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Autonomous vehicles require precise and reliable self-localization to cope with
dynamic environments. The field of visual place recognition (VPR) aims to solve
this challenge by relying on the visual modality to recognize a place despite
changes in the appearance of the perceived visual scene. In this paper, we
propose to tackle the VPR problem following a neuro-cybernetic approach. To
this end, the Log-Polar Max-Pi (LPMP) model is introduced. This bio-inspired
neural network allows building a neural representation of the environment via an
unsupervised one-shot learning. Inspired by the spatial cognition of mammals,
visual information in the LPMP model are processed through two distinct
pathways: a “what” pathway that extracts and learns the local visual signatures
(landmarks) of a visual scene and a “where” pathway that computes their azimuth.
These two pieces of information are then merged to build a visuospatial code that
is characteristic of the place where the visual scene was perceived. Three main
contributions are presented in this article: 1) the LPMP model is studied and
compared with NetVLAD and CoHog, two state-of-the-art VPR models; 2) a test
benchmark for the evaluation of VPR models according to the type of environment
traveled is proposed based on the Oxford car dataset; and 3) the impact of the use
of a novel detector leading to an uneven paving of an environment is evaluated in
terms of the localization performance and compared to a regular paving. Our
experiments show that the LPMP model can achieve comparable or better
localization performance than NetVLAD and CoHog.

Keywords: visual place recognition (VPR), bio-inspired robotics, hippocampus, place cells, neurocybernetics,
autonomous vehicle (AV), brain-inspired navigation

1 INTRODUCTION

The performance of robotic localization systems depends on their ability to continuously build
a stable and accurate representation of their environment (Yurtsever et al., 2019). However,
building such a representation remains a challenge for self-driving cars, which must face large
and dynamic environments since they are intended to be deployed over long periods in
environments of several tens of kilometers. Even on the scale of a single day, changing
conditions such as variations in light, the transient presence of vehicles or pedestrians, and
unpredictable changes in the urban landscape (road works) particularly affect the perception
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of space (Zaffar et al., 2019). Solving these problems is
essential for the deployment of autonomous vehicles.

Among the different available sensors to perform robotic
localization, the use of vision is gaining more and more interest
since cameras are rich, passive, and inexpensive sensors (Van
Brummelen et al., 2018). The domain of visual place
recognition (VPR), which aims to characterize a place from
visual information, has given rise to numerous research works
these last years (Yurtsever et al., 2019). These systems operate
mainly by processing information acquired from a monocular
camera in order to self-localize in an environment. The current
location is found by searching, among the places already
visited, the one with the appearance closest to the
current image.

With the applications of VPR being not only limited to the
field of navigation, several communities have proposed
models, resulting in a very rich landscape of models (Chen
et al., 2017b; Zaffar et al., 2020a). Thus, numerous approaches
have been proposed, first based on hand-crafted local or global
features and more recently relying on deep networks
(Arandjelović et al., 2016; Zhang et al., 2021). These
approaches offer different balances between computing cost
and performance, which defines a horizon of possible use
cases. For example, convolutional neural network (CNN)
models are among the best-performing networks in the
state of the art and allow obtaining high localization scores.
They are, however, quite resource-consuming and need to be
learned on large datasets, which still limits the use cases to
which they can be applied in the field of robotic navigation
(Zhang et al., 2021).

These last decades, a few works proposed addressing the
VPR problem via bio-inspired architectures based on the
neural mechanisms underpinning the spatial cognition in
animals (Zeno et al., 2016). Studies of animal spatial
cognition can indeed serve as a blueprint to design
innovative models aiming at endowing artificial systems
with capabilities akin to the biological ones. From the large
literature on the spatial cognition of mammals, these works
propose models recreating the interactions of brain structures
where spatially tuned neurons (i.e., place cells) are found
(Grieves and Jeffery, 2017). Thus, they offer architectures
situated at the interface between robotics and the field of
the computational neuroscience (neurorobotics). The
resulting neural architectures led to solutions for robot
navigation (both indoor and outdoor), which may represent
alternatives to “classic robotics” ones. Their applications to
localization problems have thus demonstrated that they could
be efficient, offering new robustness and adaptive properties
(Gaussier et al., 1997; Milford et al., 2004; Cuperlier, 2007; Ball
et al., 2013).

In this paper, we studied the integration of a bio-inspired
localization model called LPMP (Log-Polar Max-Pi) on robotic
localization issues (Espada et al., 2019). Our goal was to
determine the key elements of the model allowing, despite its
simplicity, to provide competitive localization results. Our
contributions are the following:

• We performed a rigorous evaluation of LPMP under
challenging conditions and compared it with NetVLAD
(Arandjelović et al., 2016) and CoHog (Zaffar et al.,
2020b), two VPR solutions among the most efficient of
the state of the art.

• We studied the different sequences available on the Oxford
car dataset in order to build a testing benchmark, allowing
to compare the performance of the models between
different key environments.

• We evaluated two ways of constructing an environment
representation: an automatic mechanism (called the
vigilance system), which triggers the registering of a new
place if this place is not sufficiently recognized, and a static
method, which consists of recording an image every xmeter.

The rest of this article is divided as follows: firstly, a brief
review of the VPR field and of visual localization in biological
systems is provided. Subsequently, the general operation of the
LPMP model is introduced. Finally, the experiments performed
and the results obtained are presented and then discussed.

2 VPR AND LARGE-SCALE LOCALIZATION

2.1 General Definition
Coming from the robotics community, the VPR problem is
traditionally posed as a research task in a tagged image
database (Figure 1). In general, a request in the form of an
image is sent to the system, which must determine the most likely
places to which it belongs. VPR models are often associated with
the problem of simultaneous localization and mapping (SLAM),
which requires regularly determining whether a place has already
been visited (problem of loop closure detection) (Bresson et al.,
2017).

Whether it is to respond to a request or to build a map of an
environment, a VPR system always follows a similar pathway: it
starts with an image acquisition, followed by some image
processing that allows building a representation that
characterizes the current location (Arandjelović et al., 2016;
Zhang et al., 2021). This general process can thus be
summarized in a functional architecture by three blocks, as
described in the Figure 1 (Chen et al., 2017b). Depending on
the system, the distinction between these three blocks can be quite
blurry, especially with models that encode the image entirely.
However, even if the image processing is global, these systems still
have to carry out a form of information selection followed by its
encoding.

Being a well-posed problem, the method for evaluating the
performance of VPR models is fairly conventional (Zaffar et al.,
2020a). Firstly, the target VPR system encodes a particular sequence
of images (learning dataset), for which the ground truth is known
and recorded. Secondly, several images (test dataset) are presented to
the system, which returns the closest known images called
hypotheses. To establish the performance of the model, it is then
sufficient to qualify the hypotheses of the system according to their
distance to the current position of the vehicle.
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2.2 Brief Review of VPR
Due to its multidisciplinary nature, the field of VPR has been
studied by several communities and used in a wide variety of
applications: in machine vision (Torii et al., 2013; Sermanet et al.,
2014; Zaffar et al., 2020b), in databases (Park et al., 2010;
Arandjelović et al., 2016), and in robotics (Bresson et al., 2017;
Siam and Zhang, 2017; Garg et al., 2018). A short overview of the
different VPR categories is presented in the following.

2.2.1 Local Handcrafted Feature Models
The oldest approaches were based on handcrafted descriptors
computed from local features (Schmidt and Kraft, 2015), such as
SIFT (scale-invariant feature transform) (Lowe, 1999), SURF
(speeded up robust features) (Bay et al., 2008), DBow (bags of
binary words) (Galvez-López and Tardos, 2012), and ORB
(oriented FAST and rotated BRIEF) (Rublee et al., 2011).
These approaches have the disadvantage of being very
dependent on the quality of the detector used, often quite
sensitive to variations in brightness or to the proportion of
irrelevant elements (pedestrians, bicycles, or vehicles) on
an image.

