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Abstract: One of the most significant classes of mycotoxins, aflatoxins (AFTs), can cause a variety
of detrimental outcomes, including cancer, hepatitis, aberrant mutations, and reproductive issues.
Among the 21 identified AFTs, aflatoxin B1 (AFB1) is the most harmful to humans and animals. The
mechanisms of AFB1-induced toxicity are connected to the generation of excess reactive oxygen
species (ROS), upregulation of CYP450 activities, oxidative stress, lipid peroxidation, apoptosis,
mitochondrial dysfunction, autophagy, necrosis, and inflammatory response. Several signaling
pathways, including p53, PI3K/Akt/mTOR, Nrf2/ARE, NF-κB, NLRP3, MAPKs, and Wnt/β-catenin
have been shown to contribute to AFB1-mediated toxic effects in mammalian cells. Curcumin, a
natural product with multiple therapeutic activities (e.g., anti-inflammatory, antioxidant, anticancer,
and immunoregulation activities), could revise AFB1-induced harmful effects by targeting these
pathways. Therefore, the potential therapeutic use of curcumin against AFB1-related side effects and
the underlying molecular mechanisms are summarized. This review, in our opinion, advances signifi-
cant knowledge, sparks larger discussions, and drives additional improvements in the hazardous
examination of AFTs and detoxifying the application of curcumin.

Keywords: AFB1; toxicity; detoxification effects; curcumin; molecular mechanisms

1. Introduction

Mycotoxins are naturally occurring toxins and secondary metabolites that are mostly
produced by fungi of the genera Penicillium, Aspergillus, Claviceps, Fusarium, and Alternaria,
which contaminate basic food products worldwide [1]. There have been over 100,000 fungi
discovered to date, and over 500 mycotoxins have been linked to cardiovascular disease,
immunological dysregulation, chronic liver disease, renal disease, cancer, and neurological
disorders in both humans and animals [2–5]. In recent decades, mycotoxin contaminations
(e.g., aflatoxins, fumonisins, ochratoxins, zearalenone, trichothecenes, patulin, citrinin,
ergot alkaloids, and tremorgenic toxins) could be detected in a variety of grains and foods,
including in cereals (e.g., maize, corn, wheat, rice, sorghum, and millet), spices (e.g., black
pepper, paprika, chili, turmeric, and ginger), nuts (e.g., walnuts, peanuts, pistachios, Brazil
nut, and coconut), tea, drinking water, seeds, Chinese herbal medicine, and beer, which has
raised concerns worldwide [1,6,7].

Aflatoxins (AFTs), one of the most significant classes of mycotoxins, were primarily
generated by numerous fungal species, including Aspergillus (A.) flavus, A. nomius, and A.
parasiticus [8]. With the advancement of analytical and detection techniques, approximately
21 AFTs have been identified, including aflatoxin B1 (AFB1), AFB2, AFB3, aflatoxin B2a
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(AFB2a), aflatoxin G1 (AFG1), AFG2, AFG2a, aflatoxin B1-8,9-epoxide (AFBO), aflatoxin P1
(AFP1), aflatoxicol M1 (AFM1), AFM2, AFM2a, AFGM1, AFGM2, AFGM2a, aflatoxin Q1
(AFQ1), aflatoxicol H1(AFH1), aflatoxicol (AFL), parasiticol, aflatrem, and aspertoxin [9,10].
The primary four are AFB1, AFB2, AFG1, and AFG2, with the order of toxicity being
AFB1 > AFG1 > AFB2 > AFG2 [8,10]. AFB1 could induce hepatotoxicity, nephrotoxicity,
immunotoxicity, and reproductive toxicity in vitro and animal models [2–5]. A recent
study found that a low dose of AFB1 exposure also caused a decrease in locomotor activity
and anxiety with pathologic damage in brain tissues, indicating neurotoxicity [11]. The
International Agency for Research on Cancer (IARC) has classified AFB1 and AFM1 as
group 1 and group 2B human carcinogens, respectively [12,13]. Hepatocellular carcinoma
(HCC) is a well-established adverse effect of AFTs exposure, and it is reported that about
4.6% to 28.2% of all global incidences of HCC are positively related to AFTs exposure [14].
The majority of HCC occurs in several countries in sub-Saharan Africa and southeast Asia,
which usually have a high incidence of Hepatitis B infection, as well as significant levels
of AFTs exposure in food [14]. Over the last 10 years, the occurrence of AFB1 in food
commodities is still high in several countries (including China, India, and Korea), and the
positive rates of AFB1 in rice and wheat samples are both about 90%–100% [9]. In a recent
retrospective study of the disease caused by dietary exposure to AFTs in China from 2010
to 2020, Chen and colleagues found that the total amount of AFTs consumed by Chinese
people through corn, peanut, and their oil products was high, at 4.018 ng/kg body weight
(BW)/day, leading to 1.53 additional cases of hepatocellular carcinoma per 100,000 people
per year [15]. Due to its elevated risk level and toxicity, scientists from all around the world
have been investigating the molecular pathways and detoxification approaches linked to
AFB1 toxicity [9,16].

In order to avoid AFT contamination and complete detoxification, it is essential to
comprehend the synthesis, toxicity, and molecular mechanism of AFTs. Several natural
products or active compounds, including lycopene, grape seed proanthocyanidin extract,
fucoidan, sodium selenite, beta-1,3-glucan, selenium, and sporoderm-broken ganderma lu-
cidum spores, have been found to mitigate AFB1-exposure-induced organ damage [17–22].
Curcumin (1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is a polyphe-
nolic molecule extracted from the Curcuma longa (turmeric), which has been shown to
have anti-inflammatory, anticancer, antioxidative stress, and immunological modulating
characteristics [23,24]. Animal experimental or in vitro studies had reported that curcumin
supplementation could effectively reduce AFB1-induced liver damage, renal dysfunction,
and intestinal damage via inhibiting oxidative stress, apoptosis, inflammation, necrosis,
and CYP450 enzyme expression [25–34]. In addition, several studies also reported that
curcumin in combination with black tea could synergistically improve AFB1-induced liver
and kidney damage [35]. Importantly, human clinical trials or animal experiments have
shown that curcumin is safe and tolerable [23]. The toxic effects, molecular processes,
and detoxifying properties of curcumin are discussed in this review. It also discusses the
possible therapeutic benefits of curcumin as a detoxifying agent. Our goal is that this review
will be insightful and spur more investigation into curcumin’s potential as a detoxifying
agent against AFTs.

