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Abstract

Motivation: The prediction of off-target mutations in CRISPR-Cas9 is a hot topic due to its relevance

to gene editing research. Existing prediction methods have been developed; however, most of

them just calculated scores based on mismatches to the guide sequence in CRISPR-Cas9.

Therefore, the existing prediction methods are unable to scale and improve their performance with

the rapid expansion of experimental data in CRISPR-Cas9. Moreover, the existing methods still can-

not satisfy enough precision in off-target predictions for gene editing at the clinical level.

Results: To address it, we design and implement two algorithms using deep neural networks to

predict off-target mutations in CRISPR-Cas9 gene editing (i.e. deep convolutional neural network

and deep feedforward neural network). The models were trained and tested on the recently

released off-target dataset, CRISPOR dataset, for performance benchmark. Another off-target

dataset identified by GUIDE-seq was adopted for additional evaluation. We demonstrate that con-

volutional neural network achieves the best performance on CRISPOR dataset, yielding an average

classification area under the ROC curve (AUC) of 97.2% under stratified 5-fold cross-validation.

Interestingly, the deep feedforward neural network can also be competitive at the average AUC of

97.0% under the same setting. We compare the two deep neural network models with the state-

of-the-art off-target prediction methods (i.e. CFD, MIT, CROP-IT, and CCTop) and three traditional

machine learning models (i.e. random forest, gradient boosting trees, and logistic regression) on

both datasets in terms of AUC values, demonstrating the competitive edges of the proposed algo-

rithms. Additional analyses are conducted to investigate the underlying reasons from different

perspectives.

Availability and implementation: The example code are available at https://github.com/

MichaelLinn/off_target_prediction. The related datasets are available at https://github.com/

MichaelLinn/off_target_prediction/tree/master/data.

Contact: kc.w@cityu.edu.hk

1 Introduction

CRISPR-Cas9 is a well-sought technology for precise gene editing

(Cong et al., 2013; Esvelt et al., 2013; Mali et al., 2013b; Ran et al.,

2013). With single-guide RNA and Cas9 protein, specific genomic

fragments are able to be inserted, deleted or replaced (Al-Attar

et al., 2011; Chen et al., 2017a; Hsu et al., 2013; Klann et al., 2017;

Shalem et al., 2014; Shibata et al., 2017; Zhu, 2015). Therefore,

CRISPR-Cas9 holds the potential to edit and renovate the harmful

genes for personalized therapy (Kang et al., 2017; Liang et al., 2015;

Manguso et al., 2017; Wu et al., 2013). Recently, a pathogenic gene

mutation was corrected in human embryos (Ma et al., 2017).

Moreover, CRISPR can help us analyse the genetic interactions and

the relationships between genetic variations and phenotypes (Cox

et al., 2015; Doudna and Charpentier, 2014; Hsu et al., 2014;

Shapiro et al., 2018; Shen et al., 2017; Smith et al., 2015). There is

no doubt that CRISPR-Cas9 will be critically important in the com-

ing years.

Although specific fragments of DNA are aimed, sgRNA can

sometimes influence other regions and incur off-target mutations

(Chen et al., 2017b). CRISPR-Cas9 can tolerate mismatches in

sgRNA-DNA at different positions in a sequence-dependent man-

ner; it is sensitive to the number, positions and distribution of mis-

matches (Hsu et al., 2013; Kim et al., 2015; Zhang et al., 2015).

Off-target mutations can lead to genomic instability and disturb

the normal gene functions; it is still a major problem when applying

CRISPR-Cas9 gene editing to clinical applications (Cho et al., 2014;
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Corrigan-Curay et al., 2015; Fu et al., 2013; Hsu et al., 2013; Mali

et al., 2013a; Pattanayak et al., 2013). Consequently, we still need

accurate off-target prediction methods for complementary purposes.

Most of the existing off-target prediction methods just calculate

scores based on the positions of the mismatches to the guide se-

quence (Haeussler et al., 2016; Xu et al., 2017). The score of each

base pair in sgRNA-DNA is derived using the statistical analysis of

the mismatch effects based on previous gene editing experiments.

