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Simple Summary: Radiomics may answer questions where the conventional interpretation of medi-
cal imaging has limitations. The aim of our systematic review and meta-analysis was to assess the
(current) status of evidence in the application of radiomics in the field of renal masses. We focused
on its role in diagnosis, sub-entity discrimination and treatment response assessment in renal cell
carcinoma (RCC) and benign renal masses. Our quantitative synthesis showed promising results
in discrimination of tumor dignity, nevertheless, the value added to human assessment remains
unclear and should be the focus of future research. Furthermore, the benefit regarding treatment
response assessment remains unclear as well, since the existing studies are investigating already
abandoned systemic therapies (ST), which no longer represent the current “reference” standard.
Open science could enable to establish technical and clinical validity of radiomic signatures prior to
the incorporation of radiomics into everyday clinical practice.

Abstract: Radiomics may increase the diagnostic accuracy of medical imaging for localized and
metastatic RCC (mRCC). A systematic review and meta-analysis was performed. Doing so, we
comprehensively searched literature databases until May 2020. Studies investigating the diagnostic
value of radiomics in differentiation of localized renal tumors and assessment of treatment response
to ST in mRCC were included and assessed with respect to their quality using the radiomics quality
score (RQS). A total of 113 out of 1098 identified studies met the criteria and were included in
qualitative synthesis. Median RQS of all studies was 13.9% (5.0 points, IQR 0.25–7.0 points), and RQS
increased over time. Thirty studies were included into the quantitative synthesis: For distinguishing
angiomyolipoma, oncocytoma or unspecified benign tumors from RCC, the random effects model
showed a log odds ratio (OR) of 2.89 (95%-CI 2.40–3.39, p < 0.001), 3.08 (95%-CI 2.09–4.06, p < 0.001)
and 3.57 (95%-CI 2.69–4.45, p < 0.001), respectively. For the general discrimination of benign tumors
from RCC log OR was 3.17 (95%-CI 2.73–3.62, p < 0.001). Inhomogeneity of the available studies
assessing treatment response in mRCC prevented any meaningful meta-analysis. The application of
radiomics seems promising for discrimination of renal tumor dignity. Shared data and open science
may assist in improving reproducibility of future studies.

Keywords: renal cell carcinoma; computed tomography; magnetic resonance imaging; machine
learning; radiomics
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1. Introduction

The concept of radiomics is based on the assumption that data from biomedical image
methods such as computed tomography (CT), positron emission tomography (PET), or
magnetic resonance imaging (MRI) contain information of disease- and patient-specific
processes that are imperceptible to the human eye [1,2]. Through mathematical extraction
of the spatial distribution of signal-intensities and pixel-interrelationships, radiomics may
quantify this hidden textural information in a tissue [3,4]. Especially in the field of oncology,
the number of studies reporting the application of radiomics to medical imaging data in
order to classify a disease type or stage or to predict patient outcome has risen exponentially
over the past few years.

This rise includes imaging of renal cell carcinoma (RCC), which represents a common
urological malignancy. According to the US National Cancer Institute, 74,000 new cases
are diagnosed annually, and the incidence is currently increasing mainly due to the wide
use of advanced imaging modalities which incidentally detect renal tumors [5]. Currently,
there are two important challenges of traditional radiological imaging in RCC: (i) The
limited accuracy in predicting dignity of small renal tumors. Remarkably, up to 30% of
resected tumors reveal a benign histology in pathological evaluation after partial or radical
nephrectomy [6]. And (ii), the complex assessment of treatment response to systemic ther-
apy (ST) in patients with metastatic RCC (mRCC), where various ST options are available.
Especially for immunomodulatory ST, which may result in imaging pseudo progression,
current standards of therapy response assessment based on the size of measurable lesions
are reaching their limits [7].

Consequently, the recent application of radiomics in RCC has predominately focused
on two main goals: (i) to improve the accuracy of preoperative, non-invasive histologic
subtyping of small renal tumors in order to improve treatment decision between active
treatment and surveillance, and (ii) to optimize and objectify the assessment of therapy
response in patients with mRCC under ST in order to prevent a possible wrong therapy
change.

A former systematic review and meta-analysis by Ursprung et al. found, that ra-
diomics might be a promising tool to discriminate angiomyolipoma (AML) from RCC [8].
However, the work limited its focus on discriminating AML from RCC and the value of
radiomics in the differentiation of other benign tumors-in particular oncocytoma-remained
unclear. At this point, an improved diagnostic accuracy would be highly anticipated
in clinical practice. A prospective proof-of-concept study showed promising results for
characterization of treatment-related changes in multiple radiomics features after ST in
integrated PET/MRI [9].