2. An Overview of AFB1-Induced Toxic Effects and Molecular Mechanisms

AFB1 and its metabolites also exhibit a number of toxic adverse effects, such as liver,
kidney, spleen, brain, gut, skin, testis, and cardiac tissue toxicity, as well as mutagenicity,
teratogenicity, and carcinogenicity [19,20,36–41]. Importantly, the liver is the main target
organ because the vast majority of AFB1 is metabolized by the liver. Therefore, AFB1
exposure has been linked to hepatocarcinogenesis in humans, as well as in other animals,
including birds, fish, rodents, and nonhuman primates [42]. Additionally, AFB1 might
greatly inhibit the immune response, raising the risk of cirrhosis and HCC in those with
chronic hepatitis B virus infection [43,44]. Excess reactive oxygen species (ROS) production,
DNA damage, oxidative stress, lipid peroxidation, apoptosis, mitochondrial dysfunction,
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autophagy, necrosis, and inflammatory response were all implicated in the pathways of
AFB1-induced cytotoxicity or cell death [45–50]. A number of signaling pathways, such
as those involving p53, p21, phosphatidylinositide 3-kinase (PI3K), protein kinase B (PKB,
also known as Akt), mammalian target of rapamycin (mTOR), NF-E2-related factor 2
(Nrf2), antioxidant responsive element (ARE), nuclear factor kappa-B (NF-κB), Toll-like
receptor 4 (TLR4), TLR2, NOD-like receptor thermal protein domain associated protein
3 (NLRP3)/Caspase-1, mitogen-activated protein kinases (MAPKs), and Wnt/β-catenin
pathways, were exemplified to participate in AFB1-induced toxic effects in in vitro and
in vivo models [45–50]. As a result, these pathways represent crucial targets for preventing
or treating AFB1-induced harmful consequences in both animals and humans.

3. Biological Properties of Curcumin

Curcumin is the main active agent of the root extract of Curcuma longa (turmeric), a
plant extensively produced in India, China, and many other Asian countries [51]. In com-
mercially available curcumin powder, there are three primary components, namely diferu-
loylmethane (i.e., curcumin; at 82%) and its derivatives demethoxycurcumin (i.e., DMC;
at 15%) and bisdemethoxycurcumin (i.e., BDMC; at 3%), respectively [52]. The significant
biochemical and biological effects of curcumin include antioxidation, anti-inflammation,
anti-lipidemia, antiviral, antibacterial, anticancer, immunomodulation, cardiovascular
protection, and neuroprotection (Figure 1) [23,53–59]. Curcumin also had substantial an-
tioxidative effects on protein carbonylation, lipid peroxidation, free radical production,
and mitochondrial permeability transition, ultimately preventing multiple kinds of cell
death, including pyroptosis, ferroptosis, apoptosis, and necroptosis [57]. Curcumin has
been shown to target many signaling pathways, including AMPK, p53, p21, AKT, mTOR,
Nrf2/ARE, NF-κB, NLRP3, MAPKs, c-JUN, peroxisome-proliferator-activated receptor
(PPAR), and Wnt/-catenin pathways, ultimately inhibiting nephrotoxicity, neurotoxicity,
hepatotoxicity, immunotoxicity, lung damage, and blood toxicity caused by bio-toxins
(e.g., ochratoxin A, fumonisin B1, and deoxynivalenol), antibiotic and anticancer drugs
(e.g., colistin, cisplatin, vancomycin, and gentamicin, etc.), heavy metals (e.g., copper, lead,
arsenic, cadmium, chromium, and mercury, etc.), and pathogenic pathogens (e.g., Staphylo-
coccus aureus, Enteropathogenic Escherichia coli, and Mycobacterium tuberculosis) [54,60–67].
Additionally, several clinical studies have shown that curcumin has a strong therapeutic
potential for treating a few chronic illnesses, including pulmonary, cancer, neurologi-
cal, cardiovascular, infectious, neoplastic, psychiatric, and metabolic disorders [68]. Not
surprisingly, several in vitro and animal experimental studies confirmed that curcumin
supplementation could offer strong protective effects against AFB1-induced liver injury,
mutagenicity, hepatocarcinogenicity, renal dysfunction, ileum damage, immune toxicity
via regulating multiple above-mentioned targets [26,34,60,69–76]. The detailed molecular
pathways are discussed in the section below.
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4. Curcumin’s Protective Role in Preventing AFB1-Induced Toxicity and the Potential
Molecular Mechanisms

Although there have been some natural products that can improve the toxicity in-
duced by AFB1, curcumin is the most typical representative based on its lower cost and
higher safety. A summary of in vitro and in vivo studies involving the protective effects
of curcumin or curcuminoids on AFB1-induced toxicity is shown in Table 1. The under-
lying molecular mechanism is addressed, mainly involving the inhibition of oxidative
stress, blockade of the inflammatory response, inhibition of apoptosis, downregulation of
necroptosis, promotion of autophagy, regulation of immune response, and intervention of
AFB1′s metabolism.

Table 1. A summary of in vitro and animal models involving the protective effects of curcumin or
curcuminoids on AFB1-induced toxicity.

Cells/Animals Treatments Regulated Effects of Curcumin References

Bovine SV40 large
T-antigen-transduced fetal

hepatocyte-derived cell line
BFH12

BFH12 cells were pretreated with an
aryl hydrocarbon receptor (AHR)

agonist (i.e., PCB126) at 1 nM for 24 h;
then, cells were pretreated with

curcumin (purity ≥94%) and
Curcuma longa extracts (purity ≥80%

curcumin) for 16 h, then co-treated
with AFB1 (3.6 µM) for further 48 h.

Curcumin and Curcuma longa extracts
both exhibited protective effects against

AFB1-induced cytotoxicity in BFH12 cells.
The main molecular pathways involved

antioxidant and anti-inflammatory
response, cancer, and drug metabolism.

[77]

5-week-old male BALB/c
mice

Mice were orally administrated with
curcumin at 100 or 200 mg/kg BW

with or without AFB1 at 0.75 mg /kg
BW for 30 days. After treatment, liver
tissues were collected for assessment.

Curcumin reduced the accumulation of
AFB1-DNA adducts in the liver and

alleviated hepatotoxicity by inhibiting
AFB1-induced oxidative stress and
potentiating GST-mediated phase II
detoxification. Curcumin inhibited

AFB1-induced pyroptosis via inhibiting
the activation of NLRP3-mediated

inflammasome. It also inhibited
AFB1-induced inflammatory response

and oxidative stress via upregulating the
Nrf2 pathway.

[71]

Male rats (BW is in the range
of 100 ± 5 g)

Rats were intraperitoneally injected
with AFB1 at one dose of 3 mg/kg
BW; then, rats were orally treated

with curcumin at 15 mg/kg for
5 weeks. Finally, the liver tissues

were collected.

Curcumin treatment exhibited a good
therapeutic effect. Curcumin treatment
significantly upregulated the activities
and mRNA expression of antioxidant

enzymes CAT, SOD, and GPX, GST, and
it upregulated the levels of GSH in the

liver tissues of rats.