For example, CFD (cutting frequently determination) score is

derived by emulating a large number of sgRNAs with single-bp (sin-

gle base pair) replacements, deletions or insertions with reference to

the validated sgRNAs in MOLM13 cells; it calculates the percentage

activity rates of different mutation sites based on LFC (log fold

change) value (Doench et al., 2016). CROP-IT score method (Singh

et al., 2015) grades the putative off-target sgRNA sequences by

dividing each 23 bp sequence into three regions with different

weights; it also proposes the penalty scores for the consecutive mis-

matched sites. CCTop score (Stemmer et al., 2015) and MIT score

(Hsu et al., 2013) only considered the positions and counts of the

mismatched sites of sgRNA-DNA as the features to score the poten-

tial off-targets.

In light of the above, their performance is vulnerable to experi-

mental variation. Most importantly, the existing methods cannot

take advantage of the growing CRISPR-Cas9 data for continuous

self-learning. In addition, most of the existing methods do not con-

sider the potential relationships between mismatched and matched

sites, which may affect the off-target activity in CRISPR-Cas9 gene

editing (Xu et al., 2017).

The recent application of deep learning to sequence-based prob-

lems in genomics signifies its applicability (Zeng et al., 2016).

Examples of deep learning applications include alternative splicing

predictions, binding target predictions for regulatory proteins, pro-

tein secondary structure and biomedical image analysis. In particu-

lar, recurrent neural networks (RNN), convolutional neural

networks (CNN) and long short-term memory (LSTM) have been

demonstrated successful (Almagro Armenteros et al., 2017; Hou

et al., 2017; Jurtz et al., 2017).

However, there is not any deep learning application for off-

target prediction for CRISPR-Cas9 gene editing so far. The past

successes of deep neural networks in molecular genetics inspire us to

extend the applications to off-targets prediction in CRISPR-Cas9.

In this article, we took advantage of deep learning and developed

two deep neural networks models to address the current problems

including feedforward neural network (FNN) and CNN for off-

target predictions.

The adaption of CNN from computer vision to genetic sequence

can be accomplished by considering each sgRNA-DNA sequence

pair as an image. Instead of processing 2-dimensional image with

colour channels, we consider a genomic sequence as a 4�L matrix

where 4 is the number of the nucleotide types and L is the length of

sequence. Therefore, we adopted a new encoding method to transfer

each sgRNA-DNA sequence pair with length of 23 into a 4�23

matrix.

The following major contributions are made:

1. We develop a feasible sequence encoding method that converts

each sgRNA-DNA sequence pair into a matrix with the shape of

4 � 23 as a convolutional input and make the first attempt to

apply deep FNN and deep CNN to off-targets prediction in

CRISPR-Cas9 gene editing.

2. We have tested a series of deep neural networks with different

architectures and constructed deep CNN for the off-target

prediction that outperforms the current state-of-art prediction

methods on both the CRISPOR dataset and GUIDE-seq dataset.

2 Materials and methods

2.1 Sequence encoding
For encoding, the complementary base is designed to represent the

original base in sgRNA; for instance, we can use A, G, C, T to repre-

sent both sgRNA and target DNA sequence in CRISPR-Cas9.

Therefore, each base in the sgRNA and target DNA can be encoded

as one of the four one-hot vectors [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]

and [0, 0, 0, 1].

As a result, every sgRNA-DNA sequence pair can be represented

by a 4�23 matrix where 23 is the length of the sequence which

includes the 3-bp PAM adjacent to the 20 bases. To encode the

mutated information in sgRNA-DNA, we derived a 4-length vector

to encode the mismatched base pairs by implementing OR operator

on two one-hot vectors of base-pairing. The code matrix of sgRNA-

DNA will be directly fed into CNN-based models for training and

testing, while the vectorization of the encoding matrix will be used

as the input of traditional machine-learning-based models and deep

FNN.

2.2 Neural network models
Figure 2 and the following description gives a summary of the basic

architectural structure of CNN used: the input is a code matrix (e.g.

Figure 1) with shape of 23 (sequence length) � 4 (size of nucleotides

vocabulary).

The first layer of our network is a convolutional layer, which is

designed for extracting sgRNA-DNA matching information using

40 filters of different sizes (10 for each of the sizes 4�1, 4�2, 4�3

and 4�5). To preserve the integrity of every base pair code in

gRNA-DNA, the size of scanning step for each filter is set to 4 in the

dimension of base pair. Thus it gives a 1�23�40 feature map from

this layer.

