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INTRODUCTION
The first solid cancer analyzed by whole-genome sequenc-

ing (WGS) a decade ago was a cutaneous melanoma (CM) cell 
line (1). The study highlighted that among the large number 
of somatic mutations, those considered “driver” mutations 
were rare, implying that the vast majority of aberrations were 
passenger events. The authors also showed that, as expected, 
the predominant mutational signature was due to ultraviolet 
radiation (UVR) exposure. Since that seminal publication, 
there has been a wealth of studies further describing the 
genomic landscape of melanoma, extending beyond the most 
common melanoma subtype (CM; refs. 2–12) to include acral 
melanoma (AM; arising from the palms, soles, or nail beds; 
refs. 3, 4, 7, 8, 13–15), mucosal melanoma (MM; arising from 
mucous membranes; refs. 4, 7, 16–21), and uveal melanoma 
(UM; arising from the uveal tract of the eye; refs. 7, 22–27). 
Even so, these studies have been limited in that most relied 
on whole-exome sequencing (WES) rather than on WGS and 
often sequenced relatively small numbers of tumors. Larger 
studies have included The Cancer Genome Atlas (TCGA) CM 

study (n  =  333; ref.  2) and two meta-analyses of more than 
1,000 melanoma genomes (mostly WES and CM subtype; refs. 
28, 29). Recent reviews of AM (30) and MM (31) genomics pre-
sent comprehensive summaries of driver gene mutations and 
copy-number aberrations in these melanoma subtypes based 
on published WGS, WES, and targeted sequencing studies. 
Curtin and colleagues (32) performed the first genomic com-
parison of melanoma subtypes, looking at copy-number alter-
ations (CNA) and BRAF and NRAS hotspot mutations in 126 
tumors. A recent meta-analysis by the same group compared 
acral and mucosal subtypes (33), but the majority of other 
studies have focused on a single melanoma subtype and were 
thus unable to compare mutational events between subtypes.

Here, we present the largest WGS study of melanoma to 
date, totaling 570 tumors with matched germline DNA across 
the four major melanoma subtypes, and report the results 
of a comprehensive genomic analysis, highlighting similari-
ties and differences that provide insights into the etiology, 
biology, and disease modifiers of melanoma, which impact 
therapeutic options for patients. In addition, we characterize 
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how germline variants associate with the somatic mutation 
landscape and identify potential novel melanoma predisposi-
tion genes for some of the less common melanoma subtypes.

RESULTS
Genomic and Clinical Summary

WGS was conducted for melanomas and matched germ-
line DNA from 570 donors (Supplementary Table  S1). RNA 
sequenc ing (RNA-seq) was performed on 230 tumors and meth-
ylation arrays on 144 tumors. Tumors were of the four major 
melanoma subtypes: 104 UM, 87 AM, 76 MM, and 303 CM 
(including 22 occult primaries; Fig. 1A). Overall, the median age 
at diagnosis of the primary tumor was 61 years (range, 15–97), 
and 56% were male. WGS data for 464 tumors have been 
described previously (4, 14, 16, 26) and were reanalyzed here.

As previously reported (4, 14, 16, 26), the number of single-
nucleotide variants (SNV)/insertions and deletions (indel) 
and chromosome structural variants (SV)/rearrangements 
differed significantly between subtypes (Fig. 1B and C). CM 
had the highest tumor mutation burden [TMB; genome-
wide SNVs/dinucleotide variants (DNV)/trinucleotide vari-
ants (TNV)/indels per megabase], followed by MM, AM, and 
UM (Fig. 1B). AM had the highest number of SVs, followed 
by MM, whereas UM had the lowest number (Fig. 1B). The 
proportion of tumors with whole-genome doubling (WGD) 
differed between subtypes (χ2, P = 2.2 × 10−12), with AM hav-
ing the highest percentage (71%), followed by MM (54%), 
CM (54%), and UM (19%; Fig. 1B).

Within each subtype, TMB differed significantly with the 
primary tumor site (CM, Kruskal–Wallis, P = 4.2 × 10−11; AM, 
Kruskal–Wallis, P  =  8.5  ×  10−6; and UM, Kruskal–Wallis, 
P = 3.4 × 10−5) except for MM (Kruskal–Wallis, P = 0.092; Sup-
plementary Fig. S1A–S1D). Head and neck CM had the high-
est TMB, as did fingernail tumors for AM and iris tumors for 
UM. There was no difference in the number of SVs according 

to primary melanoma site within each subtype (Supple-
mentary Fig. S1E–S1H) except for a trend in MM, with oral 
tumors having more SVs (Kruskal–Wallis test, P = 0.05). TMB 
differed between CM subtypes, with desmoplastic and lentigo 
maligna melanomas having the highest TMB (Supplemen-
tary Fig. S1I), but there was no difference in SV burden (Sup-
plementary Fig. S1J).

Mutational Signatures and Strand Bias
Mutational signature analysis of single base substitutions 

(SBS; Fig. 2A), doublet base substitutions (DBS; Supplemen-
tary Fig.  S2A), and indels (ID; Supplementary Fig.  S2B) was 
performed. De novo signature analysis did not identify any new 
signatures when compared with the Catalogue of Somatic 
Mutations in Cancer (COSMIC) database (v3). Signatures 
associated with UVR (SBS7a–d) were dominant in CM, with 
293 of 303 having  >50% UVR signature, and only 7 tumors 
lacking any evidence of a UVR signature. SBS7a was the domi-
nant UVR signature in CM, with a mean contribution of 65% 
of total mutations per tumor, followed by SBS7b (21%), SBS7c 
(3%), and SBS7d (3%). Collectively, CM tumors without a UVR 
signature had fewer mutations (mean 1.4 per megabase, as 
expected in the absence of UVR) compared with tumors with 
a UVR signature (mean 72.1 mutations per megabase, Mann–
Whitney, P  =  7.3  ×  10−6) and more rearrangements (Mann–
Whitney, P  =  0.036, mean of 105 rearrangements with UVR 
signature vs. 391 without UVR signature). UVR signatures 
were also present in subsets of UM, AM, and MM as previously 
reported (refs. 14, 16, 26; Fig.  2B) and were associated with 
more sun-exposed primary sites (AM, more common in hands 
than feet; MM, upper body sites; UM, iris). Non-CM tumors 
with a UVR signature contribution  >50% had higher TMB 
(Supplementary Fig. S2C; AM, Kruskal–Wallis, P = 2.2 × 10−5; 
UM, Mann–Whitney, P  =  5.5  ×  10−6; MM, nonsignificant 
trend, Kruskal–Wallis, P = 0.089). The contribution of SBS7a 
was highest in CM; SBS7b was highest in UM, and SBS7d was 

Figure 1.  Genomic overview of the cohort. A, Distribution of the melanoma subtypes in the cohort. B, Mutations per megabase of SNVs and indels 
(top) and number of structural rearrangements (bottom) in each subtype. Each point represents a tumor, with the black line and number representing the 
median for each subtype. (continued on following page) 
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highest in AM (Supplementary Fig. S2D). Tumors with UVR 
SBS signatures usually had evidence of DBS1 and ID13 (Sup-
plementary Fig. S2A and S2B), which are similarly associated 
with UVR exposure (34).

SBS38, a signature reported primarily in melanomas (34), 
was found in tumors that generally lacked UVR signatures and 

were mostly non-CM, occurring in only three CM (Fig. 2C). 
There is no known etiology for SBS38, and we did not iden-
tify associations with other genomic or clinical features.

The Pan-Cancer Analysis of Whole Genomes (PCAWG) 
consortium reported the evolutionary history of 2,778 can-
cer samples, including the timing of mutational signatures, 
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Figure 1. (Continued) C, Overview of the genomic alterations within each tumor sample. Patients are grouped into separate plots based on melanoma 
subtype (cutaneous, acral, mucosal, and uveal). The upper plot shows the mutation burden of SNVs/DNVs/TNVs and indels as mutations per megabase 
across the entire genome. The patients within each subtype plot are ordered from highest to lowest mutation burden. The second plot from the top 
shows the number of structural rearrangements per tumor, including the predicted type of rearrangements: deletion, duplication, tandem duplication, 
inversion, foldback inversion, amplified inversion, intrachromosomal, or translocation. The third plot shows the percentage of the genome affected by 
CNAs including deletion (copy number 0: CN0), loss of 1 copy (loss CN1), copy number 2 (CN2), copy-neutral loss of heterozygosity (LOH), copy-number 
gain with 3 to 5 copies (CN3–5), and copy-number gain (CN ≥6). Next, tumor purity in each tumor is shown, followed by the presence of WGD per tumor. 
Finally, the primary site of each tumor is shown.
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by identifying clonal events present in all cells, as well as 
subclonal mutations present only in a subset of cells, as 
well as defining early and late clonal events as those pre-
ceding or succeeding copy-number (CN) gains (35). We 
applied similar techniques to melanomas containing UVR 
and SBS38 signatures in order to examine when during 
tumor evolution the mutational processes gave rise to these 
signatures. The timing of mutations with a UVR or SBS38 
signature differed. UVR signatures were a very early event, 
with the contribution to early clonal mutations generally 
being higher when compared with late clonal mutations 
(Fig.  2D), and UVR-related mutations were predominantly 
clonal rather than subclonal (Fig. 2E), agreeing with previ-
ous observations (35) and confirming that UVR is the early 
initiating event in tumors with this signature. In contrast, 

the SBS38 signature often arose later, again agreeing with 
previous observations (35), with a higher proportion being 
late clonal (Fig. 2D), and in subclonal mutations rather than 
clonal mutations (Fig. 2E), indicating that this signature is 
not associated with the initiating event for tumor develop-
ment in these cancers.