2.2.2 Global Handcrafted Feature Models
Global handcrafted approaches process the entire image to
characterize it, without going through a detection phase. These
approaches are often more resistant to changes in illumination
and to the presence of small irrelevant elements than are local
methods, but they are more sensitive to the change of point of
view or weather variations (Zaffar et al., 2019). Among the
most efficient global features from the state of the art, we can

cite GIST (Oliva and Torralba, 2006) or CoHog (Zaffar et al.,
2020b), which offer very efficient and light image
characterization methods.

2.2.3 Learning Approaches
With the development of computing power, many fields have
seen the emergence of new models based on deep learning
techniques such as CNNs or adversarial models (Chen et al.,
2017c; Robert et al., 2018; Zaffar et al., 2020b). The first work
carried out in VPR was to determine whether using pre-trained
networks could allow obtaining acceptable localization
performance by relying on the capacity of CNNs to find
efficient features to characterize an image (Sermanet et al.,
2014). Now, several models offer complete chains to solve the
VPR problem, giving very good results in terms of performance in
difficult localization conditions.

Among these approaches, we can cite NetVLAD
(Arandjelović et al., 2016), HybridNet (Chen et al., 2017c),
and AMOSNet (Robert et al., 2018), which offer the best results
in the state of the art (Zaffar et al., 2020a). However, the
downsides of such methods are the computational cost
(whether in learning or in use), their need for large learning
datasets, and their lack of explainability, which are important
criteria when considering autonomous driving.

2.3 Large-Scale Deployment Constraints
The deployment of a VPR system on large scales of distance and
time presupposes finding solutions to several issues related to the
use of a visual sensor. A brief summary of the main constraints on
an increasing timescale is given in this section:

FIGURE 1 | Illustration of a classic visual place recognition (VPR) operation. A VPR system can be decomposed into three functional blocks: 1) a detector that
selects the significant information of the acquired image; 2) an encoder that compresses the useful information; and 3), a memory that contains the places in a memory
format suitable for the query system. The final code is used to determine from the current image of the vehicle in which place it is located by extrapolating its position from
the responses of the system.
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• Sensitivity to viewpoint changes: On the same trajectory, the
point of view can change drastically, especially when turning
or at high speeds. This problem is one of the most critical for
a localization system.

• Robustness to dynamic environments:Over a very short time
interval, the appearance of places in an environment can
vary due to human activity. VPR systems must be able to
continue to recognize a location despite the presence of
irrelevant elements such as pedestrians, vehicles, or
roadworks.

• Robustness to light conditions: Throughout a day, the light
conditions change and can modify the colorimetry of a
place, cast shadows differently, etc. The glare of a visual
sensor thus causes a strong loss of visibility, leading to a
decrease in localization performance.

3 VISUAL LOCALIZATION IN BIOLOGICAL
SYSTEMS

If the deployment of VPR systems on a large scale remains a
difficult challenge, biological systems such as mammals show us
that it is nevertheless possible to find light and efficient solutions.
Many species are indeed able to travel hundreds of kilometers to
ensure their survival, especially during animal migrations (Tsoar
et al., 2011). Based on these observations, several works have
started to model the cognitive processes underlying animal
navigation in order to propose original solutions for the
navigation of artificial systems (Milford et al., 2004; Cuperlier,
2007; Chen et al., 2017a; Espada et al., 2019; Ju and Gaussier,
2020). This section presents some of the main mechanisms
involved in the spatial cognition of mammals.

3.1 Hippocampal Pathway
To perform localization tasks, animals rely essentially on two
sources of information (Whishaw et al., 2001; Giovannangeli
et al., 2006a): allothetic information, which are external signals
such as visual cues, and idiothetic information, coming from
internal sensors, sensible to self-movement information such as
the vestibular system or proprioception. These pieces of
information are retrieved in mammals in the different
neocortices of the brains that are involved in the extraction of
one modality (Yoder et al., 2011).

Then, these pieces of information are processed separately in
two pathways (Goodale and Milner, 1992; Saleem, 2020): the
ventral stream or what pathway involved in the recognition of
objects and the dorsal stream or where pathway specialized in the
processing of spatial information. Lastly, they reach respectively
the perirhinal cortex (LaChance et al., 2019) and the
parahippocampal cortex (Aminoff et al., 2013) to be merged
in the hippocampal system (HS), known to play a key role in
spatial memory (Zola-Morgan et al., 1989; Eichenbaum, 2017).
The brain seems to process the what visual information in a very
similar way to that followed by VPR systems, where the first
stages of the visual system behave similarly to visual keypoint
detectors and encoders. On the contrary, the where information
coding the spatial configuration of the point of interest (PoI) via
their azimuth angles is usually missing from a classic VPR system.

The HS (Figure 2), composed of the hippocampus proper
(HIPP), the dentate gyrus (DG), the enthorinal cortex (EC),
and the subiculum (SUB), is one of the brain regions that has
been the most studied in neurobiology due to its essential role
in spatial cognition (Moser et al., 2015) and in human episodic
memory (Lisman et al., 2017). Even if the exact functioning of
this system is still not perfectly known, several striking

FIGURE 2 | Illustration of the hippocampal system (HS). The functional path of spatial memory begins in the perirhinal and parahippocampal cortices that filter and encode
the idiothetic and allothetic information from the neocortices. These two pathways are merged in the entorhinal cortex before reaching the hippocampus, either directly or via the
dentate gyrus. Several neurons, sensitive to spatial information, have been identified in the HS: place cells sensitive to particular positions, spatial view cells responding to points of
view, and head direction cells tuned to specific head directions. A particular loop has also been identified between the hippocampus and the septum (septo-hippocampal
loop) and seems to play an important role in the learning of new events in the HS via cholinergic modulations in the HS (Hasselmo, 2006).
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discoveries have been made that allowed us to puzzle out the
processes involved in spatial cognition (O’Keefe and
Dostrovsky, 1971; Taube et al., 1990; Moser et al., 2015).
These studies, mainly conducted on rats and monkeys, have
revealed that the HS is made up of a wide variety of spatial
neurons forming the neuronal basis of spatial navigation
(Robertson et al., 1998; Rolls and Wirth, 2018).

3.2 Spatial Map Structure
One of the most important questions in this field remains to
determine the role played by the different kinds of spatial neurons
found in the HS and how they interact to give rise to a robust and
accurate map of the environment supporting the navigation
behavior.

• Place cells: The first neurons measured in the HIPP, and surely
the most famous ones, are the place cells (PCs). Discovered in
1971 by O’Keefe and Dostrovsky (1971), these neurons encode
precise locations in an environment and its surroundings by
firing maximally when located in the encoded place. The space
encoded by the activation of the neuron, called a place field,
shows interesting dynamic and robustness properties (Moser
et al., 2015). Initially located in the HIPP, place cells are also
found in the DG and the superficial EC (O’Mara, 1995).

• Spatial view cells: These neurons discovered in the HIPP of
primates (Robertson et al., 1998; Rolls and Wirth, 2018) are
sensitive to a specific point of view (see Figure 2). Thus, unlike
place cells, these neurons respond only when the animal is in a
specific part of the environment with a given orientation.

• Head direction cells: Discovered in 1984 by Taube et al.
(1990), Taube (2003), and Butler et al. (2017), head
direction (HD) cells encode the absolute orientation of
the animal’s head independently of the position. Their
activity can therefore be seen as a compass. First
discovered in the SUB, these neurons can be found in
different parts of the brain, notably in the retrosplenial
cortex (Jacob et al., 2017).