The second layer is a batch normalization (BN) layer, which is

designed for reducing internal covariate shift in the neural network

(Sergey and Christian, 2015). It further prevents smaller changes to

the parameters to amplify and thereby allows higher learning rates

than the opposite case. Moreover, ReLU (Glorot et al., 2011) is used

as the activation function for each neuron in this layer.

The third layer is a global max-pooling layer connected with the

previous BN layer. Each of these max-pooling windows only out-

puts the maximum value of all of its respective BN layer outputs.

The size of each pooling window used in standard CNN (CNN_std)

is 1�5; other sizes are also tested in the following experiments.

Accordingly, it gives a 1�5 � 40 feature map to the next layers.

The function of this global max-pooling can be thought as calling

whether the mismatches modelled by the respective BN layer exist in

the input sequence or not.

The following layers are two fully connected dense layers with

the sizes of 100 and 23, respectively. A dropout layer is used on the

last dense layer to randomly mask portions of the output to avoid

overfitting; the probability used in CNN_std to drop a unit is 0.15

(Srivastava et al., 2014). The final output layer consists of two neu-

rons corresponding to the two classification results. Those two neu-

rons are fully connected to the previous layers.

The architecture of FNN used for off-target prediction consists

of input layer, several hidden layers and output layer. The input of

FNN model is a vector with the length of 92, the vectorization of

4�23 matrix. The activation function is softmax which is able to
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convert each neuron output into probability. Accordingly cross-

entropy (Lih-Yuan, 2006) is chosen as the loss function for our FNN.

2.3 Current prediction algorithms
To the best of our knowledge, there are four most recent off-target

prediction algorithms including CFD score, MIT score, CROP-IT

score and CCTop score. Note that MIT-web score is a website ver-

sion of the MIT-score. In order to study whether the potential off-

target is validated or not, these methods calculate scores based on

the positions or identities of the mismatches to the guide RNA se-

quence. Higher score means this sequence is more likely to be an ac-

tive off-target than the control. Initially, systematic testing of the

effect of mismatches led to a weight for each possible nucleotide

change at each position. The score of MIT website is based on these

data but reduced to one weight per position. CCTop and CROP-IT,

respectively, designed a heuristics approach based on the distances

of the mismatches to the PAM (protospacer adjacent motif).

Moreover, all scoring methods except CCTop and CFD propose a

penalty score for consecutive mismatches (Haeussler et al., 2016).

CFD score is based on the biggest cleavage data up to date.

These data are obtained by infecting cells with a lentiviral library

containing thousands of guides for all possible nucleotide mis-

matches and single-bp indels at all possible positions. The core idea

is to calculate the percent activity rates for all sgRNAs sharing the

same nucleotide mutation at the same position with independence

assumption.

Haeussler et al. compared the performance of these four algo-

rithms (Haeussler et al., 2016). According to the experiment, the

state-of-art off-target prediction method, CFD score, performed the

best with an area under the ROC curve (AUC) of 0.91. The MIT

score as calculated by CRISPOR website is slightly less discrimina-

tive than CFD score with an AUC of 0.87.

2.4 Datasets
2.4.1 CRISPOR dataset

The main dataset that we used for training, validation and testing was

from CRISPOR (Haeussler et al., 2016). Haeussler et al. also provided

a tool for guide RNA selection in 120 genomes (including plants and

emerging models or organisms) and pre-calculated results for all

human coding exons. There are 26 034 putative off-targets including

143 validated off-targets identified by CRISPOR. Each of these off-

targets has a mismatch count of up to four with one of the PAMs:

NAG/NGA/NGG and a minimum modification frequency of 0.1%.

Owing to the data unbalance, we stratified 5-fold cross-

validation to evaluate the performance of our deep neural networks

(i.e. FNN and CNN) where each fold contains roughly the same

proportions of class labels.

2.4.2 GUIDE-seq dataset

GUIDE-seq is the most rigorous framework for genome-wide identi-

fication of off-target effects to date (Tsai et al., 2015). GUIDE-seq

with Cas9 and 10 different sgRNA targeted at various endogenous

human genes in either U2OS or HEK293 human cell lines. Guide

RNAs used in GUIDE-seq targets the following sites: VEGFA site 1,

VEGFA site 3, VEGFA site 2, FANCF, HEK293 site 2, HEK293

site 3 and HEK293 site 4, in which 28 off-targets with a minimum

modification frequency of 0.1% among 403 potential off-targets

identified by GUIDE-seq.

