modification
at each nucleotide, which is then normalized to ensure
the reactivities span the same interval across transcripts

and replicates. High and low reactivities are indicative of
unpaired and paired nucleotides, respectively (Fig. 1a).
Henceforth, a reactivity profile correlates with the under-
lying assayed structure [29]. Note that it is not uncommon
to encounter negative reactivities, which result from tech-
nical noise that gives detection rates in the untreated
sample exceeding those in the treated one.
In PARS experiments, two nucleases are used: RNAse

V1 cleaves double-stranded RNA while RNAse S1 cleaves
single-stranded RNA. As with SHAPE, cleavage events
are detected by sequencing and S1 and V1 cleavage rates
are determined at each nucleotide. The log ratio between
V1 and S1 rates is taken at each nucleotide such that a
positive/negative score correlates with a paired/unpaired
nucleotide (Fig. 1b).

Overview of PATTERNA
Statistical model
There is a detailed description of our model in
Additional file 1. Briefly, RNA secondary structure
is a base-pairing configuration specified by a list of
nucleotides that pair with each other, with remaining
nucleotides being unpaired. Since SP data may reveal only
a nucleotide’s pairing state but not its pairing partner,
we relax the constraint on the pairing partner and rep-
resent a secondary structure as a sequence of nucleotide
pairing states, where each nucleotide assumes one of two
states: paired or unpaired. For example, a hairpin of stem
size 4 and loop size 3 is described by the state sequence
[1,1,1,1,0,0,0,1,1,1,1], with 0 and 1 representing unpaired
and paired bases, respectively. Now, not only do we wish
to estimate the probability that a nucleotide assumes a
given pairing state, but we also want to incorporate its
local structural context into a model [61]. This is because
RNA structures often consist of stems and loops, which
implies that a nucleotide residing in a loop has a greater
probability of being unpaired compared to a nucleotide
residing in a stem, irrespective of its observed SP value. In
other words, the states of neighboring nucleotides can be
informative. We, thus, resorted to Markov chains, which
provide short-term contextual memory. As nucleotide
pairing states are unknown, a HMM was used to link the
unknown underlying structure (i.e., a sequence of hid-
den and correlated states) to the observed data via initial
state, transition and emission probabilities (π , a, and b,
respectively). By fitting such a model to the data, one
can determine the probability of each hidden nucleotide
state [95]. SP data are the observations emitted from our
HMM model, which indirectly gives the probability of
each hidden state [29, 63, 64].
However, to obtain emission probabilities, we first need

to model the observed data as dependent on each pair-
ing state. We use a GMM, a class of flexible models
that use multiple weighted Gaussian kernels, which can
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be combined to reconstruct the shape of any continu-
ous distribution. We use K Gaussian components per
state, where K is user-defined and each Gaussian com-
ponent is parameterized by its mean (μ), variance

(
σ 2),

and weight (w) [95]. Furthermore, to consider zeros and
missing reactivities, we parameterize them as additional
discrete emission probabilities, υ and φ, respectively. The
GMM, in conjunction with υ and φ, allows us to estimate
emission probabilities at each nucleotide, denoted as b,
which we then use in our HMM model to obtain poste-
rior pairing state probabilities. This effectively results in a
fully integrated GMM-HMM model, which is at the core
of PATTERNA. In summary, our framework can be used
to determine posterior pairing probabilities at nucleotide
resolution directly from SP data, and by extension, the
probability of any substructures within that RNA.

Training
We trained our model iteratively using the Baum–Welch
algorithm, an EM algorithm that utilizes the forward-
backward algorithm in the E step [96]. The basic idea
that underlies the EM algorithm is that, at each iteration,
posterior probabilities of hidden states and of adjacent
pairs of states given the data, γ and ξ respectively, are
calculated based on current model parameters θ , where
θ = {

a,π ,μ, σ 2,w,φ, υ
}
(E step). The γ and ξ poste-

riors are then used to update the θ parameters via the
maximization (M step) of a function that derives from
the model-based likelihood function L. EM iterations are
repeated until there is convergence to a local maximum
of L. Default initial values of model parameters are listed
in Additional file 1.