4 LPMP MODEL

This section is dedicated to the full explanation of the proposed
model. It begins with an overview of each element composing the
model and its interactions, followed by a detailed explanation of
each block.

4.1 Complete Overview
In this paper, we propose using the neuro-cybernetic model “Log-
Polar Max-Pi” (LPMP) (Giovannangeli et al., 2006a; Cuperlier,
2007) to resolve VPR on autonomous vehicles in challenging
environments. This model, using local handcrafted features,
allows building in an unsupervised way, a neural map of an
environment from a camera and a compass.1

To memorize a place, the LPMP model starts by building a
visuospatial code representative of its “spatial configuration,”
i.e., all the visual signatures of the landmarks that constitute it
and their azimuth angles. It then records it in the connection
weights of a neuron called a “spatial” neuron, whose activity
indicates the recognition of the memorized place. The LPMP
model thus mimics several key structures of the mammalian
brain, such as the visual system, and a part of the hippocampal
system (Figure 2). This last area is known to be involved in spatial
memory processes.

To code a place, the LPMP model starts by extracting Np

PoIs from the current image I, centered on the landmarks that
best characterize it (visual system, Figure 2). These PoIs are
collected by building a saliency map of I via the computation
of a visual gradient (Deriche filter), followed by a DoG
(difference of Gaussian) filter that highlights the curvature
points found in the image and ends with a local competition
mechanism that selects the most significant PoI.
Subsequently, these PoIs are processed one by one by two
parallel pathways, the “what” and “where” pathways, which
respectively encode for each PoI a visual signature and its
spatial orientation (Mishkin et al., 1983). This sequential
process mimics the attentional mechanism that allows
focusing successively on the more informative regions of
the image as observed during the eye saccades in animals
(Tsotsos, 1990).

To characterize the visual signature of a PoI, the LPMP model
carries out a log-polar transform, consisting of the remapping of
the pixels around the PoI into log-polar coordinates (log-polar
encoding, Figure 2). This remapping allows the system to
represent landmarks in a more compact format while
producing code that is more robust to small appearance
changes induced by the movement of the vehicle (Javier
Traver and Bernardino, 2010). The computed signature is then
sent to the winner memory, WMl (landmark memory, Figure 2),
an intermediate memory dedicated to memorizing all the
different landmarks encountered.

Composed of Nl neurons, the WMl memorizes the observed
landmarks when the learning of a new place occurs; otherwise, it
computes the similarity between the currently observed signature
and the already memorized ones. The learning of each landmark
is performed by first selecting an available neuron in the layer and
by copying the values of the visual signature in the weights of its
connection with the log-polar mapping. Thus, the value Nl

defines the maximum number of different landmarks that the
memory can encode and is defined at the initialization of
the model.

During the computation of the WMl activity, only the Nw

neurons with the highest activity, called the winning neurons,
remain active and transmit their activity to the next layer of
neurons. This filtering process, called “competition,” limits the
number of neurons that contribute to the visuospatial code of a
place, allowing the system to make multiple hypotheses for a
given landmark. Thus, a strict competition allows only a single
interpretation of the visual signature, favoring a single hypothesis
that could be wrong. Contrarily, relying on a soft competition
allows several hypotheses to be taken into account and increases

1Information that might be obtained from a magnetic or visual compass
(Giovannangeli and Gaussier, 2007).
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the probability to correctly identify the landmark, but creates
noise on the code of a place.

To characterize the spatial orientation of a PoI, the LPMP model
computes its “azimuth,” i.e. the absolute orientation of a PoI with
respect to the global north. To this end, for each PoI, the “azimuth
computation” block shifts the absolute orientation of the vehicle,
corresponding to the x coordinate of the image center, as a function
of the angular deviation of the PoI with respect to this center.

The orientation obtained is then encoded as a population of Na

neurons (Georgopoulos et al., 1988) in the Pla layer (azimuth
encoding, Figure 2). More precisely, the activity of each neuron
decays exponentially as a function of the angular distance between its
preferred direction and the azimuth angle of the currently observed
landmark. Consequently, on this Pla layer, a bubble of activity emerges
centered at the neuron coding for the azimuth angle of a landmark.

The resulting information of each processing pathway is finally
sent to a neural matrix called Max-Pi layer (MPL), which merges
the what and where information of all the landmarks extracted
from I (what–where merging block, Figure 2). This matrix is
uniquely composed of Max-Pi units, a specific neuronal structure
that, due to its connectivity, performs three operations: a pooling, a
product of two modalities, and a temporal integration. Unlike a
winner memory (WM), MPL does not learn a pattern and is only
used to construct a visual–spatial pattern representative of a place
by accumulating the information coming from WMl and Pla.

In the LPMP model, each unit of the same row is connected to a
single neuron of WMl, encoding a visual signature, and each unit of
the same column is connected to ra neurons of Pla [for a final
dimension of (Nl × Na′)]. Therefore, the learning of a new landmark
with WMl is accompanied by the recruitment of a new column of
neurons inMPL, so that it can be integrated into the computation of
the visuospatial code. The number of columns (Na′) in MPL defines
the number of distinct physical landmarks that could lead to the
same visual signature (perceptual aliasing), but nonetheless
distinguished by different azimuth angles, that the system can
handle.

Therefore, at a given iteration, each Max-Pi unit performs the
following three operations:

1. Computing amax pooling step on both of its inputs processed
via a distinct pathway: one is computed on ra successive
neurons of Pla and the other one is performed in the WMl

layer. However, since eachMax-Pi unit is connected to a single
neuron ofWMl, it results in a simple copy of the input activity.

2. Performing a product step where both inputs are multiplied.
3. Integrating the value throughout the processing of an image to

maintain its activity until the complete processing of the Np

landmarks selected in I.

After having processed all the PoIs of I, the final activity of
MPL characterizes a spatial configuration of the landmarks
specific to a place.

The final activity of MPL is then sent to a second WM called
WMp (for winner memory of places), used to memorize the code of
the learned images. The activity of this memory allows localizing the
system in its environment, behaving in a very similar way to place
cells. In the proposed model, the learning of a new image is

controlled by a learning signal, which synchronizes the learning
of a place with the learning of its landmarks.2

In its original design, LPMP proposes to autonomously learn
an environment via a novelty detector. This detector automatically
triggers the learning of a new place when the activity level ofWMp

falls below a value v, called the vigilance threshold. This system
leads to an irregular paving of the environment (place fields may
have different sizes along a given trajectory), which can be more
economical in memory or evenmore efficient in certain situations
(Espada et al., 2019). For the sake of clarity, we call this model the
LPMP + Vig model to differentiate it from the version without
novelty detector, in which the learning signal is regularly
triggered as in conventional VPR systems.

In the following sections, details are given for each of the blocks
described above. A table of the parameters and their values is given
in theAppendix and can serve as a reminder for the notations used.

4.2 Visual System
The LPMP visual system is inspired by the mechanisms of visual
attention in animals (Treue, 2003; Gaussier and Zrehen, 1995). It
performs a non-uniform sampling of the visual input by only
extracting visual information on the salient regions via a
mechanism mimicking ocular saccades (Gaussier and Zrehen,
1995). This method makes it possible to only focus on the most
informative parts of an image and could be the solution used by the
brain to reduce the computations of its visual system (Tsotsos, 1990).

From a functional point of view, the proposed visual system
looks for the most stable high curvature points of an image, e.g., a
corner. It begins with a first stage of preparation, where the image
I is transformed in grayscale and cleaned up via a light smoothing
and a histogram equalization. Then, a Deriche filter (Deriche,
1987) is used to highlight the edges of the image. This filter is a
variant of the Canny filter (Canny, 1986), which incorporates a
smoothing, and whose impulse responses are given by:

f x( ) � kxe−α|x| (1)

With α as the smoothness parameter between 0 and 1 and k is a
constant. Decreasing α increases smoothing and improves the edge
detection to the detriment of their localization and vice versa.