Hence, the aim of our systematic review and meta-analysis was to assess the current
evidence for the application of radiomics to renal masses, with a special focus on non-
invasive classification of dignity and assessment of treatment response.

2. Materials and Methods

This review follows the Cochrane Handbook of Systematic Reviews and Interventions
and is in concordance of the AMSTAR-2 criteria and the PRISMA guidelines [10–12]. It was
prospectively registered on PROSPERO (ID: CRD42020221345).

2.1. Sources

A comprehensive database search including MEDLINE (via PubMed), Web of Science,
CENTRAL, Cinahl, Current Contests Medicine (CCMed, via LIVIVO) and ClinicalTrials.gov
(accessed on 15 February 2021) was conducted by a specialized librarian of the University
of Heidelberg (M.G.) in May 2020. No time frame or language restrictions were applied. In
addition, the reference lists of the included studies were searched for studies that could
potentially also be included and the authors were contacted if necessary.

ClinicalTrials.gov
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2.2. Inclusion and Exclusion Criteria

All single studies, comparative studies and original studies on humans, which met
the following PICO criteria, were included:

• P (patients): Patients with benign or malign renal tumors;
• I (interventions): Radiomics or texture analysis;
• C (comparison): CT or MRI;
• O (outcome): Histologic subtyping (including differentiation of different RCC sub-

types, differentiation and/or analysis of any benign and/or malign renal tumors,
tumor grading, and any mutation analyses) and treatment response assessment.

We defined treatment response assessment as the prediction of a therapy response
including prediction of survival or as the assessment of an existing response under ST
including the correlation with survival. Reviews and case studies were excluded

2.3. Search Terms

The full search terms can be found in Table S1.

2.4. Study Selection

Two reviewers (J.M. and L.E.) independently screened titles and abstracts. Con-
secutively, the same two reviewers evaluated the full texts of eligible studies, verifying
whether the inclusion criteria were met. Disagreements were solved by consensus or a
third reviewer (B.B.).

2.5. Quality Assessment

Quality assessment of all included studies was recorded using the radiomics quality
score (RQS), which is a radiomics-specific quality assessment tool [1]. It is made of a total
of 16 criteria, for each of which a certain number of points can be achieved. The respective
number of points corresponds to the importance regarding the methodological quality
of a study [1]. The score ranges from -8 to +36 points, with a score of −8 to 0 points
corresponding to 0% and 36 points corresponding 100% [13]. For details, see Table 1. The
data of included studies were extracted by two reviewers (J.M. and L.E.) independently.
Consecutively, the mean of the two evaluations was then calculated for each study to
provide the final RQS. Furthermore, the average value for the respective criteria was
given for the entirety of all studies, again using the mean value of both reviewers for each
respective criterion.

2.6. Meta-Analysis

Two meta-analyses were planned within the included studies:

• a meta-analysis of all studies investigating the use of radiomics to compare benign
versus malign renal tumors;

• a meta-analysis of all studies investigating the use of radiomics for treatment response
assessment of metastatic RCC with any ST.

Data of all included studies were extracted by two reviewers (J.M. and L.E.) indepen-
dently. Disagreement was solved by consensus or a third reviewer, if this was necessary
(B.B.). Only studies, from which a two-by-two contingency table could be extracted or
reconstructed were included. If multiple models were reported in a study, only the one
with the highest area under the curve (AUC) was extracted. If no AUC was provided, the
model with the highest Youden’s Index was chosen. Models deriving from augmented
data were excluded. In case of multiple publications deriving from one study, only the
manuscript with better methodological quality according to the RQS was included.
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Table 1. RQS and average score for the included studies.

Criteria Points Average Score

1 Image protocol quality +1 if protocols are well-documented
+1 if public protocol is used 0.65

2 Multiple segmentations +1 if multiple segmentations are carried out (i.e.,
different physicians/algorithms/software) 0.53

3 Phantom study +1 if phantom study is used on all scanners 0.00

4 Multiple time points +1 if images are collected at additional time
points 0.07

5
Feature reduction or

adjustment for multiple
testing

−3 if neither measure is implemented
+3 if either measure is implemented 0.69

6
Multivariable analysis

with non-radiomics
features

+1 if multivariable analysis with non-radiomics
features is carried out 0.12

7 Biological correlates +1 if phenotypic differences are demonstrated 0.96

8 Cut-of-analyses
+1 if risk groups are determined by either the
median, a previously published cut-off or if a

continuous risk variable is reported
0.09

9 Discrimination statistics

+1 if a discrimination statistic and its statistical
significance is reported (i.e., ROC curve, AUC)

+1 if a resampling method technique is also
applied (i.e., bootstrapping, cross-validation)

1.21

10 Calibration statistics

+1 if a calibration statistic and its statistical
significance is reported (i.e.