We use this dataset to independently evaluate and compare the

performance between deep neural network models and the current

state-of-art off-targets prediction methods. GUIDE-seq dataset was

excluded from the CRISPOR dataset used for training.

2.5 Experiments
Two different sets of experiments were carried out. The first experi-

ment was designed for model selection through comparing the per-

formance of deep neural networks with different architectures as

tabulated in Table 1 under stratified 5-fold cross-validation on the

CRISPOR dataset.

All these neural network models were trained and validated on

the CRISPOR dataset. The architectures of FNN and CNN with the

best performance under 5-fold stratified cross-validation were

adopted in the subsequent experiments. We constructed three differ-

ent FNN models by varying the number of the hidden layers with

fixed total number of neurons. As for CNN model selection, we con-

structed six CNN by varying one of the following parameters: BN,

drop-out layer and the window size of pooling layer. The architec-

ture of standard convolution neural network (CNN_std) served as a

control as depicted in Figure 2.

The second experiment is designed to compare the performance

among deep neural networks models, existing off-target prediction

algorithms, and three traditional machine learning methods [i.e. ran-

dom forest (RF), gradient boosting trees (GBT) and logistic regres-

sion (LR)].

Fig. 1. An example on how to encode a sgRNA-DNA sequence pair. The table

with thick borders in the middle of the figure shows the final code matrix of

a sgRNA-DNA sequence pair, which can be used as the input for CNN

modelling
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For both FNN and CNN models, we use Adam algorithms

(Kingma and Ba, 2014) to optimize the cross-entropy loss function.

Mini-batch gradient descent is adopted for optimization which can

further reduce the gradient variance. The size of batch is 100 for

both models. Each model was run for 200 epochs (epoch ¼ full pass

over the training set) with learning rate at 0.0001.

For RF, we used 100 CART (classification and regression tree)

as the individual classifiers. The maximum depth of each CART is

confined to 3, avoiding model over-fitting.

CART is also used for GBT as the individual estimator. The loss

function used for training is logistic loss function and the number of

estimators is 200.

In our second experiment, both GUIDE-seq dataset and CRISPOR

dataset were used for performance evaluation. The performance

measurements used to assess the performance of our models are ROC

(Receiver Operating characteristic) curve and its AUC value.

The traditional machine learning models were implemented in

Python 2.7.13 using scikit-learn library (Pedregosa et al., 2011). The

neural network models were implemented in TensorFlow 1.4.1

(Abadi et al., 2016) and one Tesla K80 GPU was used for training

and testing.

3 Results

We designed experiments to address the following questions:

• What are the relative performance of the proposed neural net-

work model architectures?! Section 3.1
• How does final Deep Neural Network models compare with cur-

rent state-of-the-art off-target predictions and traditional ma-

chine learning models?! Sections 3.2 and 3.3
• What are the generalization performance on GUIDE-seq dataset

if the models are trained on CRISPOR dataset?! Section 3.4

3.1 Model selection
In Table 2, we compare the performance of different model architec-

tures trained on the CRISPOR dataset. FNN_3layer and CNN_std

achieved the best performance predicting off-targets under stratified

5-fold cross-validation with the mean AUCs of 0.970 and 0.972,

respectively.

Based on the validation results of the CNN models (i.e.

CNN_std, CNN_np, CNN_pool_win3 and CNN_pool_win3) used

for pooling layer testing, we found that pooling layer significantly

increased performance for off-targets prediction. In particular, the

CNN with pooling layer of window size 5 (CNN_std) achieved the

best performance; such observation emphasizes the need to use a

pooling layer with befitting window size to extract the mismatches

in sgRNA-DNA.

Comparing CNN_std with CNN_nbn, we see that BN improves

the performance. This is expected since BN can stabilize the training

process and decrease the risk of overfitting. The performance of

CNN_nd comparing with the CNN_std shows that drop-out layer

can slightly improve the generalization performance.