As previously reported (34), mutational signatures SBS7a 
and SBS7b showed a strong transcriptional strand bias, con-
sistent with transcription-coupled repair (TCR) acting on 
UVR-associated DNA damage. To characterize this bias fur-
ther, we examined C>T mutations at dipyrimidines TpC and 
CpC separately (34). The bias was stronger for mutations at 
CpC (median 34%) than for TpC sites (median 26%, Wilcoxon 
signed rank, P <  0.0001). This difference was mainly driven 
by TpC sites showing a weaker bias for intronic mutations 

Figure 2.  Mutational signatures. A, The number of SNVs and proportion of SBS signatures in each melanoma subtype. If the etiology for a signature 
is known, this is listed in parentheses after the signature name. HRD, homologous repair defect. B, The contribution of UVR signature and tumor primary 
site in non-CM tumors that have a UVR signature present (>0% UVR contribution). (continued on following page) 
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(median 25%) than exonic mutations (median 32%, Wilcoxon 
signed rank, P < 0.0001), whereas for CpC mutations, the bias 
was similar for intronic (median 32.4%) and exonic regions 
(33.8%; Supplementary Fig. S2E). Consistent with strand bias 
being due to TCR, it was stronger in genes highly expressed in 
CM (ref. 2; Supplementary Fig. S2F and S2G).

The predominant mutational signatures in non-CM were 
SBS1, SBS5, and SBS40, which are present in most cancer  
types and correlated with age (ref. 34; Fig. 2A). Other signa-
tures were present in some tumors, mostly non-CM: mis-
match repair signature (SBS21, one tumor), signatures of 
unknown etiology (SBS17a and b, five tumors), cisplatin sig-
natures (SBS31/SBS35, three tumors), APOBEC signatures 
(SBS2/13, 11 tumors), and homologous repair defect (HRD) 
signatures (SBS3/SBS8, four tumors). One tumor with SBS8 
had methylation of the BRCA1 promoter (Supplementary 
Fig.  S3A), BRCA1 loss of heterozygosity (LOH), low BRCA1 
expression (Supplementary Fig. S3B), and a high number of 
nonclustered SVs (Supplementary Fig.  S3C). For the other 
three tumors with HRD signatures, methylation data were 
unavailable, and no BRCA1/2 or PALB2 pathogenic germline 
or somatic mutations were observed.

We also ran a recently described algorithm Signature Fit 
Multi-Step (FitMS), which was applied to WGS from more 
than 12,000 tumors from the UK National Health Service 
to identify 40 new SBS reference signatures (36). When we 
applied this algorithm to our melanoma cohort (Supplemen-
tary Fig.  S4), we saw roughly similar patterns for COSMIC 
SBS signatures that are also identified by the FitMS algo-
rithm, as shown in Fig. 2A, with some exceptions being the 
UVR signatures SBS7b and d and COSMIC SBS40, which 
were not identified by the FitMS algorithm in Degasperi and 
colleagues (36), and therefore could not be assigned with this 

cohort. Of note, we identified an additional signature, SBS96, 
in two uveal tumors, both with germline MBD4 mutations, 
in keeping with the reported association (36, 37). There were 
also smaller contributions of rare signatures of unknown 
etiology in other tumors, including SBS99 in AM, SBS126 in 
AM and MM, and SBS103 in UM.

Rearrangements and CNAs
A comparison of tumors with kataegis loci, rearrangements, 

and CNAs across the genome in each subtype was undertaken 
(Fig.  3A). There were very few SVs, kataegis loci, or CNAs 
in UM; only chromosome 3 loss and 8q gain were common 
events, consistent with prior reports (25, 26). As expected 
(38, 39), all metastatic UM presented with chromosome 3p 
LOH (hemizygous or copy-neutral) or an SF3B1:p.Arg625 
driver mutation compared with 73% of the primary tumors 
(P  =  0.03). Chromosome 8q gain was also seen in AM and 
MM and, to a lesser extent, in CM. The CM, AM, and MM 
subtypes displayed a number of similar CNAs, including gain 
of chromosome 6p and loss of 6q, 9, and 10. AM and MM had 
further similarities, with frequent kataegis loci, rearrange-
ment breakpoints, and amplifications on chromosomes 5p, 
pericentromeric 11q, and pericentromeric 12q.

De novo analysis of CNA signatures was performed, which 
were then decomposed into the recently described COSMIC 
CNA signatures (40). Eleven COSMIC CNA signatures were 
identified as well as two novel signatures (Supplementary 
Fig. S5A–S5C). The contribution of each signature was com-
pared with genomic features associated with the proposed 
etiology (Supplementary Fig.  S5D). Diploid signature CN1 
was most prevalent in UM and associated with the absence 
of WGD (Fisher exact, P < 0.001). Chromothripsis-associated 
signatures (CN5, CN6, CN7, and CN8) were common in AM 
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and MM and associated with WGD (Fisher exact, P < 0.001) 
and complex rearrangements (Fisher exact, P  <  0.001) as 
expected. CN9, associated with diploid chromosomal stabil-
ity, was present in all subtypes and associated with a lack 
of WGD (Fisher exact, P  <  0.001). CN20 was present in all 
subtypes, most frequently in AM; is of unknown etiology; 
and mostly occurred in tumors with WGD. Artifact signature 
CN23 (which occurred in tumors with a lack of CN events in 
which segmentation algorithms often perform poorly) was 
present in 12% of tumors. Novel signature CNV48C was most 
common in AM and MM and was characterized by heterozy-
gous segments of 0–1 megabase, and CN gains were often 
present (Supplementary Fig. S5B). Novel signature CNV48D, 
characterized by segments of LOH <100 kb, was common in 
CM, with high (>50%) contribution in 18 CM, including eight 
CM cell lines (Supplementary Fig. S5C).

Tumors were clustered using various measures that indi-
cate the presence of complex structural rearrangements and 
chromosomal instability (Fig.  3B). Highly complex tumors 

were common in AM and MM. These tumors had a high 
number of SVs, kataegis loci, and complex localized events 
such as chromothripsis, particularly on chromosome 5 (in the 
region of TERT), chromosome 11 (CCND1), and chromosome 
12 (CDK4 and MDM2) as previously reported (14, 16, 21).

Recurrent breakpoints (Supplementary Fig.  S6A–S6D) 
included regions containing tumor suppressors such as 
CDKN2A (in CM, AM, and MM); PTEN (CM and MM); 
17q11.2 near NF1 (AM and MM); and 15q13.3 near SPRED1 
(CM, AM, and MM). Some regions were close to centromeres 
or telomeres, including 6q12 (AM and CM) and 7p22.3 (AM). 
Other regions across MACROD2 (CM) and the long noncod-
ing RNA (lncRNA) LINC00290 (CM, AM, and MM) have been 
suggested as fragile sites (41, 42). Regions with high numbers 
of SVs close to cancer genes included TERT (CM, AM, and 
MM), CCND1 (AM), and CDK4 (AM and CM). No recurrent 
SV regions were identified in UM. Focal amplifications and 
deletions were identified in each subtype (Supplementary 
Fig.  S7A–S7D). Deletions in CDKN2A and NF1 (CM, MM, 

Figure 3.  Rearrangements, CNAs, and complex rearrangement events. A, Distribution of (top to bottom) the percentage of tumors with kataegis loci (green), 
a rearrangement breakpoint (gray), a CNA with amplifications (red), and deletions (CN0 + CN1, blue) in 100-kb regions across the genome in each melanoma 
subtype. Regions of similarity and difference in the pattern of kataegis, breakpoints, and CNA between subtypes are shaded gray. (continued on following page) 
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Figure 3. (Continued) B, Complex events in each tumor. From top to bottom: number of rearrangements, number of kataegis loci, melanoma subtype, 
presence of WGD, presence of complex rearrangement events, heat map of measures of complexity, and presence of complex events in each chromo-
some in each tumor. For the heat map of measures of complexity, tumors were clustered using various measures that indicate the presence of complex 
structural rearrangements and chromosomal instability, including chromothripsis-related CN signatures (CN chromothripsis: CN5 + CN6 + CN7 + CN8), 
diploid chromosomal instability CN signature CN9, clustering rearrangement signatures (RS4 and RS6), and CARMA features of amplification (AMP) and 
complexity (STP and CRV). For clustering, z-score–transformed values for each factor were used.

and AM) and PTEN (CM and MM) were identified. Amplifica-
tions were seen in regions containing TERT, CCND1, CDK4, 
and MDM2 (CM, MM, and AM), KIT (MM), BRAF (CM and 
MM), MAP2K1 (AM and MM), and EP300 (CM and AM).

Of the 83,961 rearrangements identified using WGS, 53,506 
had a breakpoint within a gene (Supplementary Table S2) and  
1,279 were predicted to result in in-frame fusion genes. Fusions 
in cancer genes were identified (Supplementary Table  S2;  
Fig. 4A and B) and included nine BRAF (four CM, three AM, 
two MM; Fig.  4A and C–G), one ALK, one MET, one ROS1 
(14), and three RAF1 fusions (ref. 4; Fig. 4B; Supplementary 
Table S2). No NTRK1/2/3 fusions, which have been reported 
rarely in melanoma (43), were identified.