[33]

Nile tilapia Oreochromis
niloticus

Oreochromis niloticus were injected
with 6 mg/kg BW; then, they were
fed with curcumin at 10 or 20 g/kg

(all fish were fed twice daily at a
feeding rate of 3% of the actual BW).
After 14 days, the liver, kidney, and

blood were collected.

Curcumin supplementation could
significantly improve AFB1-induced liver

and kidney damage. Meanwhile,
curcumin supplementation could

significantly upregulate the expression of
antioxidant gene in the liver tissues of

Oreochromis niloticus.

[78]

18-day-old male broiler
chicken

Chicken was fed with curcumin at a
dose of 400 mg/kg with or without

AFB at a dose of 0.02 mg/kg for
10 days.

Curcumin supplementation significantly
improved AFB1-induced lipid

peroxidation, DNA damage, and
oxidative stress. Meanwhile, curcumin
significantly inhibited the expression of

NADPH Oxidase 4 (NOX4) mRNA
and protein.

[75]
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Table 1. Cont.

Cells/Animals Treatments Regulated Effects of Curcumin References

One-day-old commercial
Arbor Acres (AA) broilers

Birds were fed with 150, 300, and
450 mg curcumin (purity = 2.5%)/kg

feed with or without AFB1 (purity
≥99.0%) at 5 mg/kg feed for 28 d,

respectively. Finally, the liver, kidney,
and muscle tissue samples were

collected.

(1) Curcumin supplementation signifi-
cantly alleviated AFB1-induced tox-
icity and oxidative stress by inhibit-
ing the generation of ROS, 8-OHdG,
the formation of AFB1 adducts,
the expression of mitochondrial
apoptosis-related genes, the activ-
ities of CYP2A6 enzyme, and acti-
vating the Nrf2 signaling pathway
in the liver tissues.

(2) Curcumin also increased AFB1-
GSH conjugation in vitro in liver cy-
tosol.

(3) Curcumin supplementation in the
diet reduced the clearance time of
AFM1 in liver and kidney but not in
muscle tissues.

[79–84]

One-day-old
ducks (Anas platyrhynchos)

Ducks were fed with 500 mg
curcumin /kg feed for 70 days; then,
they were orally exposed to AFB1 at
60 µg/kg BW. After 12 h, the blood
and liver samples were collected.

Curcumin supplementation in the diet
could significantly inhibit the generation

of H2O2, MDA, and the formation of
AFB1-DNA, and it could activate the

Nrf2-ARE signaling pathway and
suppress the NLRP3/caspase-1 and

NF-κB signaling pathways in the liver
and ileum tissues of ducks.

[26,69]

One-day-old ducklings

Ducklings were fed with 400 mg/kg
curcumin-containing feed with or
without AFB1 at 0.1 mg/kg BW
(intragastric administration) for
21 days. The spleen tissues and
serum samples were collected.

Curcumin supplementation upregulated
the Nrf2 signaling pathway and the

expression of related antioxidant
enzymes, and it inhibited the NF-κB
signaling pathway and reduced the
expression of related inflammatory

factors, finally improving AFB1-induced
spleen tissue damage.

[72,79]

5-week-old
male Fischer rat

Rats were fed with curcumin at doses
of 8 or 80 mg/kg BW with or without
AFB at a dose of 0.1 mg/kg BW for
3 consecutive weeks (5 days in each
week). Finally, the blood and liver

samples were collected.

Curcumin supplementation significantly
improved the liver function. Curcumin
also reduced glutathione S-transferase

(GST) placental form positive single cells
and foci caused by AFB1 treatment.

[74,85]

One-day-old
Arbor Acres (AA) broilers

Broilers were fed with curcumin at
300 mg/kg with or without AFB1

1 mg/kg for 28 d. Liver samples were
harvested.

Curcumin partially attenuated the
abnormal morphological changes,

oxidative stress, and apoptosis in liver
tissues.

[73]

Sprague Dawley rats

Rats were fed with curcumin (purity
≥98.0%) at 200 mg/kg BW with or
without AFB1 (purity ≥99.0%) at
25 µg/kg BW (orally given) for
90 days. The liver and kidney

samples were collected.

Curcumin improved AFB1-induced
inflammatory response and oxidative

stress in the liver and kidney tissues of
rats. Meanwhile, curcumin reduced the
expression of p53 protein and increased

the expression of Bcl-2 protein, thus
inhibiting AFB1-induced apoptosis in the

liver and kidney tissues of rats.

[35,72]

Non-cancerous (HUC-PC)
urinary bladder cells

Curcumin pretreatment at
1.56 µg/mL, then co-treated with
AFB1 at the final concentration of

5 µM for additional 24 h.

Curcumin pretreatment exhibited
cytoprotective effects by ameliorating

AFB1-induced cytotoxicity with inferred
tendencies to prevent carcinogenesis.

[85,86]
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Table 1. Cont.

Cells/Animals Treatments Regulated Effects of Curcumin References

5-week-old male BALB/c
mice

Mice were administrated with
curcumin at doses of 100 and 200
mg/kg BW, then co-treated with

AFB1 at a dose of 750 µg/kg BW for
30 days.

Curcumin supplementation significantly
inhibited AFB1-induced renal oxidative
stress and apoptosis via the inhibition of

mitochondrial apoptotic pathway
(downregulating the expression of CytC,

Bax, cleaved-Caspase-3, Caspase-9
proteins and upregulating the expression

of Bcl-2 mRNA and protein) and the
activation of Nrf2 pathway

(i.e., upregulating the expression of CAT,
SOD1, NQO1, GSS, GCLC, and GCLM

mRNAs and proteins).

[70,71]

Three-month-old male
Sprague Dawley rats

Rats were treated with curcumin
nanoparticle loaded hydrogels at

doses of 100 or 200 mg/kg BW, then
orally treated with or without AFB1

at a dose of 0.125 mg/kg BW for
3 weeks. Blood and liver samples

were collected.

Curcumin nanoparticle loaded hydrogels
at 100 or 200 mg/kg BW could

significantly improve AFB1-induced
fibrosis, inflammatory response,

genotoxicity, and apoptosis in the liver
tissues of rats.

[31]

Nile tilapia Oreochromis
niloticus

Fish fed with 200 ppb of AFB1 with
and without curcumin at 5 mg/kg for

16 weeks.

Fish fed with AFB1-contaminated diet
showed an upregulation of CYP1A and

downregulation of SOD, IL-1β, and
TGF-β in the liver tissues, which were

effectively revised by curcumin
supplementation.

[87]

One-day-old Arbor Acres
broilers

Birds were fed with 150, 300, and
450 mg curcumin (purity ≥2.5%)/kg

feed with or without AFB1 at
5 mg/kg feed for 28 d, respectively.
Finally, the duodenum tissues were
isolated for further examinations.