Table 1. The naming convention code and brief description of the

variants of CNN and FNN models compared in this work

Model Code Architecture

FNN FNN_2layer Using 2 hidden layers with 250� 40 neurons

FNN FNN_3layer Using 3 hidden layers with 50� 20�10 neurons

FNN FNN_4layer Using 4 hidden layers with 25� 10�10� 4

neurons

CNN CNN_std The basic structure as depicted in Figure 2

CNN CNN_nbn Without using BN layer

CNN CNN_nd Without drop-out layer

CNN CNN_np Without using max-pooling layer

CNN CNN_pwin3 Using max-pooling layer of window size 3

CNN CNN_pwin7 Using max-pooling layer of window size 7

Note: The descriptions of all CNN models are relative to CNN_std model

depicted in Figure 2.

Fig. 2. The architecture of standard deep CNN (CNN_std) for off-target prediction. The input of this deep neural network is the encoded sgRNA-DNA sequence

with length 23. The convolutional layer consists of 40 filers including 10 for each of the sizes 4�1, 4�2, 4�3 and 4�5. The BN layer is used to normalize the out-

put of the convolutional layer to speed up learning and avoid over-fitting. The global max-pooling layer applies a filter with window size 5 to the previous layers.

The outputs of max-pooling layer are joined together into one vector by flattening. Each neurons in the flatten layer is fully connected to the first dense layer.

Two dense layers consist of 100 and 23 neurons, respectively. The second dense layers with a drop-out layer is fully connected to two output neurons to predict

whether the input pair is off-target or not as binary class probabilities. The neurons in output layer and dense layers use softmax function as the activation func-

tion, while all the neurons in other layers use ReLU as the activation function
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Comparing FNN with CNN, we found that the average

Mean_AUC of CNN models is higher than that of FNN models

while FNNs had lower average standard deviance. Since the com-

parison between CNN_std and FNN_3layer is too close to call, we

decided to use both of them for the rest of the experiment.

3.2 Comparison to current algorithms
The performance of FNN_3layer and CNN_std were compared

with the current off-targets prediction models: CFD score, MIT

score, MIT web score, CROP-IT score and CCTop score under

stratified 5-fold cross-validation on CRISPOR dataset.

Figure 3 shows the AUC values and the ROC curves of the cur-

rent prediction methods and two deep learning models, CNN_sd

and FNN_3layer. It is hardly surprising that CFD score achieved the

best performance with AUC of 0.912 among all current off-targets

prediction models, since the experiments from Haeussler et al. have

already proved that CFD score was the best prediction model on

CRISPOR dataset.

However, our two deep learning models, CNN_std and

FNN_3layer, achieved much better performance than all current

off-targets prediction models in both ROC curves and AUC values.

The AUCs of our CNN and FNN models are roughly 5.8% higher

than CFD score under stratified 5-fold cross-validation on

CRISPOR dataset, reaching 0.972 and 0.970, respectively.

Furthermore, Figure 3 shows that the ROC curves of both deep

learning models completely covered the ROC curve of CFD score.

These results reveal that our deep learning approaches have com-

petitive edges over the existing methods on the CRISPOR dataset.

3.3 Comparison to traditional machine learning models
Since the current off-target prediction models rely on the fixed

scores to represent the mismatched information to evaluate the po-

tential off-target sites, they do have the ability to improve their per-

formance by training. Therefore, we decided to implement some

traditional machine-learning models including LR, RF, and GBT for

further comparison. Three traditional and two deep learning models

were trained and tested on CRISPOR dataset under stratified 5-fold

cross-validation.

Figure 4 shows that our deep learning models remained the best

off-targets predictors, achieving top two AUC values among all

models. Moreover, the standard deviations of two deep learning

models are the lowest among all models; it reveals that our deep

learning models are more stable than the traditional machine

learning methods and current prediction models on the CRISPOR

dataset.

In addition, we found that LR and GBT achieved slightly

better performance with AUCs of 0.931 and 0.914 than CFD score.

The observations confirm that machine-learning-based method

still have good potential in off-target predictions for CRISPR-Cas9

gene editing.

3.4 Performance on GUIDE-seq dataset
To compare the generalization performance among current state-of-

art models, deep learning models and three traditional machine

learning models, we trained FNN_3layer, CNN_std and three trad-

itional machine learning models on the whole CRISPOR dataset and

compared their performance with current state-of-art prediction

model, CFD score, on the GUIDE-seq dataset.