Subsequently, a convolution with a DoG is used on the image to
highlight the curvature points of the different edges detected. This
second filter is constructed by subtracting two Gaussians of different
widths (standard deviations), as described in the following equation:

Γ x, y( )σ1 ,σ2 ≜ 1���
2π

√ 1
σ1
e− x2+y2( )/2σ21 − 1

σ2
e− x2+y2( )/2σ22( ) (2)

with σ1 and σ2 as the standard deviations of the two Gaussians.
The use of a DoG filter on the image allows diffusing its edges,
reinforcing their value at the curvature positions, as described in
Gaussier and Cocquerez (1992). The succession of these two
filters builds a saliency map S, which highlights the important
curvature points of I.

2The learning of a new place in the WMp is conditioned by the learning of all the
landmarks that compose it.
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Finally, a local competition is carried out between the local maxima
of S to extract Np stable PoIs from I (see Algorithm 1). This
competition consists of successively selecting the most active points
in Swhile inhibiting the other points around, in a radius defined by rc.
This exclusion radius prevents the system from selecting values on the
saliency map around positions already selected. The last step consists
of only keeping the Np PoIs with maximal saliency values.

Algorithm 1. Competition on saliency map.

4.3 Log-Polar Encoding
The log-polar encoding module was used to characterize the
visual information of a PoI by mimicking the functioning of the
eyes (Schwartz, 1980; Araujo and Dias, 1997). Indeed, this

encoding technique is inspired by “cortical magnification,”
i.e., the very specific structure of the retina (particularly the
fovea) where the visual receptive field spacing and size
increase with the distance from the central part of the retina.

The log-polar mapping starts with the extraction of a circular
image patch (or vignette) of radius rmax around a specific PoI,
then is followed by the computation of a non-constant sampling
where the number of sampled pixels increases with the distance to
the center of the vignette (see Figure 4).

From a mathematical point of view, the log polar
transformation corresponds to the remapping of the vignette
from the 2D Cartesian coordinate system (x, y) to the log-polar
coordinate system. It can be expressed by the following equation:

ξ � log
������
x2 + y2

√
, η � arctangent y, x( ) (3)

where ξ (the eccentricity or magnitude) and η (the angle) are the
coordinates in the log-polar space.

With the visual space representation not being continuous, the
circular vignette is discretized into a “visual sector,” according to
the dimension of the output matrix (De × Da). The pixels of a

FIGURE 3 | Complete scheme of the Log-Polar Max-Pi (LPMP) model. This figure illustrates how the LPMPmodel builds a place representation from one image of a route
sequence. In this neural model, a place is defined as a visuospatial pattern specific of the current location and results from themerging of two pieces of information: the image I and
the compass of the vehicle. To characterize a visual scene, LPMP detects Np points of interest (PoIs) from an image. Subsequently, in an attentional loop, the system sequentially
extracts image patches centered on each PoI, computes a feature vector (via a log-polar transform), and learns this pattern in a first neural winner memory (landmark
memory). In parallel, their spatial orientation (according to a given absolute reference) is computed in the azimuth computation block and mapped in a neural layer (azimuth
encoding). Then, both pieces of information are thenmerged in a neural Max-Pi layer (what–wheremerging).When all the selected PoIs are processed, the resulting activity pattern
of theMax-Pi layer is representative of the spatial configuration of the landmarks and is therefore characteristic of the corresponding place. Finally, this pattern is stored in a second
neural memory (winner memory), called place memory. A vigilance systemmakes it possible to automatically build a map of the environment by triggering the recruitment and the
learning of new neurons to code the new locations visited. This decision is based on the level of activity of the winner memory, which codes for the already known places.
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given visual sector are represented in a cell of the output matrix,
usually via an average weight function.

This transformation allows coding the vignette in a more
compact format than with a constant resolution for a very low
computational cost (Javier Traver and Bernardino, 2010). In
mobile robotics, relying on log-polar transformation provides
robustness to small appearance changes of landmarks induced by
a small variation of point of view when the robot moves, as shown
in previous indoor and off-road experiences (Joulain et al., 1997;
Giovannangeli et al., 2006b; Belkaid et al., 2016).

4.4 Azimuth Computation and Encoding
The processing of the where information (or spatial signature) is
performed by the azimuth computation and azimuth encoding
modules. It corresponds to the absolute orientation of the
landmark, according to a fixed reference (e.g., the magnetic north).
This information can be found in the brain under the form of head
direction cells, neurons that activate when the animal directs its head
in a specific direction. Note that an absolute reference is needed to
build an allothetic representation of place independently of the current
orientation of the vehicle, e.g., the north direction retrieved with a
magnetic compass. For the sake of simplicity, the orientation
information in this work is derived from the vehicle log of the
datasets. But in order to only deal with the visual modality, the
orientation information could also be derived from the visual input via
a visual compass (Gourichon et al., 2003; Delarboulas et al., 2014).

To compute the azimuth angle θnorthl of a landmark, the system
shifts the absolute angle of the vehicle θnorthVehicle with respect to the
magnetic north3 by the angle of the POI calculated in the
egocentric frame of reference, i.e., relative to the center of the
image. θegopoi is computed in function of x the horizontal position of
the landmark in image I of dimension (Dw ×Dh) and the width of
the field of view (FOV) θfov.

θnorthl � θegopoi + θnorthVehicle (mod 2π) with θegopoi � θfov
x

Dw
− 0.5( )

(4)

Then, this information is encoded in the Pla layer by a
population of neurons (Georgopoulos et al., 1988), a neural
structure within which a bubble of activity emerges centered at
the neuron coding for the azimuth angle of a landmark. More
precisely, each of its Na neurons exhibits a maximal response to a
preferred azimuth angle. Their activity then decays exponentially as
a function of the angular distance between their preferred direction
and the azimuth angle of the currently observed landmark:

Plaj � exp − j − θ( )modNa( ) −Na/2( )2
2σ2

azim

(5)

where Plaj is the activity of the jth neuron on azimuth layer a and
σazim is the standard deviation of the Gaussian.

4.5 Winner Memory Layer
The LPMP model requires the use of two memories to store the
log-polar code of landmarks (landmark memory, Figure 3) and
the activity of the Max-Pi layer (place memory, Figure 3).

In its current formulation, the LPMP model uses a WM (Espada
et al., 2019), a simple neural model of memory that allows storing
vectors of data in one iteration. The use of one-shot learning is one of
the keys to the effectiveness of the model, a peculiarity considered as
one of the key properties of the memory of animals (Lee et al., 2015).
From a functional point of view, the network stores directly in the
weights of these neurons a set of data, with one neuron per different
signal, which leads to a strong reduction at the output.

This memory has thus two advantages:

• It learns in a single iteration a vector (for example, the log-
polar code of a landmark), allowing for fast learning without
the need of pre-training (one-shot learning principle).

• It allows applying a form of filtering on the reading of the
memory by allowing only the strongest neurons to express
themselves (competition principle).

FIGURE 4 | Illustration of log-polar transform. (A) Log-polar transformation converts a circular vignette of size rmax from the 2DCartesian coordinate system into the
log-polar coordinate system with ξ (eccentricity) and η (angle). (B) Examples of log-polar code for three transformations (rotation, scaling up, and rotation combined with
scaling up). Left, input image; right, log-polar code.

