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Methylation of DNA, RNA or protein is a reversible modification. The proteins and genes

that regulate this modification can be a candidate target for tumor therapy. However,

the characteristics of methyltransferase related genes in glioma remain obscure. In this

study, we systematically analyzed the relationship between methyltransferase-related

genes expression profiles and outcomes in glioma patients based on The Cancer

Genome Atlas and Chinese GliomaGenome Atlas RNA sequencing datasets. Consensus

clustering identified two robust groups with significantly different pathological features

and prognosis. Then a methyltransferase-related risk signature was built by a Cox

proportional hazardsmodel with elastic net penalty. Moreover, the risk score is associated

with patients’ clinical and molecular features and can be used as an independent

prognostic indicator for patients with glioma. Furthermore, genes associated with the

high-risk group were involved in various aspects of the malignant progression of

glioma via Gene Ontology analysis and Gene Set Enrichment Analysis. In summary, our

study identified a methyltransferase-related risk signature for predicting the prognosis

of gliomas.

Keywords: glioma, methyltransferase, signature, prognosis, risk score

INTRODUCTION

In the central dogma of molecular biology, genetic information flows from DNA, RNA to
proteins (1). Reversible epigenetic modifications can influence gene expression without altering
the DNA sequence, and thus determine cell differentiation and development. DNA modifications,
RNA modifications, protein modifications, and nucleosome remodeling are all in the field of
epigenetics. These modifications comprise methylation, acetylation, phosphorylation, ribosylation,
sumoylation, parylation, citrullination, ubiquitylation, etc (2). Among them, methylation is widely
studied and is defined as an important and extensive epigenetic modification. Depending on the
substrate, this modification can be divided into DNA, RNA or protein methylation, which are
mediated by corresponding methyltransferase.

In mammals, DNA methyltransferases (DNMTs) maintain DNA methylation via transferring
methyl group to cytosines of CpG dinucleotide islands. Aberant DNA hypermethylation
of tumor suppressor gene promoter region results in gene silencing, which subsequently
leads to dysregulation of diverse signaling pathways associated with human malignancies (3).
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O-6-methylguanine-DNA methyltransferase (MGMT) is
involved in cellular defense against the toxicity of alkylating
agents such as temozolomide (TMZ) (4). Patients with
glioblastoma (GBM) containing a methylated MGMT promoter
can benefited from TMZ therapy (5). MGMT promoter status
has been identified as a biomarker for TMZ response in
GBM patients.

Approximately 150 chemical modifications have been
identified in eukaryotic cellular RNAs. The spectrum of
major physiological mRNA methylation marks comprises
methylations of adenosine to form N6-methyladenosine (m6A),
N1-Methyladenosine (m1A) and N6, 2′-O-dimethyladenosine
(m6Am), as well as cytosine methylation to 5-methylcytosine
(m5C) and its oxidation product 5-hydroxymethylcytosine
(hm5C) (6, 7). Among them, m6A is the most prevalent
form of internal mRNA methylation. RNA methylation
has diverse effects on RNA metabolism, including RNA
processing, RNA splicing, mRNA export, mRNA translation,
and decay (7). The m6A mRNA modification is critical for
glioblastoma stem cells (GSCs) self-renewal and tumorigenesis
(8). Knockdown of METTL3 or METTL14, key components of
the RNA methyltransferase complex, dramatically promotes
human GSC growth, self-renewal, and tumorigenesis (8). In
contrast, overexpression of METTL3 or inhibition of the RNA
demethylase FTO suppresses GSC growth and self-renewal (8).
Moreover, the m6A demethylase ALKBH5 is highly expressed
in GSCs, and silencing ALKBH5 suppresses the proliferation of
patient-derived GSCs (9).

In eukaryotes, most protein methylation is implemented by
two widely defined enzyme families: lysine methyltransferases
(KMTs) and protein arginine methyltransferases (PRMTs), which
modify the ε amino group of lysine (K) and the guanidinium
group of arginine (R), respectively (10). In humans, over 4,000K
and R methylation sites have been identified, but the biological
consequence of most is unknown (10). Histone proteins are a
major and well-studied substrate of protein methyltransferases
(PMTs). It is believed that methylation of K or R residues in
the tail of histones largely decides the chromatin configurations,
thus determining gene expression, cell fate and genomic stability
(11). EZH2 is a catalytic component of polycomb repressive
complex 2 (PRC2), which is responsible for the trimethylation of
histone 3 on lysine 27 (H3K27me3) and induces gene silencing
(12). EZH2 is a negative independent prognostic factor and
exhibits tumor promoting activity in GBM (13). Meanwhile,
methylation of several non-histone proteins participated in
tumor-associated signaling pathways, including p53 (14, 15),
RB1 (16, 17), NF-κB (18, 19), STAT3 (20), etc. EZH2 binds to
and methylates STAT3, leading to enhanced STAT3 activity by
increased tyrosine phosphorylation of STAT3 (20). The EZH2-
STAT3 interaction preferentially occurs in GSCs and promotes
its tumorigenicity (20).