Figure 5 shows that CNN_std achieved the highest AUC valued

at 0.881 among all prediction models. LR achieved the second best

Table 2. Performance comparisons for different architectures under

stratified 5-fold cross-validation on CRISPOR dataset

Model Min_AUC Max_AUC Mean_AUC Var_AUC

FNN_2layer 0.852 0.891 0.842 0.010

FNN_3layer 0.963 0.977 0.970 0.005

FNN_4layer 0.951 0.960 0.954 0.009

CNN_std 0.954 0.983 0.972 0.010

CNN_nbn 0.929 0.973 0.954 0.022

CNN_nd 0.953 0.974 0.969 0.013

CNN_np 0.720 0.981 0.899 0.093

CNN_pool_win3 0.632 0.979 0.903 0.137

CNN_pool_win7 0.943 0.983 0.967 0.015

Bold values signifies: CNN_std achieved the highest Mean_AUC (0.972)

and highest Max_AUC (0.983) under stratified 5-fold cross-validation in pre-

dicting off-targets among all neural network based models, FNN_3layer also

accomplished the competitive performance (Mean_AUC¼ 0.970) with the

highest Min_AUC (0.963) and the lowest AUC variance (0.005).

Fig. 3. ROC curves of two deep learning models and five state-of-the-arts pre-

diction methods under stratified 5-fold cross-validation on CRISPOR dataset

Fig. 4. ROC curves of two deep learning models (i.e. FNN_3layer and

DNN_std) and three traditional machine learning models including LR, RF

and GBT. The ROC curve and AUC value of CFD score were regarded as the

state-of-arts benchmark on the figure
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performance with AUC of 0.82. Surprisingly, the AUC of the current

state-of-art prediction, CFD score, only reached 0.793 and ranked

fourth. Considering the shapes of ROC curves, CNN_std’s ROC

curve is on the top of other ROC curves; it implies CNN_std always

achieve the highest true positive rate among all prediction models

when the false positive rate is fixed.

These results demonstrate that CNN_std has the best general-

ization performance among current prediction models, three trad-

itional machine learning models and deep FNN. Moreover,

CNN_std outperformed the current state-of-the-art prediction

model, CFD score, on both CRISPOR dataset and GUIDE-seq

dataset.

4 Discussion

In this article, we have introduced a new encoding method for trans-

forming each sgRNA-DNA sequence pair into a matrix with the

shape of 4�23 that can be used as the input of CNN. Second we

have made the first attempt to apply deep neural networks to off-

target predictions in CRISPR-Cas9 gene editing; it provided us a

deep CNN-based off-target prediction model, achieving competitive

performance on both CRISPOR dataset and GUIDE-seq dataset

shown in Table 3. In addition, the experiments of deep neural net-

works’ constructions identified the model with the best performance

in off-target prediction after varying the layer types, size of pooling

windows, BN and convolutional layer designs.

The comparison of the generalization performance for FNN and

CNN showed that our CNN trained on the CRISPOR dataset

generalized much better than the deep forward neural network on

the GUIDE-seq dataset although they have achieved roughly the

same performance under stratified 5-fold cross-validation on the

CRISPOR dataset. Possible reasons include: first, the convolutional

layer can be thought as a mismatch site scanner; four different sizes

of scanning window used in this layer can capture the locations and

the density of the mismatches in a certain range according to the size

of the convolutional kernel. Through training, the scanning win-

dows with different sizes can be iteratively adjusted and weighted.

Such a mechanism is similar to the CROP-IT which scores the po-

tential off-targets by dividing the sequence into regions with differ-

ent scoring weights. However, deep feedforward neural can only

assign weights to the whole sgRNA-DNA pair. Second, the drop-out

layer and BN are advantageous to the generalization performance.

We compared the performance of the deep neural networks with

three traditional machine-learning based algorithms (i.e. LR, RF and

GBT). Although those three machine learning algorithms have been

widely adopted and achieved great success, our final deep convolution-

al performed significantly better than those three machine learning

approaches on both CRISPOR dataset and GUIDE-seq dataset. The

observation emphasized that deep learning can automatically elucidate

the features which are important in complex sequences for off-target

predictions. In contrast, for traditional machine learning algorithm, we

had to exhaustively hand-craft features for performance gain.