3This information could be derived from a magnetic compass on a real vehicle or
from the GPS coordinates provided in the datasets.
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From a structural point of view, aWMnetwork is composed of
Ntotal neurons with u learned neurons and Ntotal − u available
neurons (i.e., with null weights4). To record a new entry, a
learning signal λi(t) is sent to the network, which saves the
information directly in the weights of the next available
neuron u. Thus, the updated formula of a neuron i ∈ [0, Ntotal

− 1] when learning a pattern d of size Nd can be written as:

wi,j t( ) � dj t( ), if λi t( ) � 1,
wi,j t − 1( ), otherwise.{ (6)

with wi,j the weight matrix of the WM and dj the jth element of d.
Two steps are necessary to compute the final WM activity: a

comparison step, where the activity of each neuron represents the
degree of similarity (distance) of its learned pattern with the input
d, and a competition step, where only the most active neurons
remain active. The computation of the activity of a neuron, i,
before competition is written as:

ŝi t( ) � 1 − 1
K1

∑Nd

j�0 h wij, dj t( )( ) wi,j > k1( )withK1 � ∑Nd

j�0 wi,j > k1
∣∣∣∣ ∣∣∣∣

(7)

with h(wij, dj(t)) � ‖wij − dj(t)‖ a Euclidean distance
between the data d and the weight of the ith neuron. K1

(Eq. 7) is a normalization factor based on the number of
activated weights, i.e., weights greater than an
activity threshold expressed by the constant k1. In this
equation, weights less than k1 are excluded to skip
the distance computation between the input and
their weight, which would lead to an irrelevant (small)
activity. A neuron i has, therefore, maximum activity
when the pattern is close to its weight. An
implementation of the ŝ(t) computation on the WM is
proposed in Algorithm 2.

Moreover, there are several ways to perform a competition on
the WM. In our case, we chose to use a basic competition
mechanism where only the Nw neurons with the highest
activities are expressed in the final activity si(t) � c(ŝi(t), Nw)
with c as the competition function.

Algorithm 2. Computation of ŝ(t) on WM.

4.6 Max-Pi Layer
The Max-Pi layer (MPL) is a neuronal structure used in the LPMP
model tomerge and integrate the information coming from the azimuth
encoding block and the landmarks memory block for the duration of an
image (see Figure 3). This neuron layer, taking the form of a 2Dmatrix,
is composedofMax-Pi units, specificneuronal units that, because of their
connections, carry out three processing operations: a max pooling, a
merging via a product, and a temporal integration (see Figure 5).

To describe the operations realized by MPL, let us consider a
matrix x composed of Na′ × Nb′ Max-Pi units, and two neuron
vectors, a of size Na and b of size Nb. Then, the activity of neuron
xi,j (the ith row and jth column) resulting from vectors a and b at
time t can be expressed as:

xi,j t( ) � xi,j t − 1( ) 1 − R t( )( ) + max
k� ra .i,ra . i+1( )[ ]

ak t( )( )

max
l� rb .j,rb . j+1( )[ ] bl t( )( ) (8)

In this equation, the first term allows accumulating the activity
of xi,j over time. The function R(t) is a binary signal that allows
erasing the content of the matrix (typically after processing all the
PoIs in an image). The second term expresses the max fusion
between a and b. Thus, each neuron in this matrix merges ra and
rb neurons, expressible by ra � Na

Na′
for a and rb � Nb

Nb′
for b.

TheMPL is inspired by the functioning of the cortical columns and,
more specifically, by the Sigma–Pi units (Mel and Koch, 1990; Plate,
2000), neuronal structures performing a processing close to the one of
Max-Pi units. The essential difference between these two structures is
that a Sigma–Pi unit realizes the addition of a multiplicative cluster of
neurons (called pi-neurons), where the Max-Pi unit will rather use a
pooling formula followed by amultiplication, which is easier tomanage
from a computational point of view.

In the LPMP model, the dimension of the vector b, i.e., the WMl

layer, changes during the execution of themodel. Indeed, the number of
landmarks evolves as the LPMPmodelmemorizes new locations. Thus,
when a new landmark is added in WMl, a new column of neurons is
recruited in MPL. By this way, the new landmark is integrated into the
activity of theMPLmatrix, which becomes able to encode richer places.

The MPL was implemented using an intermediate max-
pooling layer to save computational costs, as described in
Algorithm 3.

Algorithm 3. Computation of Max-Pi activity.

4.7 Novelty Detector and LPMP + Vig
The novelty detector allows automatically controlling the learning
signal of the model in order to generate a representation of an

4Null weights are used for the sake of simplicity and to increase the
computing speed.
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environment in an unsupervised way. This mechanism is inspired
by the ART (adaptive resonance theory) model (Carpenter et al.,
1991), an important model of neuroscience that explains how the
brain can autonomously learn to categorize information in a
dynamic world.

To trigger the learning signal, the novelty detector simply
checks whether the recognition level of the current place,
represented by the highest value of WMp, falls below a
constant, called the vigilance threshold. Thanks to this
system, the LPMP model generates an irregular
representation of an environment, which adapts to its
complexity (Espada et al., 2019). Thus, such a system can
reduce the representation cost of an environment5 or
improve the localization performance, especially in complex
ones that require a strong sampling of the sequence.

To keep the consistency of the learned representation, the
model relies on the same and single signal to trigger both the
learning of a new place in WMp and the learning of
corresponding landmarks in WMl.

5 EXPERIMENTS

5.1 Datasets
To evaluate the performance of the LPMPmodel, we decided to use
the Oxford car dataset (Maddern et al., 2017;Maddern et al., 2020), a
recent self-driving car dataset intended for VPRmodels. This dataset
is composed of a hundred of records made over 9 km in the city of
Oxford and provides access to trajectories under a great variety of
conditions such as season, weather, and traffic. Due to its very large
size, the dataset is often cut to be used in the evaluation of VPR
systems (Garg et al., 2018; Sattler et al., 2018; Chancán and Milford,
2020; Pan et al., 2020). Although several papers have presented

results on this dataset, a few of them indicated which subset of the
dataset was used,6 requiring us to propose our own test benchmark.

In this paper, we decided to compare the performance of the
models according to the type of environment. Four “routes” (each
composed of four trajectories/recordings; see below) were
extracted from the whole dataset, which go through four
different types of environments: city center, suburb, boulevard,
and forest (see Figure 6). Particular attention has been paid to
take the longest possible sequences presenting a well-defined
environment, as illustrated in the figure (see Figure 6).

For each route, four recordings at different times were selected
and therefore presented. To the extent of what is available, the
recordings include different levels of human activities that allow
testing the robustness of the different algorithms. To measure this
activity, we used Yolo, an image classification algorithm (Redmon
et al., 2016), to automatically count the number of vehicles and
pedestrians.

The different recordings were selected in order to have
comparable recordings, i.e., with identical trajectories and
without sensor problems (many sequences had to be
eliminated because of GPS problems). Moreover, the
sequences were chosen under equal weather and seasonal
conditions in order to focus our analysis only on the
localization performance achieved in the different
environments. Table 1 presents the retained sequence division.
The datasets used for our evaluation represent around 10 km of
trajectories from the original Oxford car dataset.

5.2 Evaluation Methodology
The experiments carried out in this paper followed a standard
procedure of place recognition evaluation (Sattler et al., 2018)
under two criteria: localization performance and computational
performance.

FIGURE 5 | Illustration of the Max-Pi layer (MPL) operation. To merge information coming from two vectors a and b, the MPL performs three operations: a max
pooling on ra and rb neurons, a merging on the results of the max pooling via a product, and a temporal integration over a given number of iterations. These operations
allow the information coming from vectors a and b to be combined into a compressed activity pattern.

5This property is especially relevant in monotonous environments such as a
highway.

6RobotCar Seasons (Sattler et al., 2018) proposes some sequences for VPR tests
across seasons.
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5.2.1 Localization Performance
To obtain reliable results, we decided to perform our experiments
by environment in cross-validation. Thus, for one experiment,
two trajectories of the same environment are selected and are
treated in four stages:

• Learning an environment: The images of one trajectory (the
learning trajectory) are subsampled every dsamp meter and
used by the model to build its representation of the space.