Noncoding Mutations
A consensus approach using multiple tools was used to 

identify significantly mutated noncoding genomic elements 
by analyzing somatic SNVs and indels in regulatory regions 
[promoters, 5′  untranslated regions (UTR), 3′  UTRs, and 
enhancers] and lncRNAs (gene body and promoter; Sup-
plementary Table S3). Mutations in the TERT promoter and 
5′ UTR were identified in both AM and MM, and the SSBP1 
promoter (mutated in four tumors) was identified in MM. In 
UM, the 5′ UTR of TUBB8B (RP11–683L23.1 in GRCh37) was 
mutated in three tumors. In CM, 491 sites were identified 
as significantly mutated: 333 promoter elements (including 
TERT), 149 5′ UTR elements, two lncRNAs, and seven lncRNA 
promoters. For 42 elements, mutations were associated with 
altered gene expression (Mann–Whitney, P < 0.05, none were  

significant after correction for multiple testing) and included 
promoters of RPS27 and RNF185, previously reported as 
recurrently mutated in CM (4); IQGAP1, reported to be 
involved in CM metastasis (44); and RTEL1, a telomere main-
tenance gene. Although noncoding mutations in 42 CM 
elements were associated with altered gene expression (Sup-
plementary Table S3), the PCAWG study of noncoding muta-
tions (45) showed that noncoding drivers are rare, and most 
CM noncoding changes are likely to be passenger mutations 
as a result of a high TMB due to UVR exposure. Therefore, it 
is likely that many of the significant noncoding mutations 
identified here are also nonfunctional passengers.

Telomere Maintenance Genes and Telomere Length
Mutations in telomere maintenance genes were com-

mon in all melanoma subtypes except UM (Supplementary 
Fig. S8A). TERT aberrations were present in 88% of CM, 46% 
of AM, and 34% of MM (Supplementary Fig.  S8B). TERT 
promoter mutations were more common in CM (84%) than 
in AM (10%) and MM (16%). Most promoter mutations 
occurred at the −124 and −146 sites, and one patient with 
AM (MELA_0337) carried a germline TERT mutation (−57). 
Other types of TERT aberrations were more common in AM 
and MM and included TERT amplifications present in 17% of 
AM, 12% of MM, and 2% of CM. SVs within 20 kb upstream 
of TERT, postulated to result in enhancer hijacking (14, 46), 
were present in 29% of AM, 13% of MM, and 4% of CM, often 
(62%, 29/47) co-occurring with TERT amplification. ATRX 
and DAXX loss-of-function (LOF) mutations and mutations 
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in TP53 and RB1 have been associated with telomere length-
ening (47). ATRX LOF mutations were present in 2% of CM, 
3% of AM, and 8% of MM, but only one DAXX LOF mutation 
was observed (in an MM tumor). Mutations in TP53 and 
RB1 were found in all subtypes but were more common in 
CM. Relative telomere length differed between melanoma 
subtypes (Kruskal–Wallis, P  =  0.003), with shorter telom-
eres in CM (Supplementary Fig.  S8C). Melanomas with 
TERT aberrations had shorter telomeres, and tumors with 
ATRX LOF mutations had longer telomeres (Supplementary 
Fig. S8D). This observation was complicated by the fact that 

both telomere length and prevalence of TERT aberrations 
correlated with subtype. In a multivariable linear regression 
analysis including tumor subtype and presence of ATRX, 
TERT, RB1, or TP53 mutations, only ATRX modification was 
associated with longer telomere length (P = 0.0002).

TCGA Molecular Categories and Significantly 
Mutated Gene Analysis

Melanoma samples were grouped by TCGA molecular cate-
gories. In CM, 42% of tumors were BRAF category, followed by 
RAS (28%), NF1 (23%), and triple wild-type (WT; 8%, Fig. 5A; 

Figure 4.  Cancer gene fusions A, Circos plot showing the nine BRAF gene fusion events and the corresponding fusion gene partner. Only chromosomes 
containing the genes involved in the gene fusions are shown. B, Circos plot showing RAF1, ALK, MET, and ROS1 gene fusion events of interest and the 
corresponding fusion gene partner. Only chromosomes containing the genes involved in the gene fusions are shown. C–G, Examples of BRAF fusion genes 
in tumors with RNA-seq available. For each fusion gene, the top plot shows the location in the chromosome of each fusion gene partner, and the middle 
plot shows the exons involved in each gene (transcripts are collapsed). The bottom plot shows the read depth of both fusion gene partners by RNA-seq, 
predicted fusion protein, and the protein domains (including BRAF kinase domain) involved. C and D, AGAP3:BRAF fusion and FKBP15:BRAF fusion, 
respectively. (continued on following page) 
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Supplementary Table  S1). The proportions differed signifi-
cantly (χ2, P = 4 × 10−6) compared with the TCGA cohort (2) of 
316 CMs (BRAF 47%, RAS 29%, NF1 9%, triple WT 15%), with 
the higher proportion of NF1 mutants in our cohort likely 
due to the usage of WGS, which allowed detection of SVs that 
lead to NF1 inactivation (n = 39). For desmoplastic melano-
mas (n = 28), 79% were NF1 category tumors, agreeing with 
previous reports (48). As expected, the proportions of TCGA 
molecular categories were different in the other subtypes, 
with 94% of UMs being triple WT. BRAF and RAS categories 
were less common in AM and MM, whereas NF1 and triple 
WT were more common than in CM (Fig. 5B–D).

When comparing the TMB of the TCGA categories in CM, 
there was a significant difference overall (Kruskal–Wallis, 
P < 2 × 10−16), with the NF1 subtype having the highest TMB 
(Supplementary Fig. S9A). The number of SVs in CM differed 
across TCGA categories (Supplementary Fig.  S9B, Kruskal–
Wallis, P  =  0.013), with more SVs in the triple-WT and NF1 
tumors, but the proportion of tumors with complex rear-
rangements did not differ between categories (χ2, P = 0.4). In 
AM, there was an overall difference in TMB (Kruskal–Wallis, 
P  =  0.042) and number of SVs (Kruskal–Wallis, P  =  0.022) 

across TCGA categories (Supplementary Fig.  S9C and S9D), 
but no significant difference in the proportions of tumors 
with complex rearrangements (χ2, P = 0.068). There was no dif-
ference between TCGA categories for TMB (Kruskal–Wallis, 
P  =  1), SVs (Kruskal–Wallis, P  =  0.1), or complex rearrange-
ments (χ2, P = 0.09) in MM (Supplementary Fig. S9E and S9F).

Significantly mutated gene (SMG) analysis of SNVs and 
indels using a consensus approach from multiple tools iden-
tified 20 CM, five AM, seven MM, and seven UM SMGs (Fig. 5; 
Supplementary Tables  S4 and S5). Additionally, mutations 
occurred in other genes in important melanoma develop-
ment pathways (MAPK, PI3K, p53, cell cycle, and telomere 
maintenance; Fig. 5, bottom). CM SMGs (Fig. 5A) included 
well-known melanoma drivers: BRAF, NF1, NRAS, MAP2K1, 
PTEN, RASA2, RAC1, CDKN2A, TP53, RB1, B2M, and ARID2. 
Other genes previously reported as SMGs (2, 28, 29) included 
RQCD1 (CNOT9) a transcription (co)factor that is a poten-
tial oncogene (49) and KNSTRN, a kinetochore gene that is 
recurrently mutated in cutaneous squamous cell carcinoma 
(50). Other SMGs included three BCL-2 associated genes—
BCLAF1, BCL2L12, and BAD; however, most mutations in 
these genes were missense (Supplementary Fig. S10A–S10C). 
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BCLAF1 is a transcription factor that activates apoptosis and 
can form a DNA damage-induced BRCA1–mRNA splicing 
complex that contains another melanoma driver gene, SF3B1 
(51, 52). BCLAF1 mutations occurred across the protein and 
included four nonsense mutations, one in-frame insertion, 
and 89 missense mutations, with 65% of missense predicted 
as possibly or probably damaging by PolyPhen and 60% 
predicted as potentially damaging by SIFT. BCLAF1 variants 
were present in 24.6% (nonsense 1.5%) of TCGA skin cutane-
ous melanoma (TCGA-SKCM) tumors and 24.6% (nonsense 
0.9%) of tumors used in the Conway and colleagues (29) CM 
meta-analysis. BCL2L12 mutations in CM were concentrated 
in the first 18 amino acids, with eight at R18W; in addition, 
there were 15 of the F17F synonymous mutation (53). Inter-
estingly, these recurrent mutations lie within the promoter 
and 5′ UTR, respectively, of the IRF3 gene on the opposite 
strand. It is, therefore, possible that the functional conse-
quence of this mutation is on IRF3 rather than BCL2L12, a 
scenario that warrants further scrutiny. Mutations in BAD 
affected a noncanonical transcript (ENST00000544785), 
and there was low evidence for expression of this transcript 
in CM tumors; therefore, BAD could potentially be a false 
positive. The functions of the remaining genes—STARD4, 
ARL16, and JMJD8—do not currently have a confirmed role 
in cancer; therefore, these genes could potentially be false 
positives resulting from the high TMB in CM. It has been 
reported that ETS binding sites can exhibit high neutral 
mutation rates in melanoma, leading to recurrent mutations 
that do not confer a selective advantage and therefore result-
ing in potential false-positive SMGs (28). The genes BAD, 
BCL2L12, KNSTRN, ARL16, and JMJD8 all had a high propor-
tion of mutations overlapping ETS sites, and this is further 
evidence for these genes being false positives.