Calibration-in-the-large/slope)
+1 if a resampling method technique is also
applied (i.e., bootstrapping, cross-validation)

0.02

11 Prospective +7 for prospective validation of a radiomics
signature in an appropriate trial 0.46

12 Validation

−5 if validation is missing
+2 if validation is based on a dataset from the

same institute
+3 if validation is based on a dataset from another

institute
+4 if validation is based on two datasets from two

institutes
+4 if study validates a previously published

signature
+5 of validation is based in three or more datasets

from distinct institutes

−3.88

13 Gold standard +2 if comparison to the current gold standard is
carried out 1.91

14 Potential clinical utility +2 if a potential application in a clinical setting is
reported 2.00

15 Cost-effectiveness
analysis

+1 if the cost-effectiveness of the clinical
application is reported 0.00

16 Open science and data

+1 if scans are open source
+1 if region of interest (ROI) segmentations are

open source
+1 if code is open source

+1 if representative segmentations and features
are open source

0.16

2.7. Statistical Analysis

Random effects meta-analyses were performed using the Mantel-Haenszel model and
reported as log odds ratio (OR). Forest plots were used for visualization of the results. Sub-
group analyses stratified by different histologic subtypes (AML versus RCC, oncocytoma
versus RCC, benign tumors not further specified versus RCC) were performed to evaluate
whether findings can be applied across the different subtypes and the entirety of all benign
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vs. malignant tumors. Due to the small number of included studies, no differentiation
between the administered therapies could be made for the subgroup analysis of treatment
response assessment. Forest plots were designed to provide subgroup and overall analysis
at the same time for each outcome.

The heterogeneity of studies was assessed using the I2 index. An I2 value of 0–25%
represents insignificant heterogeneity, >25–50% low heterogeneity, >50–75% moderate
heterogeneity, and >75% high heterogeneity [14]. A p value of ≤0.05 was considered as
statistically significant. We did not adjust for multiple testing in concordance with earlier
arguments for this approach [15]. All analyses were performed using R (R Core Team (2019).
R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria) following an a priori specified statistical analysis plan.

3. Results
3.1. Included Studies

Figure 1 shows the PRISMA flow-chart of the included studies of this systematic
review and meta-analysis. Table S2 summarizes the characteristics and research questions
of the included studies. In the 109 studies for which the number of patients was available,
a total of 12,054 patients were included. In four studies, only the number of investigated
tumors was given. Most studies investigated the use of radiomics using CT imaging
(n = 84), less than a quarter based on magnetic resonance (MR) imaging (n = 23), and
two based on a combination of CT and MR imaging. Another three studies investigated
the use of radiomics on PET MR images and one pilot study investigated its use on 18F-
fluorodeoxyglucose positron emission tomography (FDG PET) images.

Over the past few years, the number of studies investigating the use of radiomics in
RCC has increased continuously. In particular, there has been an increase in the number of
studies carried out in the last two years: 47% (n = 53) of all included studies were published
between 2019 and 2020. Another quarter of all included studies were published in the two
previous years (2017 and 2018, n = 32), which roughly corresponds to the number of all
studies from previous years (Figure 2a).

3.2. Quality Assessment

Table 1 shows the average score for each criterion of the RQS of all included studies.
The respective ratings for each study are shown in Table S2. The mean RQS score of all
included studies was 13.6% (4.9 points, standard deviation (SD) ± 4.60 points), the median
score was 13.9% (5.0 points, inter-quartile range (IQR) 0.25–7.0 points) and the range was
0–41.7% (−3.0 to 15.0 points).