We noted that we also compared the performance of the final

deep CNN and deep FNN with other existing prediction methods in

Table 4. We found that our CNN outperforms significantly than the

other approaches including the state-of-the-art off-target prediction

method, CFD score, on the CRISPOR dataset. It is not surprising

Fig. 5. ROC curves of deep learning models, CFD score and three traditional

machine learning models on GUIDE-seq dataset

Table 3. Performance comparison among deep learning models,

traditional machine learning models and CFD score

Model Guide-seq dataset CRISPOR dataset

AUC Mean AUC Var AUC

CNN_std 0.881 0.972 0.010

FNN_3layer 0.802 0.970 0.005

CFD score 0.793 0.912 0.027

Logistic regression 0.827 0.931 0.018

Gradient boosting trees 0.741 0.914 0.019

Significance of bold values and the comment on value “0.010”: On both

CRISPOR and GUIDE-seq datasets, CNN_std achieved the highest

Mean_AUC (0.881 and 0.972) among current off-target predictions methods

and machine-learning based models. Although FNN_3layer had lower vari-

ance (0.005) than CNN_std (0.010) under stratified 5-fold cross validation on

CRISPOR dataset, the AUC of CNN_std (0.881) is 9.8% higher than

FNN_3layer’s (0.802) on GUIDE-seq dataset, which means CNN_std has

much better generalization than FNN_3layer does. Above all, the defects can-

not obscure the virtues, CNN_std is a preferable off-target predictions model.

Table 4. Performance comparison among different architectures

under stratified 5-fold cross-validation on CRISPOR dataset

Model Mean_AUC Var_AUC

FNN_3layer 0.970 0.005

CNN_std 0.972 0.010

CROP-IT score 0.807 0.022

CFD score 0.912 0.027

MIT score 0.865 0.011

CCTop score 0.776 0.029

MIT-web score 0.728 0.063

Bold values signifies: FNN_3layer and CNN_std achieved the best per-

formance with the mean AUC of 0.970 and 0.972 in predicting off-targets

under stratified 5-fold cross-validation. Moreover, these two deep neural net-

work based models (i.e. CNN_std and FNN_3layer) obtained more stable

performances because of the lowest variances (0.010 and 0.005) than the

other off-target predictions methods under stratified 5-fold cross validation

on CRISPOR dataset.

Comment on value “0.010”: The Mean_AUC of CNN_std (0.972) is the

higher than that of FNN_3layer’s (0.970) while FNN_3layer had lower stand-

ard deviance (0.005) than CNN_std (0.010). Since the comparison between

CNN_std and FNN_3layer is too close to call, we decided to use both of them

for further experiments on GUIDE-seq dataset.
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because most of the existing scoring methods generated various

hand-crafted features for prediction, including the identity of mis-

match, the position of the mismatch, the penalty of the nearby mis-

matches and different segmentations of sgRNA-DNA sequence. All

these features can be captured from the original sgRNA-DNA se-

quence by convolutional scanning with max pooling windows in

CNN. Moreover, the information of matched base sites can also be

captured by convolutional neurons as influence factors for the off-

target prediction. Therefore, comparing with the existing prediction

approaches, our deep CNN have its own competitive edges.

In addition, we compared the generalization performance be-

tween our final CNN and the best state-of-art off-target prediction

method, CFD score, on the GUIDE-seq dataset. Table 3 shows that

the performance of CNN_std is still significantly better than the

CFD score. For further analysis, we looked into the prediction

results of the CFD score and CNN_std and selected the top 15

sgRNA-DNA sequence pairs with the highest prediction scores for

each prediction model in Figure 6. We observe that there are 7 true

off-targets among the top 15 off-targets predicted by CNN_std

while there are only 5 true off-targets among the top 15 predicted by

CFD score. Furthermore, the results shows that CFD have bad per-

formance on predicting single-bp mismatches off-targets because

there is not any true off-target with single-bp mismatch among the

top 15 predicted off-targets of CFD score. Similar results could be

observed for other top k-values.

5 Conclusion

We presented that deep neural networks are able to accurately predict

the off-targets of CRISPR-Cas9 gene editing. To our knowledge, this

is the first time that deep neural networks are designed and imple-

mented for off-target predictions. Our final CNN, CNN_std, obtained

the best performance on both CRISPOR dataset and GUIDE-seq data-

set, outperforming the current state-of-art off-target prediction meth-

ods and three traditional machine learning algorithms including LR,

RF and GBT. We discussed and attributed its performance successes

to the neural network layer designs which are general enough to self-

learn and capture sequence features. We believe that such intelligent

approaches can contribute to CRISPR-Cas9 off-target predictions or

other similar problems in a rigorous manner.
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