Missense mutations were common in ROS1, ALK, and MET; 
these mutations were not recurrent and are of unknown func-
tional consequence. Mutations (SNVs/indels) in TP53 were 
significantly enriched (68%) in desmoplastic melanomas (χ2, 
P = 2.5 × 10−5). In CM, TP53 gene aberrations were associated 
with TCGA categories (χ2, P = 4.1 × 10−10), with 70% of NF1 
category tumors also having a TP53 aberration [includes 
SNVs, indels, homozygous deletion, LOH (CN1), and rear-
rangements]. In comparison, 39% of RAS category, 23% of 
BRAF category, and 17% of triple-WT category tumors had 
TP53 aberrations. The prevalence of SNVs, indels, CNAs, and 
rearrangements in a more comprehensive list of previously 
identified SMGs, as well as CM SMGs identified in this study, 
are listed in Supplementary Table S4.

The SMGs identified in non-CM were NRAS, BRAF, TYRP1, 
PTEN, and KIT in AM (Fig. 5B); NRAS, SPRED1, BRAF, NF1, 
KIT, TP53, and SF3B1 in MM (Fig.  5C); and BAP1, GNAQ, 
GNA11, SF3B1, EIF1AX, PLCB4, and TP53 in UM (Fig. 5D)—
all previously identified as melanoma drivers (14, 16, 26, 
30, 31). In UM, driver mutations in the G-protein signaling 
pathway were mutually exclusive except for two PLCB4 D630 
mutations that co-occurred with GNA11/GNAQ R183H 

mutations, which have been described previously (25, 26). 
For the 144 tumors with methylation array data, promoter 
methylation of tumor suppressor genes TP53, CDKN2A, RB1, 
ARID2, and PTEN was examined. Methylation of RB1 was 
observed in one CM tumor (Supplementary Fig. S11A) with 
low expression (Supplementary Fig.  S11B), and CDKN2A 
(p16 isoform) promoter methylation was observed in 12 
tumors (six CM, three AM, and three MM; Supplementary 
Fig. S11C), with expression of the p16 transcript reduced in 
almost all (11/12) tumors with methylation (Supplementary 
Fig. S11D).

Germline Predisposition Genes
Germline WGS data were assessed for variants in cancer pre-

disposition genes to identify potential associations with sus-
ceptibility for different melanoma subtypes (Supplementary 
Table  S6). Four patients with CM carried known pathogenic 
germline CDKN2A variants (54), three of which had a second 
CDKN2A hit in the tumor. Two POT1 pathogenic variant carri-
ers were seen (one CM/one AM). Four patients (three CM/one 
AM) carried the pathogenic (55) MITF p.E318K variant. One 
patient with AM carried a PTEN LOF variant and had clinical 
features consistent with Cowden syndrome. Another AM case 
carried a TERT promoter variant (position –57 upstream of the 
translation start site) that was frequently somatically mutated 
in CM, previously identified as a germline variant in a large CM 
family (56), and is here for the first time reported in AM. LOF 
variants in WRN were identified in two AM cases (both tumors 
showed LOH) and one patient with UM (without LOH). Four 
CHEK2 frameshift variants associated with breast and pancre-
atic cancer (57) were carried by three AM cases (all c.1100del) 
and one patient with CM (c.1263del). A BRCA1 frameshift dele-
tion (c.70_80del) was seen in an individual with CM, but the 
tumor had lost the variant allele. In UM, two cases had BAP1 
LOF variants and two had MBD4 LOF variants, all with second 
hits (LOH) in the tumors.

To identify potential novel predisposition genes, we 
searched for other germline LOF variants associated with 
somatic second hits. Two AM cases carried nonsense muta-
tions in AIM1 (absent in melanoma 1), a gene associated with 
the control of tumorigenicity in CM (58), and both tumors 
had lost the WT allele, an association that has not previously 
been reported.

A study of 5,954 tumors across 22 cancer types correlated 
germline polymorphisms and somatic events (59). Of the 36 
loci associated with somatic mutations, none were confirmed 
in our melanoma cohort.

Factors Associated with TMB
High TMB is associated with favorable response in patients 

treated with immune-checkpoint inhibitors; therefore, we 
explored factors correlated with TMB in CM. TMB was strongly 
associated with the type of MAPK pathway driver mutation as 
previously reported (60). NF1 melanomas had the highest 
TMB, whereas BRAF melanomas [odds ratio (OR), 0.33; 95% 

Figure 5.  SMGs. Oncoplots of SMGs (top) and other melanoma genes (other, bottom) in cutaneous (A), acral (B), mucosal (C), and uveal (D) tumors. 
Each subtype is separated into TCGA molecular categories. Oncoplots show SNVs and indels only. Tumors without an SNV or indel in a TCGA category 
gene that were assigned to that TCGA category had other structural alterations of the gene (e.g., a BRAF fusion).
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confidence interval (CI), 0.24–0.45], particularly p.V600E muta-
tions (OR, 0.25; 95% CI, 0.16–0.39), and RAS p.Q61 melanomas 
(OR, 0.72; 95% CI, 0.42–0.88) had lower TMB. High TMB was 
also associated with head and neck tumors (OR, 2.9; 95% CI, 
2.4–3.6), old age (OR, 1.7; 95% CI, 1.3–2.3), and being male (OR, 
1.7, 95% CI, 1.3–2.4; Supplementary Fig. S12A). We built a deci-
sion tree to determine the strongest predictor of TMB in each 
subgroup (Fig.  6). Primarily, TMB is associated with TCGA 
categories, splitting melanomas into three groups: NF1 mela-
nomas with high TMB, BRAF p.V600E melanomas with low 
TMB, and melanomas with other drivers (including RAS and 
BRAF p.V600K), with intermediate TMB. Among the CM with 
a BRAF p.V600E mutation, TMB was associated with the MC1R 
genotype—that is, patients with R or r variants in both copies of 
MC1R had significantly higher TMB than patients with at least 
one WT allele (Kendall’s τ, Benjamini–Hochberg (BH)-adjusted 
P = 0.02). Although TMB is affected by the MC1R genotype, it 
is more strongly affected by the type of MAPK driver somatic 
mutation, which was not assessed in previous studies of TMB 
and MC1R association (61, 62).

Associations with Age of Onset
The age at diagnosis for CM varied between different TCGA 

categories, with NF1 (mean, 66.0 years) and RAS (mean, 64.6 
years) patients being significantly older than BRAF patients 
(mean, 51.5 years, Mann–Whitney test, P  =  2  ×  10−9; Supple-
mentary Fig. S12B). The early onset for BRAF melanomas was 

more strongly associated with p.V600E mutation (mean, 48.6 
years) than p.V600K (mean, 59.2 years, Mann–Whitney test, 
P = 0.01). As reported in a subset of this cohort (61), patients 
with variants in MC1R developed CM earlier. An additive model 
counting both R and r alleles gave a slightly better fit than 
a model counting only R alleles, implying that r alleles also 
affect age at onset. Multivariable regression analysis showed 
that somatic BRAF mutation and germline MC1R genotype are 
independently associated with age at onset, which is in line with 
MC1R genotype not being significantly associated with BRAF 
mutations (χ2, P = 0.74), confirming a meta-analysis (63).

Regression analysis of the age of onset in AM identified three 
significant factors (Supplementary Fig. S12C). As observed in 
other cancers (64), patients with greater numbers of patho-
genic germline variants in “cancer” genes had earlier onset 
(2 years per variant, 95% CI, 0.7–3.2, BH-adjusted P = 0.002). 
Men were younger (mean, 65.9 years) compared with women 
(mean, 72.3 years, BH-adjusted P  =  0.036) and AM with a 
BRAF hotspot mutation were on average 10.8 years younger 
(BH-adjusted P  =  0.002). Multivariable analysis confirmed 
that BRAF mutation, gender, and germline variant burden are 
independently associated with early onset (P < 0.01).

As high nevus count is a major risk factor for CM (65), we 
calculated nevus polygenic risk scores (PRS) from the germ-
line WGS data. PRS did not correlate with TCGA category 
(Kruskal–Wallis, P  =  0.93); however, within the BRAF cat-
egory, patients with a p.V600E mutation had higher nevus 

Figure 6.  Decision tree predicting TMB in CM. Starting with CM tumors in the root node (top left), the variable that had the highest correlation with 
TMB was identified (i.e., NF1 mutation status). In the branching node, the correlation (Kendall’s tau) with TMB and associated Bonferroni corrected P 
value is displayed. The branching node splits the cohort into two groups with size (in brackets), and median TMB is displayed in the daughter nodes. 
The splitting is repeated recursively until no more significant variables can be found. For each leaf node in the decision tree, the distribution of TMB is 
displayed on the right-hand side in the form of box-and-whisker plots with whiskers from minimum to maximum. Medians are displayed as a line within 
the box defined by the quartiles.
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Figure 7.  Pathways important in melanoma development. Genomic aberrations are shown in five signaling pathways that are important in melanoma 
development: MAPK, PI3K, p53, p16–CDK–RB (p16), and telomere maintenance (TELO). Included genes and aberrations for each pathway are listed in 
Supplementary Table S8. Oncoplots show the type of aberration(s) in a gene within each pathway, and plots are grouped by subtype. Cutaneous tumors 
(A) and acral tumors (B), respectively. (continued on next page) 
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PRS than those with a p.V600K mutation (Mann–Whitney, 
P < 0.0001).