Extended dot-bracket notation
A secondary RNA structure can be encoded using the
dot-bracket notation, where a dot represents an unpaired
nucleotide, an open parenthesis represents a nucleotide
paired with a nucleotide ahead of it, and a closed paren-
thesis represents a nucleotide paired with a nucleotide
preceding it. For instance, a hairpin of stem size 3 and
loop size 4 would be encoded as (((....))). As PATTERNA
can take motifs of variable size as input, we added a syntax
convention inspired by regular expressions (regex), where
a consecutive run of symbols is specified by a symbol fol-
lowed by the run length in curly brackets. In our example,
the hairpin would be encoded as ({3}.{4}){3}. The curly
brackets also allow the input of a range of possible run
lengths as {x, y}, with x and y the lower and upper bounds
of the run length, respectively. For example, .{2,7} would
indicate any loops of size 2 to 7.

Motif scoring
To score a target motif, we first encoded its secondary
structure as the sequence of nucleotide pairing states,

which we call the target path. We then considered all
possible locations within an RNA where the path may
occur. In the absence of sequence constraints, this
amounts to scoring the path across all nucleotides within
the RNA with no consideration of base-pairing compat-
ibility, similar to a rolling window whose length is set
to the target path length. When applying sequence con-
straints, we restricted the search space to regions where
the sequence permits motif formation via Watson–Crick
andWobble base pairings.We scored each region by com-
puting the log ratio of joint probabilities between the
target and its opposite path (i.e., the unique path that
does not pass through any of the hidden states of the tar-
get path) given the trained model (see Additional file 1).
Scores were indexed to the nucleotide at the beginning
of the target path. Positive scores correspond to regions
where the motif is more likely to have occurred relative to
its opposite, and inversely for negative scores. Note that
these scores can theoretically range from −∞ to ∞.

Viterbi paths and pairing state probabilities
In addition to motif scoring, our trained model can
be used to reconstruct, for a complete transcript, the
sequence of binary pairing states that best explains the
observed SP data. This sequence, called the Viterbi path,
is found by applying the Viterbi algorithm for maximum-
likelihood sequence estimation to the GMM-HMM with
the emission and transition probabilities determined dur-
ing the training phase (see Additional file 1). Moreover,
pairing-state posterior probabilities, which we denote γ ,
are also generated for each transcript (see Additional
file 1). Because our model has binary states at each
nucleotide, we do not lose information by retaining the
posteriors for the paired state. The resulting γ1 path is, in
essence, the probabilistic (i.e., soft-valued) counterpart of
the binary (i.e., hard-valued) Viterbi path.

Benchmark SHAPE data set
Structure prediction
Our benchmark data set was assembled from 21 RNAs
with reference secondary structures and SHAPE profiles
published by theWeeks lab and summarized in Additional
file 2: Table S1 [59, 65, 66]. For each RNA, we predicted
MFE secondary structures using RNAprob, a probabilistic
method for integrating SP data with the classical NNTM
approach to structure prediction, based on the RNAstruc-
ture software implementation of theNNTMapproach [64,
72]. We predicted structures from both sequence alone
and sequence combined with SP constraints, as described
previously [64]. In addition, we usedGTfold [67] to sample
1000 structures per RNA from the NNTM-based Boltz-
mann ensemble using both sequence-alone and data-
driven partition functions. Note that we refer to bothMFE
and sub-optimal ensemble structures as NNTM-based
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predicted structures as they all derive from thermody-
namic modeling assumptions. We then encoded both ref-
erence and NNTM-based predicted structures as binary
vectors of unpaired (0) and paired (1) nucleotides. Next,
we trained PATTERNA on both raw and log-transformed
SHAPE reactivities to obtain fitted emission distributions
and state transitions. Negative SHAPE values were set to
zero prior to log-transforming the data and were excluded
from the transformation step because PATTERNA inter-
nally handles zero SHAPE reactivities using a designated
probability parameter (see Additional file 1). We trained
our model using ten Gaussian components per pairing
state.
To benchmark PATTERNA predictions, we used the

trained GMM-HMM to reconstruct the sequence of
binary pairing states that best explains the observed
reactivities. This sequence, called the Viterbi path, was
found for each RNA by applying the Viterbi algorithm for
maximum-likelihood sequence estimation to the GMM-
HMM with the emission and transition probabilities that
were determined in the training phase (see Additional file 1).
Additionally, for each nucleotide t (1 ≤ t ≤ T), we
computed the posterior probability that it is paired (i.e.,
in state 1) given the data, which we denote γ1,t . Before
computing an accuracy measure, we concatenated all the
RNAs such that each method is represented by a single
vector of length L. As the analysis included both binary
(i.e., reference, MFE, and Viterbi structures) and con-
tinuous vectors (i.e., γ path), we determined prediction
performances using the �1-norm between reference and
predicted structures:

�1 =
L∑

l=1
|yl − ŷl|, with

y = reference structure
ŷ = predicted structure.