Curcumin supplementation could
ameliorate AFB1-induced duodenal

toxicity and damage through
downregulating CYP450 enzymes,
promoting ATPase activities, and

inducing the expression of
p-glycoprotein (P-gp).

[26,78]

16-week-old male
Fisher—344 rats

Rats were fed with AFB1 at
20 µg/day for 6 weeks and co-treated
with dietary curcumin (0.05%, w/w)

for 3 weeks.

Curcumin supplementation significantly
improved AFB1-induced liver

dysfunction, upregulated the GSHT and
UGT1A1 activities, and downregulated

the activity of CYP1A1. Curcumin
supplementation significantly reduced
AFB1–N7-guanine adduct (p < 0.001)

excretion in the urine, DNA adduct in the
liver, and albumin adduct in the serum.

[30,70]

4.1. AFB1 Exposure Induces Oxidative Stress and the Inhibitory Effect of Curcumin

Excess ROS generation exceeds the ability of the intracellular antioxidant system to
scavenge free radicals, resulting in oxidative stress [88]. Oxidative stress is one of the critical
molecular mechanisms of adverse effects caused by many toxic chemical hazards or drugs
(e.g., heavy metals, mycotoxins, pesticides, chemotherapy drugs, and antibiotics) [88].
Multiple studies reported that AFB1 and its derivatives could trigger oxidative stress by
inducing the formation of ROS or decreasing intracellular antioxidants or the activities
of antioxidant enzymes [36,70,73,89–98]. In the liver tissues, the cytochrome (CYP)1A2
and CYP3A4 could bio-transform into AFBO, which is a harmful and extremely active,
electrophilic metabolite. It has been reported that AFBO could also induce the formation of
ROS and oxidative stress [9]. Additionally, the hepatic glutathione S-transferase system was
able to detoxify AFBO by glutathione (GSH) conjugation, resulting in the formation of their
non-toxic polar versions, i.e., AFBO-GSH [9]. Recently, in a rat model, Abdel-Daim et al.
reported that acute exposure to AFB1 at a dose of 50 µg/kg BW (via intraperitoneal
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injection) for 14 days significantly increased malondialdehyde (MDA) and nitric oxide
(NO) levels and decreased SOD, CAT, and GPX activities and reduced GSH content in
liver tissues, followed by induction of oxidative stress [22]. Low-dose exposure to AFB1
also causes a decrease in GPX activities and GSH levels in the brain tissues, followed by
induction of a decrease in locomotor activity, anxiety, and neurotoxicity in rats [11].

Wang et al. discovered that oral administration of AFB1 at 750 µg/kg BW for 30 days
might produce significant kidney oxidative damage, as demonstrated by the loss of an-
tioxidative enzyme (e.g., CAT and SOD) activities and the decreases in GSH levels and
increases in hydrogen peroxide (H2O2) and levels of MDA in the kidney tissues; meanwhile,
oral administration of curcumin supplementation could significantly inhibit AFB1-induced
oxidative stress by upregulating the GSH content and SOD and CAT activities [70]. Consis-
tently, curcumin supplementation could also significantly improve AFB1-exposure-induced
cytotoxicity in bovine fetal hepatocyte-derived cells, renal damage in mice and chickens,
and liver, spleen, and ileum damage in ducks by inhibiting the production of ROS and
oxidative stress through the upregulation of activities of antioxidant enzymes and levels
of antioxidants or free radical scavenging [60,69,70,72,74,75]. Very recently, Damiano et al.
found that curcumin supplementation significantly inhibits the expression of NADPH
Oxidase 4 (NOX4) mRNA and protein, thus inhibiting AFB1-induced renal oxidative stress
in chicken [75]. NOX4 is the main productor of endogenous ROS production [99,100]. Our
recent study found that inhibiting NOX4 expression might considerably reduce colistin-
induced nephrotoxicity and lung damage [101,102]. Curcumin treatment also dramatically
alleviated oxidative stress damage in seminal vesicles by regulation of NOX1, NOX2, and
NOX4 expressions [103]. NOX4 is the critical mediator in the process of TGF-β-induced
inflammatory response and fibrotic response [104]. The evidence indicated that NOX4
may play a critical role in the protective effect of curcumin against AFB1-induced ox-
idative stress and inflammatory response. The precise molecular mechanisms still need
more investigations.

In response to oxidative damage, Nrf2 is a crucial transcription factor [105]. More
than 200 genes involved in the processes of antioxidant, anti-inflammatory, and xenobi-
otic metabolism may be produced as a result of Nrf2 activation [106]. Under a normal
physiological microenvironment, Nrf2 usually locates in the cytoplasm and interacts with
Kelch-like ECH-associated protein 1 (Keap1), an adaptor protein that connects the Nrf2
and Cullin3-Rbx1 E3 ligase (CULLIN3) [106]. Keap1 could aid in the ubiquitination and
subsequent destruction of Nrf2 by 26S proteasomes in the cytoplasm [107]. Under stressed
environments, however, the ability of CULLIN3 to ubiquitinate Nrf2 is suppressed, which
allows Nrf2 to be transcribed into the nucleus, inducing the expression of the protective
genes in response to various stresses [106]. AFB1 exposure inhibited the expression of Nrf2
and its downstream proteins, including heme oxygenase-1 (HO-1), quinone oxidoreduc-
tase 1 (NQO1), and glutamate-cysteine ligase catalytic subunit (GCLC), causing oxidative
stress, liver damage, and nephrotoxicity in mice and broiler chicks [48,70,95]. It is well
documented that curcumin is an inducer of Nrf2 [107]. Curcumin could directly bind to
the cysteine 151 (Cys151) site of Keap1 protein and promote the liberation of Nrf2 [107].
Curcumin supplementation may greatly increase the expression and transcriptional ac-
tivity of Nrf2, therefore reducing AFB1-induced tissue damage in the liver, kidney, and
ileum [69–71,79]. Caveolin-1 is a major multifunctional scaffolding protein, and it could
serve as a negative or positive modulator of cell signaling pathways, including PI3K/Akt
and Nrf2 pathways [108]. The possibility of targeting caveolin-1 has been raised [109]. A
recent study showed that caveolin-1 knockdown could significantly decrease AFB1-induced
oxidative stress, apoptosis, and hepatotoxicity by decreasing the interaction of Keap1 and
Nrf2 in the cytosol and promoting the transcriptional activity of Nrf2 [108]. This finding
also contributed to explaining the molecular mechanisms of curcumin’s protective effects.