Survival
Overall survival (OS) was analyzed separately for patients 

with CM (n = 284) and AM (n = 83) with available survival data 
(Supplementary Table S7). In CM, the presence of ulceration, 
high mitotic rate, and lymphovascular invasion were clinical 
features associated with poor OS. In AM, ulceration was associ-
ated with poor OS. The only genomic features associated with 
poor OS were long telomeres in CM and TCGA RAS category 
in AM.

Pathways Important in Melanoma Development
Five major pathways are important in the development 

of the CM, AM, and MM subtypes: MAPK, PI3K, p16, 
p53, and telomere maintenance (Fig. 7A–D; Supplementary 
Fig. S13A–S13D). UM is distinct, as few tumors have aberra-
tions in these pathways, and barring LOH of the TP53 region 
of chromosome 17, it is unlikely that other LOH events in 
components of these pathways are functionally relevant. 
Instead, the vast majority (98%) of UM tumors harbor driver 
mutations in the G-protein signaling pathway (GNAQ, 
GNA11, PLCB4, and CYSLTR2), which leads to the activa-
tion of Protein Kinase C and its downstream effectors. The 

canonical MAPK pathway (RTK>RAS>RAF>MEK>ERK) 
was highly mutated (83%–95%) in all subtypes except UM. 
There were similar levels of PI3K and p16/cell-cycle pathway 
aberrations, whereas the telomere maintenance pathway 
was more highly mutated in CM (89%) than AM (47%) and 
MM (42%), mostly due to the high prevalence of TERT pro-
moter mutations in CM. Overall, CM had more SNV/indel 
mutations in these pathways, likely driven by a higher TMB, 
whereas in MM and AM, a larger proportion of pathway 
mutations were SV/CNA events.

DISCUSSION
Here we present the largest WGS analysis of melanoma 

and comprehensively compare genomic characteristics of 
the four major subtypes. We show that UM is genomically 
distinct from the other subtypes, as it harbors the lowest 
TMB and contains SMGs in different pathways (princi-
pally G-protein signaling). In contrast, the majority of CM, 
AM, and MM share similar requirements for tumorigen-
esis, with largely requisite alterations in components of the 
MAPK, PI3K, TP53, p16, and telomere pathways. However, 
the mechanism by which these pathways are altered differs 
between subtypes.
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Of all cancers (66), CM has one of the highest TMB, 
whereas AM and MM have intermediate TMB, and UM 
has one of the lowest. AM and MM are among cancers 
with the highest number of SVs, and AM has high rates 
of WGD. CM and MM have similar lower proportions of 
WGD, whereas WGD is almost absent from UM. In CM, 
high TMB is associated with several parameters that may 
shape tumor development, including NF1 mutation, head 
and neck primary site, age of onset, and dominant UVR 
signature. In contrast, low TMB is associated with BRAF 
V600E mutation. The subsets of non-CM tumors with high 
TMB are those with primary sites exposed to the sun and 
that have UVR signatures. There is also a different distribu-
tion of UVR subsignatures (SBS7a–d) in each melanoma 
subtype, with SBS7a highest in CM, SBS7b highest in UM, 
and SBS7d highest in AM, which may be a reflection of the 
different intensity of UVR exposure at different body sites 
or that the same mutational process has diverse effects 
at different anatomic sites. UVR mutational signatures 
account for a high proportion of early clonal mutations, 
confirming that UVR is a very early event (1). In contrast to 
the previous speculation that SBS38 is associated with UVR 
in CM (34), we find no evidence for this being due to UVR 
because it occurs predominantly in non-CM (AM and MM) 
and is a late clonal mutational process. We also identified 
the presence of other rare signatures—of note, SBS96 in two 
UM cases with MBD4 mutations.

We confirm previous reports that germline MC1R geno-
type is associated with high TMB and early age of onset (61, 
62), highlighting that the patient germline can influence 
the tumor mutation profile. Although a small number of 
CM and UM cases carried germline pathogenic variants 
in known high-penetrance melanoma susceptibility genes 
(54, 67–69), we found several novel cancer-predisposing 
germline variants in patients with AM. The most notable of 
these is the CHEK2 c.1100del variant carried by three of 87 
AM cases, thus extending the spectrum of cancers associ-
ated with CHEK2 and pointing to CHEK2 potentially being 
the most common known genetic cause of AM susceptibil-
ity. Similarly, we extend the cancer spectrum associated 
with germline variants in POT1, PTEN, and TERT to include 
AM. We also found germline LOF variants in WRN in two 
patients with AM, adding further support for an associa-
tion between this gene and predisposition to AM (70, 71). 
Analysis of germline LOF variants with second somatic hits 
in the tumors identified two AM cases carrying germline 
nonsense mutations in AIM1, with their tumors showing 
LOH. Functional assessment of AIM1 in CM demonstrated 
that it influences tumorigenicity (58); hence, we propose it 
as a strong candidate for a new susceptibility gene for AM 
that requires validation in independent series of cases.

CN signature analysis identified a number of recently 
reported CN signatures, including chromothripsis-associated 
signatures, which are highest in AM and MM. AM and MM 
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share several regions of complex rearrangements accompa-
nied by the focal amplification of oncogenes such as CCND1, 
CDK4, MDM2, and TERT. There are also similarities between 
CM, AM, and MM, which share a number of chromosome 
arm CNAs, highlighting a common requirement of spe-
cific gene dysregulation in their tumorigenesis. This includes 
the main driver genes shared by these subtypes, including 
oncogenes (BRAF and RAS) and tumor suppressor genes 
(CDKN2A, NF1, and PTEN). Through WGS analysis, we were 
able to better characterize the prevalence of these key driver 
genes. We found that BRAF fusions account for 6% of activat-
ing BRAF mutations and that these occur across multiple 
melanoma subtypes. As these fusions and NF1 inactivation 
through SVs are underreported by WES, the TCGA triple-
WT group is overestimated in such studies (2, 29). Inactiva-
tion of other genes including PTEN and SPRED1 through 
LOF rearrangements is also underreported in WES studies, 
as are TERT promoter mutations and upstream SVs. Using 
WGS, we highlight different processes but similar end results 
between CM and AM/MM, with TERT promoter mutations 
being common in CM and SVs common in AM and MM.

Current first-line drug treatment for metastasized CM 
is checkpoint inhibitor immunotherapy, which has shown 
considerably less success in AM and MM (72, 73) for which 
targeted therapies may be the preferred option, particularly 
in tumors with low TMB and hence fewer neoantigens. The 
remarkable similarity in pathway alterations between CM, 
AM, and MM points to a number of common potential tar-
geted treatments—for example, MAPK, PI3K, TERT, MDM2, 
and CDK4 inhibitors.

METHODS
Human Melanoma Specimens Including Cell Lines

Fresh-frozen tissue and matched normal germline samples for 570 
donors were obtained from the biospecimen banks of Melanoma 
Institute Australia, QIMR Berghofer Medical Research Institute, 
Lions Eye Institute, Royal Perth Hospital, St John of God Hospital, 
Ludwig Institute for Cancer Research, Rigshospitalet, University of 
Colorado, Peking University Cancer Hospital, Skane University Hos-
pital, and University of Zurich. All samples were collected with the 
written informed consent of donors. The study was approved by 
institutional ethics committees of the Melanoma Institute Australia, 
the Sydney Local Health District Royal Prince Alfred Hospital, QIMR 
Berghofer Medical Research Institute, University of Colorado, Univer-
sity of Zurich, University of Western Australia, the Capitol Region of 
Denmark, Peking University Cancer Hospital, Skane University Hos-
pital, and the Ludwig Institute for Cancer Research. Tumor/normal 
pairs for 464 of the 570 donors have been described (4, 14, 16, 26) and 
were reanalyzed for this study (details in Supplementary Table S1).

The cohort included 18 cell lines. Cell line MELA_0577 was obtained 
from Mitch Levesque, University of Zurich (M140325, RRID:CVCL_
A1UE). Cell lines MELA_0102, MELA_0103, MELA_0104, MELA_0105, 
MELA_0107, MELA_0108, MELA_0110, MELA_0114, MELA_0687, 
MELA_0116, MELA_0118, MELA_0119, MELA_0121, MELA_0122, 
MELA_0220, MELA_0349, and MELA_0135 were obtained from Chris  
Schmidt, QIMR Berghofer Medical Research Institute. There was 
matched germline DNA for all cell lines and all were subject to 
short tandem repeat profiling at QIMR Berghofer Medical Research 
Institute, and tumor–normal pairs were confirmed as matching via 
the subsequence sequencing using qSignature (https://github.com/
AdamaJava/adamajava/tree/master/qsignature). For all cell lines except 

MELA_0577, these were additionally matched to STR profiling per-
formed when the cell lines were established. Mycoplasma testing was per-
formed using an in-house service at QIMR Berghofer Medical Research 
Institute prior to sequencing. The DNA was extracted from cell lines 
immediately after they reached confluence for use in sequencing.

DNA and RNA Extraction
Fresh-frozen tumor DNA and RNA were extracted using the All-

Prep DNA/RNA/miRNA Universal Kit (Qiagen #80224). Blood DNA 
was extracted from whole blood using the QIAamp DNA Blood Kit 
(#51126). DNA samples were quantified using NanoDrop (ND-1000, 
Thermo Scientific) and the Qubit dsDNA HS Assay (#Q32851, Life 
Technologies), with DNA size and quality tested using gel electropho-
resis. RNA samples were quantified using the Qubit RNA HS Assay 
(#Q32852, Life Technologies). Most DNA and RNA samples were 
from the same vial of tissue. Six RNA (MELA_0267, MELA_0015, 
MELA_0004, MELA_0268, MELA_0068, and MELA_0010) samples 
were from the same lesion but from a different vial of tissue than the 
DNA sample.