• Query set: A set of Nqueries images is randomly selected on
the second trajectory (the test trajectory) and is presented to

TABLE 1 | Different trajectories selected from the Oxford car dataset

Environment Images Distance (m) Duration (s) Activity rate Sequence date Index on
reference sequence

Boulevard 1,–930 632 125 4.5 2014/07/14 15:42:55 2,552–4,481
Boulevard 1,401 625 89 6.8 2014/07/14 14:49:50 2,820–4,220
Boulevard 1,159 624 74 7.0 2015/07/29 13:09:26 5,928–7,086
Boulevard 1,572 626 101 7.1 2015/08/4 14:54:57 5,665–7,236

City center 1,521 532 104 10.6 2015/05/19 14:06:38 6,199–7,719
City center 1904 569 124 10.9 2015/08/14 14:54:57 7,431–9,334
City center 2,227 527 143 12.0 2015/07/29 13:09:26 7,210–9,436
City center 2,134 585 140 13.5 2015/05/22 11:14:30 7,728–9,861

Forest 927 292 61 5.9 2014/07/14 14:49:50 5,190–6,116
Forest 828 289 54 6.2 2015/08/14 14:54:57 9,563–10 ,390
Forest 566 286 38 6.6 2015/05/19 14:06:38 7,827–8,392
Forest 595 287 37 8.6 2015/05/22 11:14:30 10 ,211–10 ,805

Suburb 3,606 1,011 248 6.2 2015/04/24 08:15:07 17 ,342–20 ,947
Suburb 3,472 1,029 233 6.4 2014/07/14 15:42:55 8,965–12 ,436
Suburb 4,485 1,013 329 6.8 2015/05/19 14:06:38 13 ,100–17 ,584
Suburb 3,655 1,014 239 7.2 2015/05/22 11:14:30 15 ,164–18 ,815

The table presents the trajectories selected by environment in Oxford and their characteristics. The urban activity metric corresponds to the average of “urban elements” (i.e., car,
pedestrian) per image detected by the Yolo network (Redmon et al., 2016).

FIGURE 6 | Illustration of the test benchmark dataset. The proposed test benchmark is composed of four kinds of routes covering the following urban
environments: suburb, forest, boulevard, and city center. These routes were selected from the entire Oxford car dataset to perform a comparison of the performance of
visual place recognition (VPR) models according to the environment.
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the model. In this paper, we chose to use an Nqueries that
represents 25% of the test trajectory.7

• Hypothesis construction: For each query, the system returns
the index of the images considered closest to the request (the
hypotheses).

• Query evaluation: The quality of the answer of the VPRmodel
is assessed by computing whether the distance between the
GPS coordinates of a query and theGPS coordinates of the best
hypotheses is less than a threshold, derr.

We have thus chosen to measure the performance of the
model using three sampling distances of 2, 5, and 10 m. Thus, for
each environment, 36 experiments were conducted to cover the
different sampling distances and all the possible learning and test
trajectory configurations.

We used an error threshold equal to half the sampling distance
(perfect location) with a tolerance of 15%, such as a derr � dsamp ×
0.65. This method establishes the case of a positive location to a
space of size dsamp, centered on the coordinate of the places with a
tolerance of 15% on each side.

5.2.2 Computational Cost
The computational cost was evaluated by measuring the
computational time that each model takes on average to
answer a query as a function of the number of locations
learned. The models were evaluated with a controlled number
of CPUs and no GPU to limit as much as possible (even though
not entirely) the impact of code optimization on each model.

5.2.3 Comparison With the State of the Art
The LPMP model has been compared to two major models of the
state of the art: CoHog, a handcrafted feature model (Zaffar et al.,
2020b), andNetVLAD, a CNNmodel (Arandjelović et al., 2016). The
two models are both, in their respective fields, the best-performing
ones on localization tasks (see review in Zaffar et al., 2020a).

It should be noted that the LPMP model, unlike the NetVlad
and CoHog models, uses the absolute orientation of the vehicle to
encode a place. For the sake of simplicity, this information is
directly obtained via a magnetic compass integrated on the self-
driving vehicle. However, it would have been possible to use a
visual compass, as in a previous work (Delarboulas et al., 2014).

5.2.4 Evaluation of LPMP + Vig
For the LPMP + Vig version, the proposed test pipeline cannot
be directly used due to the vigilance system. Spatial neurons
are automatically generated by traversing a sequence and
therefore construct a neural map of an environment,
i.e., made up of place cells with variable place field sizes
(see Figure 7) since the learning of a new place depends
only on how much the visual appearance of the scene
varies. This non-regularity of the paving makes it difficult
to produce a realistic assessment of the model that does not
penalize or over-values the obtained scores.

To solve this problem, we proposed themethod RLE (for Replay-
Learn Evaluation) to estimate the size of the spaces encoded by the
model. The idea of the method was to replay the learning sequence
on the model after learning (in a phase called evaluation) to look,
image by image, at which neurons were activated.

Thus, the RLE method is divided into three phases:

• Exploratory step: Neurons are learned sequentially while
processing the trajectory number 1, according to the
recognition threshold set. Due to the causal nature of the
learning process, only half of each place field can be
computed during this stage (the answer of the neuron
once learned). But once learned, each neuron can also
respond on the frames preceding the one used for its
learning (first half of the place field).

• Recording step: Once the trajectory number 1 is finished, it
is replayed so that the full place field can be computed for
each neuron that learned a place.

• Measure step: Just as with the previously described
methodology, the second trajectory is processed to
measure the localization performance while performing
place recognition. This second trajectory is on the same
road as trajectory 1, but performed at a different moment
and not at exactly the same GPS coordinates.

Thus, this method allows associating a neuron with portions of
the trajectory (Figure 7). These spaces can be used to precisely
determine the quality of the localization by comparing them with
the activity of the neurons during the recording step.

Moreover, to obtain a comparison with algorithms without a
vigilance loop, we aligned the results according to the place sampling
rate and the average size of the generated place fields. This method
requires exploring several values of vigilance to find a value that
approaches the desired sampling rate value.

5.3 Metrics
To assess the performance of the different models, we used standard
precision/recall measurements, summarized by the areas under the
curve (AUCs) and the recall at 100% precision (Sattler et al., 2018).
The large amount of tests carried out in this paper (576 experiments)
forced us to present average displays, reflecting the average
performances and not the best possible values.

5.4 Implementation Details
To make the comparison with CoHog and NetVLAD, we used the
original implementation and parameters of the authors in python.
For the NetVLAD network, we used the best pre-trained model
proposed by the author (VGG-16 +NetVLAD +whitening), trained
on the Pittsburgh dataset and considered to give very competitive
results on VPR issues (Arandjelović et al., 2018) [see Zaffar et al.
(2020a) and Zhang et al. (2021) for more details].

The parameters used in the LPMP are those of the reference
implementation of LPMP (Espada et al., 2019) and are given in
Table 2. A region of interest (ROI) has been added to all the
systems tested (LPMP, CoHog, and NetVLAD) to remove part of
the sidewalk, carrying little information. This treatment has been
done to the advantage of all models for the sake of equality.

7This proportion has been experimentally verified as being sufficient to give
significant results.
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Performance experiments were carried out using an AMD
Ryzen Threadripper 2990wx (3.7 GHz). The experiments on
computational cost were carried out using an Intel Core i9-
9880H (2.3 Ghz).

6 RESULTS

6.1 Evaluation of Localization Performance
With LPMP
Figure 8 shows the average performance of LPMP, LPMP + Vig,
CoHog, and NetVLAD according to the place sampling rates
and the environments. Thus, the graphs in Figures 8A–C
present the mean AUC of the precision–recall curves
according to each environment and place sampling rate. The
graphs in Figures 8D–F show the recall at 100% precision of the

precision–recall curves and serve as a complement to the AUC
measurement. Due to the application of a cross-validation
method, each value presented is therefore the average of 12
values computed on the precision–recall curves to cover every
possible combination of learning/test sequences by
environment and by sampling rate.