Over time, an increase in the quality according to the RQS of the included studies
could be observed (Figure 2b). In 2020 in particular, the RQS was better than in previous
years with a mean RQS of 21.6% (7.76 points, SD ± 4.97 points) and a median score of
19.4% (7.0 points, IQR 5.0–13.0 points). The respective ratings over the years are shown in
Table S3.
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3.3. Differentiation of Benign and Malign Renal Tumors

Of the 66 studies which dealt with the prediction of histological subtypes of renal
tumors, 52 investigated the prediction of the dignity of renal masses, of which 30 could
be included in the quantitative analysis. The most common exclusion criterion was the
insufficient disclosure of the results (n = 18), which prevented the possibility to extract a
two-by-two contingency table. Two of the studies used data augmentation with generation
of new data through transformation of existing cases and therefore had to be excluded.
Another two studies had to be excluded because multiple publications derived from one
study. Table S4 lists further details on the exclusion criteria. Furthermore, Table S4 provides
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an overview of all 52 studies investigating the prediction of the dignity of renal masses
including the respective research question, a brief summary of the used methods, the main
results and the used reference for comparison with the use of radiomics for each study. All
studies used the histologically confirmed diagnosis for the respective tumor subtype as the
gold reference standard. In most cases (n = 31), the histological diagnosis was based on
the surgically removed tumor by partial or radical nephrectomy. However, some studies
(n = 21) did not clarify whether the histology came from a biopsy or from the surgically
removed tumor. None of the studies indicated that the histological result was only verified
by biopsy.

Within the 30 included studies, the discrimination of AML and RCC was investigated
in 14, the discrimination of oncocytoma and RCC in seven, and the discrimination of
unspecified benign renal tumors and RCC in 12 of the studies. Two of the studies (Deng
et al. [16] and Raman et al. [17]) investigated the discrimination of RCC from various
sub-entities of benign tumors, which explains the multiple listing of these studies in the
respective analyses. Figure 3 shows the forest plot of the effect size calculated as log OR for
studies investigating AML versus RCC (a), oncocytoma versus RCC (b), benign tumors not
further specified versus RCC (c), and the sum of all studies (d).
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Figure 3. Forest plot of the effect size calculated as log odds ratio for studies investigating (a) AML
versus RCC, (b) oncocytomas versus RCC, (c) benign tumors not further specified versus RCC, and
(d) the sum of all studies. TP: number of AML (a), oncocytomas (b) or benign renal tumors (c)
correctly diagnosed; FN: number of AML (a), oncocytomas (b) or benign renal tumors (c) incorrectly
diagnosed as RCC; FP: number of RCC incorrectly diagnosed as AML (a), oncocytomas (b) or benign
renal tumors (c); TN: number of RCC correctly diagnosed.
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For differentiating AML versus RCC, the random effects model showed a log OR
of 2.89 (95%-CI 2.40–3.39, p < 0.001) with low heterogeneity of the studies of I2 = 40.5%
(95%-CI 0.0–68.4, p = 0.058). For the differentiation of oncocytoma versus RCC, log OR
was 3.08 (95%-CI 2.09–4.06, p < 0.001) with moderate heterogeneity of I2 = 67.7% (95%-CI
28.2–85.4, p = 0.005), and for the differentiation of benign tumors not further specified
versus RCC, log OR was 3.57 (95%-CI 2.69–4.45, p < 0.001) with high heterogeneity of 86.3%
(95%-CI 77.9–91.6, p < 0.001). For the overall analysis of all the above-mentioned studies
investigating the differentiation of benign versus malign renal tumors, the random effects
model showed a log OR 3.17 (95%-CI 2.73–3.62, p < 0.0001) with moderate heterogeneity of
74.6% (95%-CI 63.7–82.2, p < 0.001).

3.4. Treatment Response Assessment

Overall, six studies were identified which assessed response to ST and prediction of
treatment response using radiomics. Table S5 summarizes the characteristics and investi-
gated features of the respective studies.

Due to the large inhomogeneity especially concerning regions of interest (ROI) and
endpoints of the studies, no sufficient data could be extracted that would have enabled a
meaningful meta-analysis.

4. Discussion

The use of radiomics in oncological imaging for different tumor entities has become
increasingly popular in recent years with the overall goal to improve clinical decision-
making [1]. The high rate of benign renal tumors diagnosed at pathological evaluation
after surgery as well as the increasing complexity of treatment response assessment has
also led to a growing interest in using radiomics in the field of renal tumor imaging. A
former review including studies until Oct. 2018 found that it might be a promising tool
to discriminate AML from RCC, but it also showed that the studies that existed up to this
point were of poor quality and therefore must be interpreted with caution [8]. Furthermore,
the differentiation of other benign tumors than AML and RCC as well as the possibility of
therapy response assessment was not investigated [8].