(1)

An advantage of the �1-norm is that it is equiva-
lent, for two binary vectors, to the Hamming distance,
defined as

∑
∀l yl ⊕ ŷl, and we can compute the prediction

accuracy as

Accuracy = 1 − �1
L
. (2)

Finally, we also considered structures predicted by a
simple, yet trained, classifier, which thresholds reactivities
into unpaired (0) and paired (1) states using a reference-
based optimized cutoff. Both raw and log-transformed
data were classified, and the threshold was set to the
value that minimizes the �1-norm between the result-
ing binary vector and the reference structure (Additional
file 2: Figure S7). Note that for missing reactivities, we
assigned a classification score of 0.5, meaning there is an
equal probability of being paired or unpaired. Moreover,

for log-transformed data, the original zero and nega-
tive SHAPE values, which cannot be transformed, were
assigned to paired nucleotides.

Fragmentation analysis
To mimic transcriptome-wide motif searches that use
NNTM-based predictions [22, 90], we partitioned RNA
sequences and SHAPE profiles into non-overlapping
100-nt long fragments. After partitioning, if less than
100 nt remained at the 3′ end, we appended them to
the previous adjacent 100-nt fragment to ensure that
no fragment was smaller than 100 nt. For RNAs shorter
than 100 nt, we used a single fragment consisting of the
complete RNA. We then predicted MFE and subopti-
mal ensemble structures for each fragment independently,
following the same steps as for non-fragmented RNAs.
Finally, we encoded each folded fragment into unpaired
(0) and paired (1) nucleotides and assembled fragment-
based structures into full-length RNAs, which we then
processed identically to unfragmented RNAs.

ROC analysis of motif predictions
We tested the detection accuracy of NNTM-based
methods and PATTERNA for three motif types: loops,
hairpins, and hairpin-right bulge composites. We specif-
ically searched for the following motifs encoded in
the extended dot-brackets notation (see “Extended
dot-bracket notation” section):

Loops:
(.{3,10})
Hairpins:
({2,20}.{3,10}){2,20}
Hairpin-right bulges:
({1,10}.{3,10}){1,5}.{1,5}){1,15}

Sequence constraints on paired nucleotides were
applied when searching for hairpins and hairpin-bulges
but not for loops. To assess performance, we considered
all regions scored by PATTERNA and established the pres-
ence or absence of the motif ’s binary state path based on
the known reference structures. For ensemble samples,
we verified the presence or absence of the motif at each
nucleotide and in each sampled structure and recorded
the frequency at which the motif was observed in the sam-
ple. Similarly, for theMFE structure, we recorded whether
the motif was present or absent at each nucleotide, result-
ing in a binary vector. For each motif, we obtained from
the reference structure a ground truth binary vector, y,
summarizing the presence or absence of the motif at each
scored location. Score vectors obtained for each of the
benchmarked methods (ŷ) were thresholded and com-
pared to y via ROC analysis using the SCIKIT-LEARN
Python package [97].
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Fluoride riboswitch analysis
We used in vitro SHAPE-seq data for the B. cereus
fluoride riboswitch publicly available in the RNA Map-
ping Database (Additional file 2: Table S3) [23]. This data
set consists of three replicates of fluoride riboswitch co-
transcripts. Each cotranscript corresponds to a sequence
position in which transcript elongation was arrested.
Cotranscripts were SHAPE-profiled in the absence and
presence of 10mMNaF. A set of 2272 transcripts was pre-
pared by combining all probed fluoride riboswitch tran-
scripts across replicates and conditions. We trimmed the
last 10 nt at the 3′ end of the transcripts to remove RNA
polymerase footprints that block the SHAPE reagent. To
train ourmodel, we excluded all transcripts that contained
over 10% of missing values, i.e., their SHAPE densities fell
below 90%, resulting in a training set of 230 transcripts.
We used ten Gaussian components in our GMM, which
were initialized in the default way. We then scored hair-
pins ranging from stem sizes of 1 to 20 nt and loop sizes of
4 to 6 nt on the full-length transcript (90 nt) for each repli-
cate independently. To enrich our results for hairpins, we
applied sequence constraints on paired nucleotides, effec-
tively ensuring that we were scoring only regions that can
form hairpins. We computed the final scores by averaging
over replicate scores.
We considered that the PK in the aptamer domain con-