As shown in Figures 8A–C, the LPMP model gave, in most
tests, higher mean AUC values than those of CoHog and
NetVLAD: on average 6% more efficient than CoHog and 4%
better than NetVLAD. One can notice two cases in which the
LPMP model did not provide the best results: the city center
environment with a place sampling rate of 5 m (see graph in
Figure 8B) and the suburb environment with a place sampling
rate of 10 m (see graph in Figure 8C).

Secondly, the graphs in Figures 8D–F present similar results
with the mean recall at 100%: on average, LPMP had a recall at

TABLE 2 | Log-Polar Max-Pi (LPMP) model parameters

Parameter name Part Description Value

(Dw × Dh) Acquisition Image dimension (pixels) 640*400
Np Visual system Number of PoIs 50
ROI Visual system Region of interest applied when selecting PoIs (pixels) organized as follow (x1, y1, x2, y2) (0, 0, 640, 250)
α Visual system Deriche filter (pixels) 0.4
σ1 Visual system Dog filter (pixels) 2
σ2 Visual system Dog filter (pixels) 8
rc Visual system Competition radius (pixels) 16
σazim Azimuth computation Azimuth diffusion 0.5
Na Azimuth encoding Number of azimuth angles 360
rmax Log-polar encoding Max log-polar radius (pixels) 60
(De × Da) Log-polar encoding Log-polar signature dimension (pixels) 50 × 50
k1 Winner memory Activity threshold 0.1
Nl Landmark memory Number of winners 50
Na′ Max-Pi layer MPL column number (neurons) 3
ra Max-Pi layer Pooling ratio (neurons) 120
Np Place memory Number of winners 1

Main parameters used in the LPMP model. Their values come from previous work on the LPMP model (Espada et al., 2019). PoIs, points of interest

FIGURE 7 | Illustration of the Log-Polar Max-Pi (LPMP) + Vig problem. (A) The left image presents the neural activity of the winner memory layer, generated during
the recording step. During this phase, no learning occurred in order to record which cell should respond to a given position. Thus, the gray dotted lines indicate the frame
index at which learning occurred for each neuron, the numbers on top denote the index of neurons, and the numbers in brackets indicate the index of the corresponding
image in the sequence. The colored horizontal bars indicate the spaces encoded by each neuron. (B) The second image shows a map representing one recording
of the Oxford car dataset with the learned places. Each colored line represents the space computed via the replay-learn evaluation (RLE) method, according to (A).
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100% on average 10% better than CoHog and 13% better than
NetVLAD. The model did not give the best results only on the
suburb environment (graph in Figure 8F).

Thirdly, one can notice that LPMP, CoHog, and NetVLAD
followed a common dynamics in terms of localization
performance by environment: on all learning sampling sizes,
these three models gave the best performance on city center,
followed by forest and suburb and boulevard, which seem to be
particularly difficult for VPR models with a fixed sampling rate.

For example, the graph in Figure 8B shows that LPMP, CoHog,
and NetVLAD together gave average AUCs of 0.935 on city
center, 0.897 on forest, 0.768 on boulevard, and 0.849 on suburb,
confirming this trend.

This difference can be explained by the greater wealth of visual
information in the suburb, city center, and forest environments
than that in the boulevard environment, which is more
monotonous and therefore more difficult to precisely
characterize. The graphs in Figures 8D–F confirm this trend,

FIGURE 8 | Localization performance of the Log-Polar Max-Pi (LPMP), LPMP + Vig, CoHog, and NetVLAD models. Each model is evaluated in cross-validation on
each environment with three place sampling rates. Localization performance was assessed by computing standard precision/recall curves, summarized by the areas
under the curve (A–C) and their recall at 100% precision (D–F). For the LPMP + Vig model, which autonomously learns when to learn an image on a sequence, the score
was computed using the replay-learn evaluation (RLE) method, amethod for estimating the spaces encoded by themodel that takes into account the non-regularity
of the representation. The standard deviation is indicated by a horizontal black bar.
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at the difference that the best recalls were obtained on forest and
not city center.

6.2 Evaluation of Localization Performance
With LPMP + Vig
As shown in the Figures 8A–C, the LPMP + Vig model gave
better performance than did LPMP, CoHog, and NetVLAD on a
high sampling rate. Thus, LPMP + Vig improved the
performance of LPMP on average by 20% in the graph in
Figure 8A (with a maximum improvement of 70% in
performance on boulevard), suggesting that VPR models can

benefit from the use of a vigilance system when considering high
sampling rates.

Indeed, the use of a vigilance system allows creating places
according to the richness of the environment, which limits the
learning of a similar place by producing a dynamic paving and
consequently limits the redundancy in the environment
representation. This gain in performance, however, disappears
with a low place sampling, as visible in the graph in Figure 8B,
C. In this situation, the vigilance system creates neurons that code
larger spaces, causing loss of precision that degrades the performance.

Secondly, one can notice that the LPMP + Vig model had a
different dynamic by environment compared to models based on

FIGURE 9 | Evaluation graphs of Log-Polar Max-Pi (LPMP) + Vig dynamics. (A) Evaluation of the number of neurons created by the LPMP + Vig model over 100 m
according to the vigilance threshold and the environment. (B) Illustration of the activities of the spatial neurons of the LPMP model during a navigation sequence. Each
vertical gray line corresponds to the index of the frame at which the learning of a spatial neuron occurs. The horizontal lines correspond to an estimate of the space
encoded by neuron. The first graph has a vigilance of 0.25 and the second of 0.15. (C) Evaluation of the average size of spaces encoded by LPMP spatial neurons
as a function of the vigilance. The dotted lines represent the standard deviation around the mean value.
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regular sampling, showing its best results on boulevard, then on
city center, forest, and suburb. Indeed, the LPMP + Vig model
remained efficient on all sampling with the boulevard
environment, contrary to the suburb environment where the
localization performance decreased rather quickly.

This phenomenon can be explained by the proportion of the
distal and proximal landmarks in the field of vision, according to
the different environments. When the vehicle moves, the
appearance changes of the landmarks depend on their distance
to the vehicle. Indeed, the visual appearance of distal landmarks
varies less than that for proximal ones.

Moreover, the presence of distal landmarks is related to the
openness of the field of vision offered by the different environments.
Indeed, the boulevard environment is characterized by a more open
FOV than the suburb environment. Consequently, since a sufficient
number of distal landmarks can be found in the boulevard sequence,
the LPMP +Vigmodel can exhibit a stable level of place recognition,
leading to a paving of the environment that allows for better
localization performance.

On the contrary, in the narrow suburb environment, the FOV
is restricted by the presence of closer elements (buildings,
vehicles, etc.). The presence of these numerous proximal
landmarks causes strong variations in the level of recognition,
making the automatic paving of the environment more difficult to
achieve. This result is consistent with previous studies of this
model on the KITTI dataset (Espada et al., 2019).

6.3 Dynamics of the Vigilance System
The novelty detector proposed in LPMP + Vig is controlled by v,
the vigilance threshold. Indeed, this value controls the sizes of the
place fields, as illustrated in the two graphs of Figure 9A: to encode
a trajectory of a given length, the higher the vigilance, the more the
number of neurons used increases in order to maintain a sufficient
level of recognition. This increase in the number of neurons also
decreases the average space encoded by a neuron on a sequence.