In summary, as shown in Figure 2, curcumin supplementation could protect against
AFB1-induced oxidative stress in various tissues by directly scavenging the free rad-
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ical, upregulating the intracellular antioxidant enzymes’ activities, and activating the
Nrf2 pathway.
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4.2. AFB1 Exposure Causes Immunosuppression, Inflammatory Response, Necroptosis, and the
Regulation of Curcumin

Chronic AFB1 exposure may inhibit cell-mediated immunity and lymphoblastoge-
nesis, cause delayed skin hypersensitivity, lose the graft-versus-host response, decrease
the number of CD4 cells produced in the spleen, and increase the levels of heat-stable
serum phagocytosis factors, all of which may contribute to the development of various
inflammation-related diseases, such as HCC and inflammatory bowel disease [36,110–113].
Because of the immunosuppression, AFB1 exposure generally makes host cells more sus-
ceptible to infections caused by hepatitis B and C viruses, as well as the swine influenza
virus [114–117]. Previous studies revealed that NF-κB, TLR4, AHR, NRLP3, and receptor-
interacting serine/threonine kinase 1 (RIPK1)/RIPK3/mixed lineage kinase domain-like
pseudokinase (MLKL) pathways are involved in the inflammatory response, immuno-
toxicity, and necroptosis, which is brought on by AFB1 [113]. The detailed molecular
mechanisms are addressed below.

The activation of NF-κB involved the degradation of inhibitor kappa B alpha (IκBα)
or its phosphorylation [118–120], and it mediated the expression of more than 500 genes,
such as TNF-α, IL-1β, IL-10, and IL-6 [121]. AFB1 exposure at a low dose by diet sup-
plementation could upregulate the expression of NF-κB, IκB-α, IL-6, TNF-α, IL-1β, and
chemokine CCL20 mRNAs, followed by triggering a marked inflammatory response in the
liver tissues [122]. Consistently, Long et al. found that in mice that were intragastrically
administered with AFB1 at a dose of 100 µg/kg BW for six weeks, significantly increased
TNF-α, IFN-γ, IL-1β, and IL-6 protein expression in the serum and mRNA expression in
the spleen tissue were detected, indicating an induction of immune toxicity [18]. These
findings further confirmed that the activation of the NF-κB signaling pathway may play a
critical role in AFB1-induced inflammatory response.

Pathogen-derived substances (e.g., lipopolysaccharide (LPS)), especially those from
Gram-negative bacteria, can be identified by Toll-like receptor 4 (TLR4), a pattern recog-
nition receptor (PRR) [123]. TLR4 activation could trigger transcription factor NF-κB-
mediated inflammatory response or transcription factor interferon regulatory factor 3
(IRF3)-mediated production of type I interferons that respond to infections caused by
most viruses [123]. Of note, TLR4-activation-mediated NF-κB transcriptional activation is
required by the MyD88 protein [124]. Recently, Mehrzad’s study found that AFB1 exposure
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(i.e., 10 ng/mL for 12 h) could significantly upregulate the expression of MyD88, NF-κB,
tumor necrosis factor-alpha (TNF-α), TLR2, TLR4, cyclooxygenase 2 (COX-2), human leuko-
cyte antigen–DR isotype (HLA-DR), CD209, CD16, C-C motif chemokine receptor 7 (CCR7),
and lymphocyte function-associated antigen 3 (LFA3), and it could significantly downregu-
late the expression of CD11c and CD64, Aryl hydrocarbon receptor (AhR), and transforming
growth factor-β (TGF-β) in human dendritic cells, indicating that AFB1 exposure could
alter the transcription of key functional immune and inflammatory genes, phagocytosis,
and survival of human dendritic cells [113]. Consistent findings were confirmed in the
liver and ileum tissues of mice and liver tissues of chicken [34,49]. Furthermore, AFB1-
induced activation of TLR4/NF-κB may be attributed to the production of LPS caused by
AFB1-induced gut-microbiota-dysfunction-derived abundance of LPS-producing related
bacteria [49]. An early study found that LPS could enhance AFB1-induced liver toxicity,
and this was dependent on the production of TNF-α [125]. Although the precise molecular
mechanisms remain unclear, the current finding could confirm that gut dysbiosis in hu-
mans or animals may exacerbate AFB1-induced toxic effects. This finding greatly facilitates
the understanding of the crosstalk between the bacterial toxin and AFTs and the chronic
inflammatory effect in gastrointestinal and liver tissues caused by AFB1 at the sub-toxic
exposure level.

AFB1 exposure may promote necroptosis in chicken liver tissues by raising the expres-
sion of necroptosis-related kinases RIPK1, RIPK3, and MLKL [34]. MLKL activation could
promote the formation of plasmalemma channels, thus resulting in membrane disintegra-
tion [34]. MLKL is known to be a substrate of RIPK3, which can induce the formation of an
NLRP3/caspase-1 inflammasome, as well as promote RIPK3-dependent caspase-8 activa-
tion, finally resulting in caspase-8 cleavage of pro-IL-1, and induce both inflammation and
necroptotic cell death; this RIPK3 process is not dependent on the presence of MLKL [126].
These data indicated that AFB1-induced necroptosis involved both MLKL-dependent or
-independent pathway.

Curcumin has significant immunomodulatory and anti-inflammatory effects and can
target various signaling molecules (e.g., NF-κB, COX-2, 5-lipoxygenase, TLR4, IL-6, IL-8,
IL-1, and TNF-α) directly or indirectly and immune cells (e.g., macrophages, natural killer
cells, neutrophils, mast cells, lymphocytes, and innate lymphoid cells) [127]. Curcumin
supplementation substantially decreased the production of TLR4, IL-6, IL-1, IL-8, TNF-α,
and NF-κB mRNAs in the hepatocytes of broiler chickens exposed to a low dosage of
AFB1 [80]. Consistently, Jin et al. found that curcumin supplementation could significantly
improve AFB1-induced inflammatory response via the inhibition of NF-κB, TLR4, and
NRLP3 pathways in the ileum tissues of ducks [69]. Pauletto et al. showed that curcumin
and its extracts could effectively improve AFB1-exposure-induced inflammatory response
in bovine BFH12 cells in vitro [60]. Li et al. found that curcumin supplementation sig-
nificantly blocks the activation of TLR4/MyD88, followed by inhibiting the activation of
NF-κB and its downstream genes’ expression, including iNOS, IL-6, IL-1β, and TNF-α
genes [34]. Meanwhile, curcumin supplementation could significantly inhibit the expres-
sion of RIPK1, RIPK3, and MLKL, thus improving AFB1-induced necroptosis in the liver
tissues of chicken [34]. In accordance with these findings, Wang et al. discovered that cur-
cumin supplementation substantially inhibited AFB1-induced necroptosis in mouse livers
by downregulating the expression of Caspase-1, NLRP3, and GSDMD while increasing the
expression of antioxidant molecules (i.e., CAT, SOD, HO-1, and NQO1) [71]. These studies
indicated that curcumin supplementation could effectively improve AFB1-induced inflam-
matory response and necroptosis by targeting the TLR4, NF-κB, and NRLP3 pathway. In
addition, the ameliorated effects of curcumin on AFB1-induced expression of inflammatory
response and immunosuppression may involve the regulation of long non-coding RNA
expression [73]. Solis-Cruz et al. found that curcumin supplementation could also improve
the immune functions of animals to combat AFB1-induced toxic effects [29]. Moreover,
several studies have found that oral curcumin supplementation could rebalance the ratio
between beneficial and harmful bacteria in gut microbiota, i.e., upregulating the abundance
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of beneficial bacteria strains, including Lactobacilli, Bifidobacteria, and butyrate-producing
bacteria, and downregulating the abundance of pathogenic strains, including Enterobacteria,
Coriobacterales, Prevotellaceae, and Rikenellaceae, and other LPS-producing bacteria [128–130].
Indeed, several studies have found that probiotic supplementation could effectively reduce
the accumulation of AFB1 in liver tissues and AFB1-induced oxidative damage [131,132].
Therefore, the promising effects of curcumin on gut microbiota may also contribute to the
protective effects of curcumin on AFB1-induced chronic inflammatory response. It has
been reported that curcumin could protect the intestinal barrier against an inflammatory re-
sponse in in vitro and animal models [133]. The precise molecular mechanisms are complex
and still need further investigation.