WGS
Sequencing library construction was performed according to the 

manufacturer’s instructions using TruSeq DNA Sample Preparation 
kits (Illumina). Whole-genome paired-end sequencing was carried 
out on HiSeq2000, HiSeq X-Ten, or NovaSeq instruments (Illumina) 
at Macrogen (Geumcheon-gu, Seoul, South Korea) or sequenc-
ing facilities in Australia (Australian Genomic Research Facility, 
Ramaciotti Centre for Genomics, John Curtin School of Medical 
Research, Kinghorn Cancer Centre, Garvan Institute of Medical 
Research). Tumor samples underwent WGS to an average coverage 
of 63×  (range, 8–140×) and normal germline samples to an aver-
age coverage of 36×  (range, 21–140×). Sequence reads were adapter 
trimmed using Cutadapt (RRID:SCR_011841, version 1.9; ref.  74) 
and aligned using BWA-MEM (version 0.7.12; ref. 75) to the GRCh37 
assembly. Duplicate reads were marked with Picard MarkDuplicates 
(RRID:SCR_006525; https://broadinstitute.github.io/picard; version 
1.129). Tumor purity was assessed using ascatNgs (76), and if the 
purity assessment from ascatNgs was found to be unreliable after 
manual review, mean variant allele frequency was used (Supplemen-
tary Table S1). All tumors had a purity of >10%, with 534 of the 570 
(94%) tumors having a purity of >30%.

RNA-seq Analysis
Libraries were prepared from RNA using the TruSeq Stranded 

mRNA kit (n = 182) or the TruSeq RNA Library Prep Kit (n = 48) and 
sequenced with 100-bp, paired-end reads. RNA-seq reads were aligned 
using STAR (version 2.5.2a, RRID:SCR_004463) to the GRCh37 
assembly with the gene, transcript, and exon features of the Ensembl 
(release 70) gene model after trimming for adapter sequences using 
Cutadapt (RRID:SCR_011841, version 1.11). Gene expression was 
estimated using RSEM (version 1.2.30; ref. 77), and quality control 
was carried out using RNA-SeQC (version 1.1.8; ref.  78). Trimmed 
mean of M-values (TMM) normalization was performed using the R 
package “edgeR” (RRID:SCR_012802) for the 182 samples that were 
sequenced using the Stranded TruSeq mRNA kit. TMM-normalized 
values of these 182 samples were used for the association of expres-
sion with methylation and with significant noncoding gene elements 
for CM (n  =  88). Fragments per kilobase of transcript per million 
mapped reads (FPKM) values for all 230 samples were used in SMG 
analysis to determine if a gene was expressed for SMG analysis, and 
RNA-seq BAM files for all 230 samples were used for fusion analysis.

DNA Methylation Analysis
Bisulfite conversion of genomic DNA was performed using the EZ 

DNA Methylation Kit (Zymo Research) and was hybridized  to the 

https://github.com/AdamaJava/adamajava/tree/master/qsignature
https://github.com/AdamaJava/adamajava/tree/master/qsignature
https://broadinstitute.github.io/picard
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Infinium MethylationEPIC Array (Illumina) following the manu-
facturer’s protocol at the Queensland University of Technology. 
The arrays were scanned on the iScan system (Illumina). Raw idat 
files for 144 tumors were imported, filtered, and normalized using 
the ChAMP R package (RRID:SCR_012891; ref.  79; version 3.5.1). 
Probes were filtered out where there were fewer than three beads in 
5% or more of the samples or where there was a detection P > 0.01. 
A β-mixture quantile normalization (80) was performed to account 
for probe type 1 and type 2 biases, followed by quantile normaliza-
tion. Additional filtering was performed to remove probes located in 
non-CpG sites, on chromosome X or Y, single-nucleotide polymor-
phism (SNP)–related polymorphisms as per Zhou and colleagues 
(81), and probes that map to multiple locations as per Nordlund 
and colleagues (82). Promoter methylation of selected tumor sup-
pressor genes—TP53, CDKN2A, RB1, BRCA1, PTEN, ARID2, NF1, 
and SPRED1—was examined. For each gene, promoter CpG sites 
were examined (TSS200, TSS1500, 5′ UTR, first exon, with annota-
tion according to the RefSeq canonical transcript). Tumors with 
homozygous deletions of the gene of interest were not included. 
Tumors with multiple CpG sites that had a beta value  >0.2 above 
the median beta value of the site for tumors of the same mela-
noma subtype were considered to be methylated after confirmation 
by a manual review of methylation beta value plots. For tumors 
that had matching RNA-seq, expression of a gene in the presence 
or absence of methylation was examined using TMM-normalized 
RNA-seq data.

Somatic Substitution and Indel Calling
Somatic SNV and indels were detected with a previously described 

pipeline (4), which uses a dual calling strategy to detect single-nucle-
otide, dinucleotide, and trinucleotide variants. The consensus of two 
tools was used for downstream analysis: qSNP (version 2.0; ref. 83) 
and GATK HaplotypeCaller (version 3.3–0; ref. 84). GATK was used to 
detect indels (1–50 bp). SnpEff (85) was used for variant annotation. 
To avoid false negatives in known mutation hotspots, the following 
regions were called with higher sensitivity as previously described 
(26): TERT−57, −124, −137, and −146; BRAF p.597, p.600–601; (N/K/H) 
RAS p.12–13 and p.59–62; SF3B1 p.625, p.666, and p.700; GNAQ/11 
p.183, p.209; CYSLTR2:p.129; PLCB4:p.630; and EIF1AX p.1–20.  
For each genomic position and sample, the Fisher exact test was 
used to compare the read counts in the tumor sample with the pool 
of 570 normal samples. A BH-adjusted P value (86) below 0.01 was 
considered significant.

Germline
The consensus of two different tools was used to call germline 

variants—qSNP (version 2.0; ref.  83) and GATK HaplotypeCaller 
(RRID:SCR_001876, version 3.3–0; ref. 84)—and detection of indels 
(1–50 bp) was carried out using GATK. Germline variants were 
annotated using Ensembl Variant Effect Predictor (VEP) v99.2 (87), 
and the relevant transcript was selected by cross-referencing with 
the NCBI RefSeq Select database. To estimate the predisposing 
germline burden, we counted the number of predicted pathogenic 
germline variants in cancer genes (88). If the variant existed in 
ClinVar (RRID:SCR_006169; ref. 89) without “conflicting interpre-
tation” or “no assertion criteria provided,” we used the prediction 
in ClinVar—that is, LOF variants (categorized as HIGH impact by 
VEP) were counted unless classified as “Benign” or “Likely Benign.” 
Missense variants and in-frame indels (categorized as MODERATE 
impact by VEP) were counted as pathogenic if categorized as 
“Pathogenic” or “Likely Pathogenic” in ClinVar; categorized as 
“Uncertain Significance” or “conflicting interpretation” if absent; 
and counted as pathogenic if at least one of SIFT (90) and Poly-
Phen2 (91) predicted them as deleterious/damaging and none as  
tolerated/benign.

Mutational Signatures
SigProfiler (34) was used for the de novo discovery of SBS, DBS, 

and indel signatures. De novo signatures were compared against 
COSMIC (RRID:SCR_002260; ref.  92) version 3 signatures using 
cosine similarity. For SBS signatures, the contribution of muta-
tional signatures to individual samples was determined by SigPro-
filerSingleSample (34) using the signatures identified by de novo 
analysis as input. As there were insufficient mutations for DNVs 
and indels to extract de novo signatures with confidence, signatures 
were assigned using deconstructSigs. There was a limit of four sig-
natures per sample and a minimum of 15% contribution of muta-
tions was required for the signature to be assigned. Only samples 
with more than >50 mutations underwent assignment; the remain-
ing samples were defined as unassigned/other.

For mutation signature timing, pyclone-VI (93), with CN and 
purity input from ascatNgs, was run to obtain information about  
the number of subclones (clusters) and their cellular prevalence. 
MutationTimeR (https://github.com/gerstung-lab/MutationTimeR)  
is an R package that times somatic mutations relative to clonal 
and subclonal CN states. MutationTimeR was run using SNVs, CN 
segments from ascatNgs and cluster information from pyclone-VI 
as input to assign point mutations to these clonal states: early 
clonal, late clonal, unspecified clonal, or subclonal. The contri-
bution of COSMIC v3 UVR (SBS7a,b,c,d) or SBS38 signature to 
the mutations assigned to these clonal states: early clonal, late 
clonal, clonal (combining early, late and unspecified clonal muta-
tions), and subclonal were determined for each clonal state using 
SigProfilerSingleSample (https://github.com/AlexandrovLab/
SigProfilerSingleSample). The percent contribution of the signa-
ture was then compared between early and late clonal events in 
tumors where there was a UVR or SBS38 signature present (>0%), 
and there were at least 100 early and 100 late clonal mutations. 
The percent contribution of the UVR and SBS38 signatures was 
also compared between clonal events (combining early, late, and 
not otherwise assigned clonal mutations) and subclonal events in 
tumors where there was a UVR or SBS38 signature present (>0%), 
there was at least one subclone, and there were at least 100 clonal 
and 100 subclonal mutations.

The presence of common and rare SBS reference mutational sig-
natures was identified using Signature FitMS (36) in the R package 
signature.tools.lib available at https://github.com/Nik-Zainal-Group/
signature.tools.lib and the RefSig SBS v2.03 reference signatures. The 
contribution of signatures was estimated using the FitMS method. 
This was run with default parameters with the useBootstrap option 
set to TRUE and exposureFilterType option set to “giniScaledThresh-
old.” The common and rare signatures were selected by choosing the 
organ option “Skin.”