sisted of 45 nt that spanned the region from nucleotide 5
to nucleotide 49. We encoded the motif using the follow-
ing dot-bracket representation: .({16}.{6}({3}.{4}){4}.(.){8},
where numbers in curly brackets indicate repeats of the
previous characters (see “Extended dot-bracket notation”
section in “Methods” section). Note that we accommo-
dated nucleotides involved in long-range interactions by
considering them as being in a paired state, as they are
protected from SHAPE modification and we did not use
sequence constraints. We scored the PK at any possi-
ble starting nucleotide, in both experimental conditions
and for transcript lengths ranging from 30 to 100 nt, i.e.,
all available intermediate transcripts. To remove artifacts
due to the polymerase footprint, we trimmed an addi-
tional 5 nt, resulting in a total of 15 nt trimmed at the 3′
end of each transcript. We computed the final scores by
averaging over replicate scores.

Motif searches in transcriptome-wide PARS data
We used human in vitro transcriptome-wide PARS
data measured in a family trio consisting of a father
(GM12891), mother (GM12892), and their child
(GM12878) (Additional file 2: Table S3) [77]. We retrieved
V1 and S1 read counts for these subjects and computed
PARS scores as described in Wan et al.:

PARSt = log2(V1t + 5) − log2(S1t + 5). (3)

Like the quality control applied in Wan et al., we
excluded all transcripts with combined coverage across
the V1 and S1 channels lower than 1 read per nucleotide
and excluding 100 nt at the 3′ end. For instance, we
required that a transcript of length 500 was covered by at
least 400 sequencing reads mapped from either the V1 or
S1 channels. To ensure the accurate estimation of tran-
sition probabilities during training, we further excluded
transcripts with PARS densities lower than 50%. Sub-
jects’ training sets initially consisted of 2737, 2506, or
2512 highly covered transcripts and after filtering for suf-
ficient density, we kept 2027, 1935, and 1983 transcripts
for the father, mother, and child, respectively. We trained
PATTERNA on each subject separately because there are
no guarantees that technical and biological variations are
shared across subjects. Furthermore, to ensure consis-
tency while training across subjects, we initialized the
GMM’s Gaussian components at unit variance with iden-
tical weights across components and symmetrical means
at {−1,−2,−3} and {1, 2, 3} for unpaired and paired states,
respectively.
We investigated the presence of the two allelic ver-

sions of theMRPS21 (291A>C) andHLA-DRB1 (945G>A)
riboSNitches, since secondary structure models were pro-
posed in Wan et al. These structures translate to the
following in dot-bracket notation:

MRPS21 A (NM_018997, start 268):
.(((((((.......(((((.......))))).......))))))).
MRPS21 C (NM_018997, start 275):
.(((((....(((((.((((.((........)).)))).)))))..)))))...
HLA-DRB1 G (NM_002124, start 917):
(((((((....(((((........((((((..........))))))..)))))...)))))))
HLA-DRB1 A (NM_002124, start 917):
(((((((....(((((................................)))))...)))))))

As a positive control, for each riboSNitch, we spiked
into the child’s test data set two synthetic transcripts
consisting of the two allelic variants of the MRPS21
motif with perfect PARS information padded with 20
zeros on both sides. We defined perfect information as
unpaired and paired nucleotides with a constant PARS
value equal to the 2.5% (PARS = −2.70) and 97.5%
(PARS = 2.55) percentiles, respectively. Percentiles
were computed from 1,000,000 randomly sampled data
points. We then conducted transcriptome-wide searches
for these riboSNitches in each subject using 1000 tran-
scripts randomly selected from the pool of highly covered
transcripts. As we aimed at establishing motif detection
accuracy in the broadest possible context, we did not apply
sequence constraints when scoring motifs. To compare
scored regions across subjects, scores were first sorted in
descending order, that is, from more to less likely motifs,
and the rank of the target motif was used to compute a
simple statistical metric defined as the rank divided by
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the total number of scored regions. For instance, if a tar-
get motif score ranked tenth out of 100 tested motifs, the
resulting metric would be 10/100 = 10%. We used the
average across ranks when a motif ’s score was not unique.
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