Figure 9A presents the average number of neurons generated over
100m in the four types of environments as a function of the vigilance
thresholds used. It shows that the forest, city center, and suburb

environments required more neurons on average to maintain an
equal level of recognition. Covering a trajectory of 100m in the forest
environment required 20 neurons more than for the boulevard and 5
neurons more than for the city center and the suburb environments.

Figure 9C completes this analysis by showing the average size and
standard deviation of the spaces encoded by neurons per
environment (place field plotted in dotted lines). It shows two
phenomena: firstly, for the boulevard environment, the mean
spaces of neurons were on average larger than in the city center,
forest, and suburb environments, consistent with Figure 9A.
Secondly, the standard deviation was much greater on boulevard
than that on other environments, indicating that the LPMP + Vig
model better generalized8 what the system has learned, thanks to a
sufficient number of distal landmarks in the field of vision. The results
are consistent with the performance results, which showed that the
LPMP + Vig model gave better results on boulevard than on suburb.

6.4 Evaluation of Computational Cost
Figure 10 shows the average frequency at which LPMP, LPMP +
Vig, CoHog, and NetVLAD answered to localization queries,
depending on the number of learned places. The graph shows that
the LPMP model was the fastest when the number of locations is
lower than 30, and then quickly slowed down until it almost
reached the performance of the NetVLAD model using 4 CPUs.
However, it was still superior to NetVLAD models on a single
CPU, running at an average frequency of 0.05 Hz.

The dynamics of graph 10 could be explained by the memory
cost of place coding and by the use of a log-polar transform to
encode the visual information. Firstly, in the current version of the
proposed model, the visual landmarks are systematically stored,
without a process of merging the nearby landmarks. The memory
used by LPMP thus becomes rather quickly large, slowing down the
computation time. It should be noted that the model was still faster
than NetVLAD in computation time, which used 4 CPUs.

Secondly, the log-polar transform was very fast to compute,
unlike the encoding method proposed by NetVLAD and CoHog
that tookmore time and computational resources. Thus, for small
memory requests, the LPMP model is naturally faster on a single
CPU. The log-polar, however, is primarily intended to robustify
the system against small appearance changes induced by the
movement of the vehicle, but is not intended to perform efficient
compression of visual information. Thus, the code of the
landmarks quickly becomes very large and requires a longer
computation time, which takes over the fast encoding time.

7 DISCUSSION

In this paper, the localization performance of the LPMP model, a
bio-inspired neural network originally designed to study animal
navigation (Gaussier and Zrehen, 1995), was assessed in a road
environment. Far from the usually small and controlled
environments used to reproduce experiments carried out in

FIGURE 10 | Frequency achieved for answering localization queries.
This graph presents the frequency at which Log-Polar Max-Pi (LPMP),
CoHog, and NetVLAD answered localization queries depending on the
number of locations learned at an equal place sampling rate on the
boulevard route.

8Neurons that encode spaces of more variable sizes indicate that the system is able
to adapt to the environment.
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animals, this work highlighted the interest of such a neuromimetic
approach when it is applied to road environments, characterized by
much larger and more dynamic (human activities) environments.
The model was thus evaluated in terms of localization performance
and computing time, in cross-validation on a selection of sequences
from the Oxford car dataset, presenting four different environments
with various levels of urban activity.

Firstly, regarding the localization performance, the results
showed that the LPMP model was more efficient than its direct
competitor, CoHog, one of the best unsupervised models available
in the literature (Zaffar et al., 2020a). It gave better answers onmost
environments and for most place sampling rates, whatever the
presence of human activity in the dataset. Moreover, although it
does not require any training, LPMP also gave competitive results
with NetVLAD, which is one of the top-performing CNN models.

These results showed the interest of the one-shot learning
mechanism and of the use of the spatial position of the landmark
in the field of VPR. The one-shot learning mechanism allows the
model to learn an accurate representation of a new location in a
single iteration, allowing the system to achieve high localization
scores. Moreover, the use of the spatial position of the landmark
improves the performance of the model, at a low cost, and could
benefit other algorithms. It should be noted that this information
can be extracted from the images using a visual compass
(Delarboulas et al., 2014), instead of a magnetic one.

For the LPMP + Vig model, the results showed that the use of a
novelty detector gave much better results with high place sampling
rates than the other models, highlighting the interest of a vigilance
system for visual navigation. The use of a vigilance loop at small
scales would make it possible to have less confusion between the
codes of places because they are not created based on sampling, but
based on the overall recognition of the system. However, the
performance of LPMP + Vig deteriorated from a place sampling
rate greater than 5m. This degradation is explained by the size of the
place fields of neurons that, above 5 m, may be too large to ensure
perfect localization. A solution to this problemwould be to adapt the
learned representation during loop closure to adjust the stored place.

The experiments also revealed several important properties
inherent in the use of a novelty detector mechanism. Thus, as
stated in previous studies (Cuperlier, 2007; Espada et al., 2019), the
mean size of the place field generated depends on two parameters:
the value of the vigilance threshold and the type of environment.
This variation in the cell dynamics shows that some environments
are more difficult to process and require more neurons to maintain
a given level of recognition. A solution could be to adapt an online
the vigilance value according to the type of environment in order to
obtain the best possible recognition performance.

Secondly, regarding the frequency achieved by the LPMP model,
experiments have shown that the performance of the model decreased
with the number of locations learned in the model. Two main reasons
can explain this phenomenon: the growingnumberof neuronsneeded to
code the landmarks and the size of the log-polar code used in themodel.

For the first point, a major drawback of the model in its current
version is that it systematically recruits new neurons to learn the
visual signatures of landmarks when a new place is learned,
regardless of the fact that very close signatures might have
already been learned before. As a result, the system creates more

landmarks than necessary, reducing the computation frequency of
the LPMP model. Several solutions are therefore possible, for
example the desynchronization of the learning signals of neurons
coding places from those learning the landmark signatures, allowing
to decrease the number of landmarks learned. In fact, they would be
learned only when required, i.e., if no neuron already codes for the
signature, instead of forcing the learning of the current signature as
soon as a new neuron must code for a new place.

For the second one, the model in the proposed version does
not compress the visual information before storing it in the
landmark memory. The landmark code is quite large (54 ×
54) and increases the computation time of the landmark
memory. Thus, works have been undertaken to develop a
sparse model of visual information representation (called HSD
+ MP) in order to improve the performance of the LPMP model
while reducing its computational cost (Colomer et al., 2021).

The computational performance is, however, to be put in parallel
with the use of the model, which adapts quite well to the SLAM
architecture. Indeed, in numerous models, the localization is divided
into two cases: the global localization on the map, in the case of loss of
localization, and the local localization knowing the last position (Mur-
Artal et al., 2015). Thus, a model such as LPMP, which is very fast to
run on a reducednumber of places butwhich gives better performance
on high accuracies, seems to be very appropriate in this kind of case.

Moreover, from the implementation point of view, it should be
noted that the experiments realizedwith the LPMPmodel were based
on a lightly optimized software implementation. A gain remains to be
envisaged by improving the software implementation, especially by
using a code as optimized as CoHog or NetVlad. For example,
switching to a parallelized codewould thusmaintain the performance
of the LPMP model for a larger number of places. A particularly
advanced hardware implementation, more suited to bio-inspired
neural architecture, is being studied on a heterogeneous hardware
solution in parallel to the current work (Elouaret et al., 2019).

Finally, from a neurobiological perspective, the spatial neurons
generated by this model exhibited activities with properties closer to
the spatial view cells than the place cells. This is coherent with our
previous findings for indoor navigation (Gaussier et al., 2002) and
confirms in outdoor environments the hypothesis that the difference
may be due to the size (width) of the FOV. The same model, when
used in a robotic setup with a fixed camera, results in spatial view cells,
whereas when the camera can grab a panorama, the model generates
cells closer to the omnidirectional place field exhibited by place cells.
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