SMG and Pathway Analysis
To identify SMGs in each subtype (CM, AM, MM, and UM) 

with respect to substitution and indel mutations, a consensus 
approach was employed using MutPanning (94), ActiveDriv-
erWGS (95), DriverPower (96), OncodriveCLUSTL (97), Onco-
driveFML (98), dNdScv (99), and MutSigCV (100). All tools 
were run with default parameters unless otherwise stated. Onco-
driveFML was run using CADD v1.0 through the Web interface 
at https://bbglab.irbbarcelona.org/oncodrivefml/home. MutPan-
ning was run through the GenePattern module at https://www.
genepattern.org/modules/docs/MutPanning. The ActiveDriver-
WGS R package was run using CDS as defined by the PCAWG 
consortium (45) and was downloaded from https://dcc.icgc.
org/releases/PCAWG/drivers/metadata/genomic_intervals_lists 
(June 12, 2020). ActiveDriverWGS was run with a hypermutation 
filter (filter_hyper_MB) of 600. DriverPower was run in python 
using the provided feature and elements files, and a background 

https://github.com/gerstung-lab/MutationTimeR
https://github.com/AlexandrovLab/SigProfilerSingleSample
https://github.com/AlexandrovLab/SigProfilerSingleSample
https://github.com/Nik-Zainal-Group/signature.tools.lib
https://github.com/Nik-Zainal-Group/signature.tools.lib
https://bbglab.irbbarcelona.org/oncodrivefml/home
https://www.genepattern.org/modules/docs/MutPanning
https://www.genepattern.org/modules/docs/MutPanning
https://dcc.icgc.org/releases/PCAWG/drivers/metadata/genomic_intervals_lists
https://dcc.icgc.org/releases/PCAWG/drivers/metadata/genomic_intervals_lists
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mutation rate model was generated using the gradient boost-
ing machines (GBM) algorithm. Driver candidates were inferred 
using functional information in the form of CADD scores with 
a functional score cutoff of 0.01. A gene was considered signifi-
cant in each tool if it had a q-value or FDR of <0.1, and a gene 
was considered to be significantly mutated if it was significant 
in three or more tools. Genes were further filtered by examining 
the expression of the gene within the subtype using matching 
RNA-seq (except for UM, as only six tumors had RNA-seq). A gene 
was considered to be expressed if ≥40% of tumors with RNA-seq 
had an FPKM value (from RSEM) of >3, and genes that were not 
expressed were removed from the final SMG list.

For CM, the prevalence of mutations in BCLAF1 was deter-
mined in the TCGA-SKCM cohort and the Conway and colleagues 
(29) meta-analysis cohort. The TCGA mutation annotation for-
mat (MAF; n  =  468) was obtained using the tcga_load() function 
in the “TCGAmutations” R package (https://github.com/Poison-
Alien/TCGAmutations), and the Conway meta-analysis MAF was 
obtained from Supplementary Data S1 of that article. For the 
Conway meta-analysis, tumors overlapping with TCGA or with our 
CM cohort or tumors with a histology type of “acral,” “mucosal,” 
or “no info” were removed, leaving a total of 463 tumors. For CM, 
the prevalence of all types of gene aberrations in the SMGs identi-
fied in the current analysis, as well as a list of previously published 
SMGs (2–4, 7, 28, 29), was determined. This includes the prevalence 
of SNV and indel mutations, homozygous deletions, LOH (CN1), 
amplifications, and for rearrangements, predicted intergene fusions 
and predicted LOF events. Expression of these genes was also deter-
mined in the CM cohort and in the TCGA-SKCM cohort (2). A gene 
was considered to be expressed if ≥40% of tumors with RNA-seq had 
an FPKM value (from RSEM) of >3.

For pathway analysis (Fig.  7; Supplementary Fig.  S13), gene-spe-
cific criteria were used to determine whether a tumor contained an 
aberration in a gene assigned to five different pathways: MAPK, PI3K, 
p53 (p53), p16–CDK–RB (p16), and telomere maintenance. The crite-
ria applied to each gene are listed in Supplementary Table S8.

Significant Noncoding Regions
To identify significantly mutated noncoding genomic ele-

ments in each subtype (CM, AM, MM, and UM) with respect to 
substitution and indel mutations, a consensus approach was 
employed using ActiveDriverWGS (95), DriverPower (96), and 
OncodriveFML (98), and LARVA (101). Genomic elements were 
downloaded from https://dcc.icgc.org/releases/PCAWG/drivers/ 
metadata/genomic_intervals_lists (June 12, 2020) and were defined  
by the PCAWG consortium (45). Functional genomic elements 
were defined based on GENCODE v.19 (102) and other genomic 
resources and included 5′ UTR, 3′ UTR, and promoters of pro-
tein-coding genes, gene body and promoters of lncRNAs, and 
enhancers. ActiveDriverWGS was run with a hypermutation filter 
(filter_hyper_MB) of 600. DriverPower was run in python using 
the provided feature and elements files, and a background muta-
tion rate model was generated using the GBM algorithm. Driver 
candidates were inferred using functional information in the 
form of CADD scores with a functional score cutoff of 0.01. A 
noncoding genomic element was considered significant in each 
tool if it had a q-value of <0.05 for AM, MM, and UM. Due to the 
high tumor burden in CM, a more stringent q-value of <0.001 was 
used. Overall, a noncoding element was considered significantly 
mutated if it was significant in two or more tools. For CM tumors 
with matching RNA-seq (n = 88, stranded library RNA-seq only), a 
difference in expression using TMM-normalized gene expression 
values and Mann–Whitney U tests was determined for genomic 
elements when there were more than three tumors with mutations 
in the region.

CNAs and Structural Rearrangement Variants
CNAs were identified using ascatNgs (76) and gene-specific CN 

was determined by annotation with Ensembl known genes (version 
75). Amplifications were defined using the following criteria previ-
ously defined by COSMIC (RRID:SCR_002260; ref.  92): (i) total 
DNA segment CN  ≥5 for tumors with average genome ploidy ≤2.7 
as inferred by ascatNgs or (ii) total DNA segment CN ≥9 for tumors 
with average genome ploidy >2.7. WGD was defined as >50% of the 
autosomal tumor genome had a major CN ≥2 (103). Detection of 
significant focal regions of amplification and deletion was assessed 
using GISTIC2.0 using a confidence level of 0.95 and a q-value 
of <0.05.

Structural rearrangements/variants were identified using qSV (4), 
and the likely consequence of rearrangements, including predicted 
in-frame gene fusions and LOF variants, was determined using in-
house scripts and annotation against Ensembl known genes (version 
75). RETREAD (https://github.com/UCL-Research-Department-of-
Pathology/RETREAD) was used to identify recurrent breakpoint 
regions in 100-kb bins across the genome, and a q-value of  <0.2 
was considered significant. For tumors with matching RNA-seq, 
STAR-Fusion (104) and Arriba (105) were used to detect fusions 
in RNA-seq.

TCGA Molecular Category Assignment
We classified melanomas into TCGA subtypes based on their 

mutations in BRAF, (H/K/N)RAS, and NF1 (2). Mutations (includ-
ing in-frame indels) in hotspot codons 597, 600, and 601 of BRAF 
were counted as well as in-frame fusions in which BRAF was the 
3′-partner. Mutations in codons 12, 13, and 61 of (N/K/H)RAS 
were counted. For NF1, SNVs, small indels, breakpoints due to 
SVs, LOH, and larger deletions were counted. If a melanoma had 
mutations in multiple genes and one mutation had low variant 
allele frequency (<1:7), suggesting mutation was only present in 
a subclone, the melanoma was classified as the mutation present 
in the major clone. Otherwise, BRAF had precedence and RAS had 
precedence over NF1.

Inference of Kataegis
Regions of local hypermutation (kataegis) were determined using 

piecewise constant fitting of intermutation distances using the 
method defined by the PCAWG consortium (106). Sets of at least 
six adjacent SNVs were flagged as candidate kataegis events if the 
segmented intermutation distance dropped below a threshold d. 
The threshold was determined based on the TMB (mb) of a sample 
using the method described by PCAWG (106), with d calculated as 

d
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�

� �

�

�ln 1
0.011

�

�
��

�

�
��

 where K = 6, and the intermutation distance 

(X) is modeled assuming an exponential distribution with mean �
1
�

.  

If d was greater than 1 kb, then d of 1 kb was used in the calculation.

Rearrangement and CN Signatures
Rearrangement signatures were identified using nonnegative 

matrix factorization. Rearrangement signatures were determined 
based on cosine similarity to the signatures used for breast cancer 
as described by Nik-Zainal and colleagues (107). Rearrangements 
were classified into 32 categories based on deletion, duplication, 
inversion, and interchromosomal translocation event types; the 
size of the event; and if the breakpoints were clustered or nonclus-
tered. To determine if a breakpoint was clustered, the BEDTools 
(RRID:SCR_006646) cluster function was used (108). To reduce 
overfitting, the R package decontructSigs was used to estimate 
the exposure of each identified signature in each tumor, and a 

https://github.com/PoisonAlien/TCGAmutations
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minimum of 15% contribution of mutations was required for the 
signature to be assigned. Clustered signatures RS4 and RS6 were 
used in further analysis (Fig. 3B).