Curcumin supplementation, as demonstrated in Figure 3, may protect against AFB1-
induced immunosuppression, inflammatory response, and necroptosis, which may involve
the inhibition of the NF-κB, TLR4, and NRLP3 pathways and modulation of gut microbiota.
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4.3. AFB1 Induces Mitochondrial Dysfunction and Mitochondrial Apoptotic Pathway and the
Improvement of Curcumin

Mitochondria are the principal producers of cellular adenosine triphosphate and the
hub of energy metabolism in mammalian cells (ATP) [134]. Mitochondrial dysfunction is
immensely related to the production of excessive ROS, which results in damage to cellular
lipids, proteins, and other biomacromolecules, finally inducing cell apoptosis or necro-
sis [55,135]. Mitochondrial dysfunction had been illustrated as a critical mechanism of
AFB1-induced cytotoxicity and tissue damage [136]. Significantly decreased mitochon-
drial membrane potential of cells as a major consequence of AFB1 exposure has been
shown in several in vitro and animal studies [137,138]. Mitochondrial membrane potential
generates the proton gradient, which is necessary in the process of ATP synthesis [139].
The activities of mitochondrial ETC I, III, and IV could control the mitochondrial mem-
brane potential. Wan et al. discovered that broilers fed with the AFB1 diet had significant
mitochondrial enlargement, loss of ATP levels, and reductions in the activity of (ETC)
complexes I, II, III, and V in liver tissues [140]. Similar results were also found in a mouse
model by Xu and colleagues [137]. AFB1 exposure also decreased transcription factor
A (TFAM), nuclear respiratory factor 1 (Nrf1), dynamin-related protein 1(DRP1), fission
protein 1 (FIS1), mitofusin 1 (MFN1), peroxisome proliferator-activated receptor-gamma
(PPARγ) coactivator-1α (PGC-1α), and OPA1 mitochondrial dynamin-like GTPase (OPA1)
expression, finally resulting in the inhibition of mitochondrial biogenesis and mitochon-
drial dynamics [136]. Another study also showed that AFB1 exposure could damage the
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mitochondrial ultrastructure and inhibit mitochondrial biogenesis and oxidative phospho-
rylation (OXPHOS)-mediated ATP production, followed by induction of mitochondrial
dysfunction in the liver of mice [137]. Furthermore, AFB1 exposure may reduce the activity
of the important tricarboxylic acid (TCA) cycle-rate-limiting enzymes succinic dehydroge-
nase, isocitrate dehydrogenase, and -ketoglutarate dehydrogenase [137]. Taken together,
the action mechanisms of AFB1-exposure-induced mitochondrial dysfunction may include
direct damage to the mitochondrial ultrastructure, a decrease in mitochondrial membrane
potential, inhibition of TCA cycle-rate-limiting enzymes and mitochondrial biogenesis, loss
of ETC complex activities, and a decrease in ATP levels.

Apoptosis is a type of programed cell death [141]. Apoptosis could be triggered by
multiple exogenous stimuli, including bio-toxins, drugs, heavy metals, ultraviolet radiation,
and pathogenic microorganisms [102,142]. It is generally known that in mammalian cells,
mitochondrial malfunction causes the activation of the mitochondrial apoptotic pathway,
which in turn causes caspase-dependent apoptosis [137]. The initiation of the mitochondrial
apoptotic pathway is usually dependent on proteins of the Bcl-2 family, which mainly
controls the permeabilization of the outer mitochondrial membrane by balancing between
proapoptotic (e.g., Bcl-2-associated X protein (Bax) and Bcl-2 antagonist/killer-1 (Bak))
and antiapoptotic (e.g., Bcl-2, Bcl-2-like 2 (Bcl-w), myeloid cell leukemia-1 (Mcl-1), Bcl-
2-like 1(Bcl-XL), and Bcl-2-related protein A1(Bfl-1)) expression [143]. The formation of
mitochondrial outer membrane permeabilization could facilitate the release of CytC from
the mitochondria to the cytoplasm in a cascade to activate caspases-9, -3 and cleaved PARP1,
finally causing apoptotic cell death [144]. Some investigations found that AFB1 exposure
increased Bax protein expression while decreasing Bcl-2 protein expression, resulting in the
release of the CytC form from the mitochondria, the activation of caspases-9 and -3, and
cell apoptosis [40,47,70,89,90,95,137,145]. In addition, AFB1 exposure could also trigger
other signaling pathways, including p53, MAPKs, and Akt pathways, which play a critical
role in regulating the mitochondrial apoptotic pathway [146,147].

It has been reported that curcumin administration could protect cells against mi-
tochondrial damage via preventing mitochondrial membrane potential reduction and
decreasing mitochondrial ROS production [55,56]. Li et al. demonstrated that curcumin
supplementation could significantly improve AFB1-induced decrease in ATPases (including
Mg2+-ATPase, Na+-K+-ATPase, Ca2+-ATPase, and Ca2+-Mg2+-ATPase activities), indicating
that mitochondrial energy metabolism may be a critical target of curcumin’s protection [34].
Curcumin could suppress cell apoptosis by re-balancing the ratios between proapoptotic
and antiapoptotic proteins. It has been reported that curcumin supplementation could
reduce the Bax/Bcl-2 ratio, limit the development of mitochondrial outer membrane per-
meabilization, decrease the release of CytC, and lastly, ameliorate cell apoptosis caused
by exogenous or endogenous stimulus [24,53,54,57,59,62,66,148]. Wang et al. found that
curcumin supplementation could significantly improve mitochondrial dysfunction and
apoptosis by downregulating the expression of CytC, Bax caspase-3, and caspase-9 mRNAs
and proteins, and upregulating the expression of Bcl-2 mRNA and protein, thus improving
the nephrotoxicity induced by AFB1 in a mouse model [70]. In addition, it was also reported
that curcumin could significantly inhibit the expression of p53 and improve AFB1-induced
mitochondrial dysfunction and mitochondrial apoptotic pathway in the liver tissues of
chicken [81,82]. Consistently, El-Mekkawy et al. found that curcumin supplementation at
200 mg/kg BW for 90 days could significantly reduce the expression of p53 protein and
increase the expression of Bcl-2 protein, thus inhibiting AFB1-induced apoptosis in the liver
and kidney tissues of rats [35].