4.1. Quality Assessment

In our systematic review, we observed only a slight increase of the quality of radiomics
studies in recent years with best quality scores in 2020 (median RQS 19.4% (7.0 points,
IQR 5.0–13.0 points)). However, the overall quality was still low (median RQS 13.9%
(5.0 points, IQR 0.25–7.0 points)). The main reasons for the low quality of the studies were
the deficiency in using feature reduction, the lack of internal and external validation data as
well as the lack of use of open science and data. These results are in line with the findings
by Ursprung et al. who found a ratio between analysed features and patients ranging
from 25 to 240 times more features than patients with only 51% of the included studies
in their analysis using feature reduction methods [8]. Furthermore, they also reported a
low rate of only 5% of studies who performed validation and found that methodological
aspects of the radiomics studies in this field might further increase the risk of bias [8].
These methodological aspects contain the patient selection in particular and the timing of
index and reference tests [8]. The poor quality of reporting prediction model studies is a
known problem, which amongst others led to the TRIPOD (Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or Diagnoses) initiative [13,18]. A
set of recommendations was established for the reporting of the studies assessing prediction
models to minimize bias and to increase their clinical usefulness [18]. A relatively large
number of radiomics studies are pilot or feasibility studies, but they do not provide open
data or the codes [17,19,20]. This prevents validation analyses to confirm the respective
results. Code and data sharing (“Open Science”) is likely to improve reproducibility
in subsequent studies. Especially, the application of deep learning methods for image
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segmentation will not only highly reduce the time needed for manual segmentation but
minimizes potential bias and variance induced by human readers [21].

Proceedings in standardization and homogenization are likely to reduce bias even
further following the overall goal to evaluate the real added value of radiomics. In addition,
cost-effectiveness analyses are necessary regarding future investigations. These play a
crucial role in understanding the clinical and economic consequences of this technique, as
well as its possible future integration into everyday clinical practice [22].

4.2. Classification of Dignity of Renal Tumors

Our meta-analysis of all studies investigating the differentiation of benign versus
malign renal tumors showed promising results in the overall (log OR 3.17, 95%-CI 2.73–3.62,
p < 0.0001) and the subgroup analyses. Nevertheless, these results must be considered
with care.

First, the inconsistency of the use of radiomics in clinical practice should be considered.
This inconsistency is represented by methodological differences between the included
studies in our meta-analysis as well as the inconsistent and partly insufficient disclosure of
the results in the respective studies. As a result, a large part of the studies investigating the
dignity of renal masses (22 out of 52 studies) could unfortunately not be included in the
meta-analysis, which could possibly have biased our results.

Second, given the overall low quality of the analysed studies when it comes to the
RQS as well as the well-known vulnerability of radiomics to a large number of technical
and non-technical factors, machine learning models are highly prone to overfitting due
to the usually high number of radiomics features, considerably exceeding the number of
patients included in the study [23]. Algorithms performing complex calculations with
radiomics data might easily be confounded by the tiniest amount of noise, and without
adhering to strong quality control of study design and especially statistical analysis, it is
very likely that the results of our meta-analysis are over-optimistic.

Third, it should be noted that all studies included in the meta-analysis used histopatho-
logical findings as the reference standard, which was based on the surgically removed
tumor in most cases. However, since the use of radiomics is crucial for clinical decision-
making in the preoperative setting, the comparison with alternative diagnostic options,
which are available as reference standards in the preoperative context, would be a more
meaningful comparison for assessing the real added value of radiomics. Such diagnostic
options are, on the one hand, a histologically confirmed diagnosis based on renal biopsies
and, on the other hand, human imaging assessment. In comparison to human assess-
ment, the results of Uhlig et al. and Sun et al. suggest, that the use of radiomics and
machine learning could provide an added value to differentiate benign and malign renal
lesions [24,25]. Picard et al. and Said et al. furthermore found that the combination of
qualitative and quantitative image analyses seems to be a promising approach [26,27]. In
contrast, Takahashi et al. did not find a significant benefit of radiomics compared to human
assessment [28].

In summary, although the majority of the results indicate that radiomics could be a
valuable tool to differentiate benign and malignant renal tumors and that it might bring
an added value compared to and in combination with human assessment, the following
should be considered for future studies in this context: To confirm the added value or even a
superior diagnostic or prognostic performance of radiomics as compared to other available
diagnostic options in the preoperative context, human assessment and the comparison
to histologically confirmed diagnoses based on renal biopsies should be considered as a
reference standard for future studies in addition to histopathological findings based on
surgically removed tumors. Furthermore, adherence to rigorous quality standards and
complete as well as consistent disclosure of the results should be ensured.