CN signatures (40) were identified using AlexandrovLab R  
pack ages (https://github.com/AlexandrovLab): SigProfilerExtractor, 
Sig ProfilerMatrixGenerator, and SigProfilerAssignment. SigProfiler-
MatrixGenerator, with ascatNgs CN profiles as input, was used to  
summarize the counts of segments into 48 categories based on 
total CN, whether a segment was heterozygous or not, and the 
size of the segment. De novo signature analysis was carried out 
using SigProfilerExtractor, and eight signatures were identified 
as the optimal solution. These signatures were then decomposed 
into the 24 CN signatures identified by Steele and colleagues (40), 
using SigProfilerAssignment, and these signatures were assigned 
for each tumor. This identified 11 COSMIC CN signatures and 
two novel signatures that did not have high similarity to any 
known signatures.

To further profile the regional characteristics of CN profiles, the 
tool CARMA was used (109). CN segments for each chromosome 
arm were used to generate a genome-wide CARMA score for each 
tumor for six categories that reflect the degree of CN amplifica-
tion (AMP), deletion (DEL), complexity such as chromothripsis 
(STP and CRV), LOH, and allelic imbalance or asymmetry (ASM). 
Three scores, AMP, STP, and CRV, were used for further analysis 
(Fig. 3B).

Inference of Chromothripsis and Other Localized 
Structural Rearrangements

Localized structural rearrangements were determined for each 
chromosome using previously described methods (14, 110) to 
identify the presence of chromothripsis, clustered rearrangements, 
or a high number of rearrangements. Several characteristics were 
used: (i) Chromosomes with high numbers of rearrangement 
events were identified as outliers if they had a breakpoint per 
megabase rate exceeding 1.5 times the length of the interquartile 
range from the 75th percentile for each sample, with a minimum 
threshold of 35 breakpoints per chromosome. (ii) Chromosomes 
with at least 10 translocations were considered to have a high 
number of translocations. (iii) Chromosomes with a significant 
nonrandom distribution of breakpoints (Kolmogorov–Smirnov 
test, P < 10−5) were considered to be clustered. (iv) Chromothripsis 
was identified using the R package “Shatterseek” (ref.  111; ver-
sion 0.4) with default parameters, and structural rearrangements 
called by qSV and CNA called by ascatNgs. Using Shatterseek, we 
identified high-confidence and low-confidence calls as described 
by Cortés-Ciriano and colleagues (111). P values for the fragment 
joins test, chromosomal enrichment, and the exponential distribu-
tion of breakpoints test were corrected using the FDR method. A 
high-confidence chromothripsis event was defined as at least six 
interleaved intrachromosomal SVs or at least three interleaved 
intrachromosomal SVs and four or more interchromosomal SVs; 
seven contiguous segments oscillating between two CN states; 
and passed the fragment joins test (q-value < 0.2) and either 
the chromosomal enrichment (q-value < 0.2) or the exponential 
distribution of breakpoints test (q-value < 0.2). A low-confidence 
chromothripsis event was defined as at least six interleaved intra-
chromosomal SVs; four to six contiguous segments oscillating 
between two CN states; and passed the fragment joins (q-value 
< 0.2) and either the chromosomal enrichment (q-value < 0.2) or 
the exponential distribution of breakpoints test (q-value < 0.2). 
Chromosomes that had one or more of these four characteristics 
were manually reviewed. Chromosomes that passed manual review 
were assigned as localized complex, and if they were also identified 
by Shatterseek as having chromothripsis, they were considered to 
have chromothripsis.

Telomere Length
Estimation of telomere length from WGS was performed using 

qMotif (112), which counts reads containing telomeric repeats in 
the tumor and matched normal sample and normalizes this to the 
mean genomic coverage of the sample. A relative telomere length was 
expressed as the log2 ratio of the number of read counts in the tumor 
to the matched normal read counts.

TMB Associations
We explored which variables were associated with TMB by build-

ing negative binomial regression models. To explore how variables 
are associated with TMB, we built a decision tree. In each branching 
point, the variable most strongly associated with TMB was identi-
fied using Kendall’s tau. A branch was created by dichotomizing the 
cohort based on the identified variable. The procedure was repeated 
for both branches, recursively, until no Bonferroni corrected P value 
was smaller than 0.05.

Regression Analysis
Linear regression was used to determine which variables cor-

related with age of onset. Univariate regression was used to iden-
tify predictive variables. Multivariate regression with forward 
feature selection was used to test whether identified variables were 
independent predictors.

Strand Bias
Strand bias of C>T substitutions at TpC and CpC dinucleotides 

(mutated base underlined) was explored separately. The strand bias 
in each region of interest (exonic, intronic, etc.) was estimated as 
follows: We counted the occurrence of the dinucleotide of interest 
on the coding strand and what fraction of these sites harbored 
a C>T substitution. This was repeated for the antisense strand, 
and the strand bias was quantified as one minus the ratio of the 
fraction on the transcribed strand to fraction on the untran-
scribed strand. Samples with  >50% of the mutations explained 
by UVR-associated SBS7a–d were included in the analysis. Genes 
were categorized into four groups based on the expression in the 
TCGA-SKCM cohort (2). For each gene, the median expression 
(FPKM-upper quartile) was calculated across samples and genes 
were categorized based on the quartiles.

MC1R Genotype Categories
As previously described (61), nonsynonymous variants in MC1R 

were categorized into those strongly (R) or weakly (r) associated with 
red hair, and patients were categorized into six MC1R compound 
genotypes based on their germline sequence: WT, r/0, r/r, R/0, R/r, 
and R/R.

Polygenic Risk Score
The polygenic risk score (PRS) for CM and nevus count were calcu-

lated using independent [linkage disequilibrium (LD) r2 < 0.05 in the 
1000 Genomes European samples as determined by FUMA; ref. 113] 
lead SNPs with a P < 5 × 10−8 from previously published loci (114). 
The PRS were calculated as the sum of effect alleles weighted by the 
per-allele natural log of the OR for CM, or beta for nevus count; each 
individual’s PRS is reported in Supplementary Table S1.

Inference of Ancestry
SNP data from the 1000 Genomes phase III (115) were prepared 

using plink 1.90 (RRID:SCR_001757; ref.  116) by first applying fil-
ters –snps- only and –geno 0.9 and pruned using the indep-pairwise 
option with window size 1,000, window step 10, and correlation 
threshold 0.02. The genotypes for the same 25,285 SNP positions 

https://github.com/AlexandrovLab
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were inferred in our cohort of germline samples using bcftools (117). 
Each sample was then compared with the 20 populations represented 
in 1000 Genomes using the t-distributed stochastic neighbor embed-
ding score with perplexity set to 10 (118). In short, the conditional 
probability that sample i would pick sample j as its neighbor was 
calculated as pj|i = exp(−(xi − xj)2/2σi

2)/Z, where Z is a normalization 
constant and we calculated the similarity score between sample i and 
each population k as sk|i = Σpj|i, where the sum runs over samples from 
population k.

Association between Germline Variants and Somatic Events
The associations between germline polymorphisms and somatic 

events previously proposed (59) were assessed. The genotypes of 
the listed polymorphic loci were inferred with bcftools (117). For 
each listed gene, somatic nonsynonymous mutations, high copy 
gain (CN  ≥6), or both were collated, depending on whether the 
alteration had been proposed to be mutation, CNA, or either, respec-
tively. Individuals with a European ancestry score below 80% were 
excluded to avoid confounding effects from ethnicity. Associations 
between germline genotype and somatic events were assessed with 
the Fisher exact test under a dominant model. P values were Bonfer-
roni corrected based on the number of gene and LD-block pairs that 
were tested.

Survival
Univariable Cox regressions were performed to assess the associa-

tion between variables (genomic and clinical features) and OS. CM 
and AM were analyzed separately. MM and UM were not analyzed, as 
detailed survival data were unavailable. OS was recorded during the 
period patients remained naïve from immunotherapy treatment. Sur-
vival time was calculated from the date of primary diagnosis to the 
date of death, start of immunotherapy, or last contact. Factors with 
a statistically significant association with subtypes were provided.

Statistical Analysis
Statistical analyses were performed using R (RRID:SCR_001905, 

version 4.0.2) and were two-sided, with a P value or an FDR-adjusted 
P value less than 0.05 considered significant. Differences in continu-
ous variables between two conditions were evaluated using Mann–
Whitney U tests. Continuous variable differences between three or 
more conditions were calculated using Kruskal–Wallis tests with 
pairwise Mann–Whitney U tests with adjustment for FDR to com-
pare between each condition pair. Fisher exact tests or χ2 tests were 
used to compare categorical variables. The box boundaries of box 
plots show the first to third quartiles, the median is the center line, 
and the whiskers represent 1.5 times the interquartile range.

Data Availability
Sequence data (WGS and RNA-seq) that support the findings of 

this study have been deposited in the European Genome-phenome 
Archive (EGA; RRID:SCR_004944) and are available under study 
accession EGAS00001001552 (https://www.ebi.ac.uk/ega/studies/
EGAS00001001552), with data set accessions EGAD00001008798 
(WGS) and EGAD00001008837 (RNA-seq). Illumina EPIC DNA 
methylation array data analyzed in this study are publicly avail-
able in the Gene Expression Omnibus (RRID:SCR_005012) under 
accession number GSE202097. All other data are available in the 
article, in the Supplementary Data, or from the authors upon 
reasonable request.

Code Availability
In-house tools that were used in this publication are available 

from the GitHub public code repository under the AdamaJava 
project (https://github.com/AdamaJava).
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