Finally, AFB1 exposure could cause mitochondrial dysfunction and apoptosis via
multiple molecules, including mitochondrial membrane potential, mitochondrial proteins,
the activities of the complex in ETC and limiting enzymes in TCA, and the expression of
Bcl-2, p53, Bax, CytC, caspases-9, and -3 proteins. Curcumin has the potential to target
these sites and drastically ameliorate AFB1-induced toxic effects in mammalian cells.
Furthermore, the molecular mechanism of AFB1-induced mitochondrial dysfunction and
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mitochondrial apoptotic pathway and the protective effects of curcumin are summarized
in Figure 4.
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4.4. AFB1 Induces Autophagy and Mitophagy and the Regulation of Curcumin

Autophagy is a multifaceted process. It might restore cellular equilibrium by destroy-
ing senescent or dysfunctional organelles and restoring nutrients. It has been demonstrated
that autophagy dysfunction is relative with many diseases, including cancers, infective
diseases, neurodegenerative diseases, aging, and immune dysfunction [149]. Under var-
ious stress conditions, including hypoxia, nutrient deficiency, DNA damage, and toxin
exposures, autophagy could be activated and play a protective role [150]. Recent studies
showed that AFB1 exposure could induce or inhibit autophagy, which is dependent on
the toxic dose of AFB1 or organ exposure [47,151–153]. Huang et al. found that oral ad-
ministration of AFB1 at the doses of 0.375, 0.75, or 1.5 mg/kg body weight for 30 days
significantly upregulated the expression of autophagy-related proteins LC3, Beclin1, Atg5,
and p62 expression, and it downregulated the expression of PI3K, p-AKT, and p-mTOR
in the testicular tissue, finally resulting in spermatogenesis in male mice [47]. Xu et al.
found that AFB1 exposure (at 40 µM) could upregulate autophagy via the inhibition of
the EGFR/PI3K/mTOR pathway in L02 cells, and rapamycin significantly inhibited AFB1-
induced apoptosis via the autophagy induction [108]. Similarly, AFB1 could upregulate
autophagy and autophagy flux in RAW264.7 cells, which is partly attributed to the pro-
duction of ROS and the activation of the ERK pathway. Interestingly, the downregulation
of AFB1-induced autophagy by ATG7 knockdown significantly abolished AFB1-induced
inflammatory response [152]. On the contrary, Chen et al. found that AFB1 exposure
(at 10 µM for 24 h) significantly inhibited AMPK/mTOR-mediated autophagy flux, thus
promoting the production of ROS in a cascade to induce apoptotic cell death in Leydig cells
in vitro [154].

Mitophagy, a specialized form of autophagy, could remove dysfunctional or superflu-
ous mitochondria and maintain the mitochondria homeostasis [155]. In eukaryotic cells,
the PTEN-induced putative kinase 1 (PINK1)/E3 ubiquitin ligase PARK2 (Parkin) pathway
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is the most comprehensively characterized pathway of mitophagy [155]. PINK1 could
accumulate on the mitochondrial membrane and induce Parkin recruitment to facilitate
the degradation of damaged mitochondria [155]. AFB1 exposure has been shown to dra-
matically enhance the expression of PINK1 and Parkin proteins in mouse liver, kidney,
and spleen tissues [156–158]. Furthermore, Parkin deficiency could significantly aggravate
AFB1-induced mitochondrial damage and oxidative stress by blocking mitophagy, thus
promoting AFB1-induced liver, kidney, and spleen injuries [156–158]. These data indicated
that mitophagy may play a protective role during AFB1-exposure-induced adverse effects
in animals or humans. Additionally, a previous study found that AFB1 exposure at a dose
of 0.6 mg/kg for 28 days could significantly alter the expression of PINK1, Parkin, and
COX-2, and the knockout of COX-2 significantly inhibited AFB1-induced mitophagy [159].
COX-2 also play critical roles in a variety of pathological processes, including cell prolif-
eration, ferroptosis, inflammatory reaction, and apoptosis [159]. It indicated that COX-2
may play an important role in AFB1-induced mitophagy. It also provided new evidence
for the crosstalk between mitophagy and other processes (i.e., cell proliferation, ferropto-
sis, inflammatory reaction, and apoptosis). More investigations into this key molecular
mechanism are required.

Many studies have revealed that curcumin can activate autophagy, although the
molecular mechanisms are different [160,161]. Curcumin could induce autophagy via the
downregulation of the PI3K/Akt/mTOR pathway, induction of AMPK and extracellular
signal-regulated kinases 1 and 2 (ERK1/2) pathways, induction of ROS formation, and
promotion of ER stress [160,161]. Muhammad et al. showed that curcumin supplementa-
tion could upregulate the expression of Beclin1, ATG5, Dynein, and LC3A proteins, and
downregulate the expressions of p53 and mTOR proteins, thus conferring hepatoprotection
against AFB1-induced toxicity in chicken [82]. Consistently, it was also reported that cur-
cumin supplementation could upregulate Parkin-mediated mitophagy via the activation of
the AMPK pathway and could protect against oxidative-stress-induced intestinal barrier
injury [162]. In addition, curcumin is also an effective inhibitor of COX-2 and ROS, which
are two positive players in the processes of AFB1-induced autophagy. Therefore, curcumin
could inhibit AFB1-induced autophagy or mitophagy by directly inhibiting the production
of ROS and the expression of COX-2. There is evidence indicating that curcumin supple-
mentation may provide a protective effect by modulating autophagy and mitophagy. A
diagram depicting the modulated effects of curcumin on AFB1-induced autophagy or mi-
tophagy is shown in Figure 5. Further research into animal models and detailed molecular
processes is required.
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4.5. The Bioactivation and Detoxification of AFB1 and Regulation of Curcumin