Ultimately, prospective preferably (cluster) randomized controlled trials would need
to be conducted for evaluation of promising models comparing the outcomes following
treatment decisions based on those predictions to the current human benchmark or other
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preoperative available diagnostic options. However, the results of our meta-analysis
suggest, that especially model stability is not yet suitable to allow for such a step in this
research area.

4.3. Treatment Response Assessment

All available studies investigating the use of radiomics for therapy response assess-
ment for which the information regarding the respective treatment was available included
patients receiving different tyrosine kinase inhibitors (TKI) [9,29–32]. For patients receiving
sunitinib, Antunes et al. found in their proof-of-concept study including two patients,
that radiomics might be a powerful tool to characterize treatment related changes in inte-
grated PET/MRI [9], highlighting the potential of additional functional/hybrid imaging in
radiomics as well as in response assessment. Furthermore, the results of Bharwani et al.
and Haider et al. suggest that changes in different histogram parameters in MRI and CT
might be associated with the overall and progression-free survival of patients receiving
sunitinib [29,32]. Although these results seem promising, the inhomogeneity of all the stud-
ies investigating the therapy response assessment using radiomics unfortunately did not
enable a meaningful meta-analysis for these studies. The main problem was the diversity
of investigated endpoints. Of the three studies for which the data for the therapy response
assessment could be extracted, the change in different radiomics features was investigated.
This made a direct comparison not useful. Furthermore, the diversity of the analysed ROIs
and of the included ST, as well as the small number of included patients also counteracted
a meaningful meta-analysis for these studies. Moreover, it should be noted that none of
the studies investigating the use of radiomics to assess therapy response included patients
with immunomodulatory therapies, which represent the current reference standard in ST
for mRCC [33]. With regard to future investigations for the assessment of therapy response
using radiomics, the steadily increasing number of available therapeutic options will be a
hurdle. However, it does not seem useful to integrate the selection of relevant radiomics
features into the study-protocols of prospective trials investigating the effectiveness of new
ST [1]. Standardised and optimized study protocols carry the risk that the feature selection
depends more on the imaging process rather than the pathology [34]. Rather, the goal
should be to share the data from such studies so that the biological correlation of already
established radiomic signatures can be performed [34].

4.4. Limitations

Several limitations of this review merit consideration. First, the heterogeneity of the
studies included in the quantitative synthesis must be mentioned. This relates not only to
the control groups used (different subtypes of RCC or no classification of RCC subtype),
but also to the assessed imaging (MRI and CT), the imaging protocols and the deriving
phases of the respective imaging from which the features were extracted. In addition,
newly investigated image modalities like the use of single-photon emission computed
tomography (SPECT)/CT and the use of quantitative SPECT/CT reconstruction methods
in the field of renal tumor diagnostic management, which showed promising results in
recently published studies, were not considered in this review [35–38]. Furthermore, the
included studies differed in terms of the methodology of the used image reconstruction,
feature extraction, and the algorithms used. Due to the inhomogeneity of the reported
results, only 30 of the 52 available studies assessing the differentiation of benign and malign
renal tumors could be included in the quantitative analysis. Beyond that, no meta-analysis
regarding the assessment of treatment response using radiomics could be carried out due to
the heterogeneity of the methods and reported results of the available studies. Nevertheless,
the results of the quantitative synthesis provide an overview of the benefit that the use of
radiomics might have.
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5. Conclusions

Our review shows that there has been an increasing number of studies investigating
the use of radiomics for RCC, especially in recent years. Even if the quality of the studies
improved over time, the RQS in recent years was still quite low. Our quantitative synthesis
showed promising results regarding the differentiation between benign and malign renal
tumors using radiomics. However, the results are likely over-optimistic and must be
considered with care and hence the added value compared to human assessment accuracy
remains unclear. Human assessment should be considered as a reference standard for
future studies in addition to histopathological findings and adherence to rigorous qual-
ity standards should be ensured. Furthermore, the benefit regarding therapy response
assessment remains unclear as the existing studies are investigating ST which no longer
correspond to the current reference standard. Data sharing of prospective trials investigat-
ing new ST might enable to perform biological correlation of already established radiomic
signatures.

This review reveals that there are still hurdles to overcome before the added value
of radiomics in the diagnostic of RCC can be ascertained. Above all, the weak points are
the heterogeneity and missing standardization of the available studies and the lack of
evaluation of the benefit against current standards, which represent decisive milestones
before the use of radiomics will find its way into everyday clinical practice. By highlighting
these challenges, this review can improve the planning of subsequent studies in this context.
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