Coincidentally, the liver is not only the main target organ of AFB1 but also the main
site of AFB1 metabolism [9]. Multiple metabolic enzymes, including CYP450s, epoxide-
hydrolases, aldehyde-reductases, monooxygenases, amino-oxidases, alcohol dehydro-
genases, and ketone-reductases, were demonstrated to participate in the metabolism of
AFB1 [163,164]. It is well illustrated that AFB1 could be metabolized via two-stage reactions
in the liver. The first-stage metabolisms of AFB1 in the liver tissue include the reduction
reaction (ketoreduction to AFL), oxidative reaction (O-dealkylation to AFP1), hydrolytic
reactions (hydroxylation to AFM1, AFQ1, and AFB2), and this process involves various
enzymes, including CYP450, monooxygenases, amino-oxidases, alcohol dehydrogenases,
epoxide-hydrolases, aldehyde-reductases, and ketone-reductases [165–167]. AFTs are pri-
marily regulated by the crucial metabolic enzymes CYP450s [168]. Studies have shown
that CYP3A37, CYP3A4, CYP2A13, CYP2A6, CYP1A5, CYP1A2, and CYP1A1 are mainly
responsible for the biological conversion of AFB1 into AFBO in liver tissues [169–171].
A recent study also found that CYP450 enzymes were also detected in intestinal tissues,
which also contributed to the toxic effect of AFB1 in intestinal tissues [26]. The second-stage
reaction of AFB1 metabolism mainly involved a covalent binding reaction and a conjuga-
tion reaction, which resulted in two different endpoints, i.e., enhancing toxic effect, and
excretion and detoxification, respectively [172]. For example, AFBO, one of AFB1’s primary
metabolites, might react with DNA, thus inducing toxicity [172]. In contrast, glutathione-S-
transferase (GST) M1 and GSTT1-derived conjugation of GSH to AFBO contributes to the
detoxification of AFB1 [167].

Curcumin has been shown to regulate AFB1 metabolism and detoxification through
influencing the activity and mRNA expression of CYP450 enzymes [173]. Multiple studies
have demonstrated that curcumin exhibits potent regulatory abilities on the activities and
expressions of CYP450 enzymes, and it exhibits potent therapeutic effects on nonalcoholic
fatty liver disease (NAFLD), cardiovascular diseases, and exogenous-compounds-induced
toxicity [174]. Previous research found that curcumin could limit the biotransformation
of AFB1 into AFBO and other aflatoxin metabolites by inhibiting CYP450 isoenzymes,
particularly CYP2A6 subtypes, reducing the adducts formed by AFBO with DNA and
protein, and thus reducing the toxicity and carcinogenicity of AFB1 in cells [25]. In another
study, Zhang et al. found that curcumin supplementation could inhibit the expression
of CYP1A1, CYP1A2, CYP2A6, and CYP3A4 in the liver tissues of broilers, followed by
reducing the formation of AFBO transformed from AFB1 [28,30,175]. Curcumin supplemen-
tation was observed to downregulate the mRNA expression of CYP3A28, which therefore
reduced the synthesis of AFM1 transformed from AFB1, ultimately leading to curcumin’s
protective impact against AFB1-induced cytotoxicity in BFH12 cells [60]. It was also found
that curcumin supplementation could induce the expression of P-gp protein in the small
intestine tissue of chicken, which resulted in a decrease in uptake of AFB1 and reduced its
toxicity [26].

Furthermore, as previously stated, curcumin may directly trigger the transcriptional
activation of Nrf2, therefore promoting the production of several genes of CYP450 enzymes
or phase II enzymes that guide the first and second stages of AFB1 metabolism [32]. Indeed,
it had been demonstrated that the activation of Nrf2 could be positively relative to the
expression of CYP1A2, CYP2A5, CYP2C29, CYP2E1, and CYP2B10 in the liver tissues
of mice [176]. Muhammad et al. demonstrated that curcumin supplementation could
upregulate the expression of Nrf2 and its downstream genes, such as GSTA3 and GSTM2,
in the liver tissues of broilers, thus improving AFB1-induced liver toxicity via the GSTA3-
and GSTM2-mediated detoxification effects [32].

In conclusion, phase I and II metabolizing enzymes, such as CYP450s, GST isozymes,
and others might govern the bioactivation and detoxification of AFB1, which are essential
steps in the process of AFB1-caused toxicity. Some variables, including species, age,
environment, and health state, may influence AFB1 toxicity via altering the first- and
second-stage metabolisms. Indeed, the regulatory effects of curcumin on the first- or
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second-stage metabolisms of AFB1 involve the regulation of the activities or expressions of
CYP450s (i.e., CYP1A1 and CYP2E6), Nrf2-mediated II metabolizing enzymes or products
(i.e., GST isozymes and GSH), and P-gp, which may be considered a critical molecular
mechanism for explaining its protective effects on AFB1-induced toxicity. An overview of
the metabolism pathways of AFB1 and the modulation of curcumin is shown in Figure 6.
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5. Conclusions and Future Directions

Due to toxicity and potent carcinogenicity, AFB is considered one of the most impor-
tant mycotoxins among over 500 mycotoxins found worldwide. The molecular mechanisms
of AFB1-induced basic effects are complex. In the past several decades, scientists have
demonstrated that AFB1 could induce oxidative stress, lipid peroxidation, apoptosis,
mitochondrial dysfunction, autophagy, necrosis, immune repression, and inflammatory
response, finally resulting in various acute or chronic diseases in animals and humans,
including cancer, hepatitis, mutation abnormalities, and reproduction disorders. The criti-
cal signaling pathways involved are the p53, mTOR, Nrf2, NF-κB, NLRP3, MAPKs, and
Wnt/β-catenin pathways. These advancements provided essential goals for the investi-
gation and development of efficient improvement strategies to counteract the unintended
negative effects caused by consuming diet food or feed contaminated with AFB1 in humans
or animals. Over the last two decades, researchers have made significant progress in the
creation of effective nutritional or natural product supplements, which can effectively ame-
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liorate AFB1-contamination-caused harm to human and animal health. Curcumin exhibited
potently protective effects against AFB1-induced cytotoxicity, hepatotoxicity, and nephro-
toxicity in vitro and in vivo. Importantly, human clinical trials and animal trials reveal
that curcumin has high safety at a cheap price. The molecular mechanism of curcumin’s
protection comprised the inactivation of CYP450 enzymes, prevention of mitochondrial
malfunction and apoptosis, free radical scavenging, downregulation of oxidative stress and
inflammatory response, modification of autophagy, and gut microbiome (Figure 7). How-
ever, the primary barriers to curcumin use in clinics continue to be its limited bioavailability,
poor solubility, and quick disintegration in human or animal bodies. Furthermore, existing
evidence of curcumin-mediated detoxifying activities against AFB1-induced toxicity comes
mostly from animal investigations and in vitro cell models, whereas successful clinical
trials are sparse. As a result, considerably more research is required.
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