Glioma is the most common primary malignant brain tumors,
characterized by high recurrence rates, short survival time, high
mortality, and treatment difficulties (21). Currently, the clinical
outcomes for glioma patients are still poor even after standard
treatments, including surgery, chemotherapy and radiation (22).
An in-depth understanding of the molecular landscape of diffuse

glioma reveals its characteristic genetic and epigenetic features
and clarifies their pathogenic evolution (23–26). In 2016 WHO
classification, mutations in the epigenetic modulator genes
isocitrate dehydrogenase 1 or 2 (IDH1 or IDH2) and codeletion
of chromosomal arms 1p/19q (1p/19q codel) have become key
biomarkers for glioma classification (27, 28). It emphasized the
role of genetic and epigenetic alterations as a driving force
for glioma evolution. Methyltransferase-related genes play an
important role in epigenetic regulation, including DNA, RNA,
histone methylation. Some of striking members, such as EZH2
(13), FTO (8) and ALKBH5 (9), have been reported to play
oncogenic roles in glioma genesis. However, the expression
pattern of methyltransferase complex genes in glioma patients
and its prognostic value remain to be further elucidated.

In this study, we systematically analyzed the characteristics
of the methyltransferase-related genes in glioma based on
TCGA (n = 601) and CGGA (n = 309) RNA sequencing
datasets. We found that the methyltransferase genes could
classify the glioma patients with significantly different clinical
and molecular characteristics. And a risk signature with
twelve methyltransferase-related genes was designed to predict
prognosis of glioma patients.

MATERIALS AND METHODS

Data Collection
The TCGA RNA sequencing (RNA-seq) dataset and
corresponding clinical and molecular information, such as
gender, age, grade, subtype, IDH status, 1p/19q status, MGMT

promoter status, EGFR status, and survival information, were
downloaded from TCGA database (http://www.cancergenome.
nih.gov/) as training cohort. Similarly, the CGGA RNA-seq
database (http://www.cgga.org.cn) with 309 glioma samples were
obtained as validation cohort.

Consensus Clustering
Methyltransferase-related genes (GO_METHYLOSOME and
GO_METHYLTRANSFERASE_COMPLEX) were obtained
from Molecular Signature Database v5.1 (MSigDB) (http://
www.broad.mit.edu/gsea/msigdb/) (29). After overlapping with
genes in the TCGA and CGGA RNA-seq data sets, 89 and
84 methyltransferase-related genes, respectively, remained.
Then we carried out consensus clustering with the R package
“ConsensusClusterPlus.” The optimal number of subgroups was
evaluated using cumulative distribution function (CDF) and
consensus matrices (30).

Gene Signature Identification and Risk
Score Construction
The prognostic value of methyltransferase-related genes in
TCGA training cohort was computed by a univariate Cox
regression analysis. P≤ 0.05 is considered statistically significant.
After that, the least absolute shrinkage and selection operator
(LASSO) method was used to identify gene signature and obtain
their respective coefficients (Coeff) value. According to the
following formula, the risk score for each patient was calculated
in TCGA training and CGGA validation cohorts.
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Risk score =

n∑

i=1

exprgene(i) × Coeffgene(i)

Statistical Analysis
Patients in TCGA training and CGGA validation cohorts were
separated into high-risk and low-risk groups by using the median
risk score as a threshold. Kaplan–Meier survival analysis and 2-
sided log-rank test were used to calculate the overall survival (OS)
differences between stratified groups. Univariate andmultivariate
Cox regression analysis were used to determine independent
prognostic factors, including gender, age at diagnosis, WHO
grade, IDH status, 1p/19q status,MGMT promoter status, EGFR
status, and risk score. ROC curve analysis was used to predict
OS with R package “pROC.” Student’s t-test and chi-square test

were adopted to detect differences in pathology and molecular
characteristics between different patient groups. All statistical
analyses were conducted by SPSS 16.0 (Armonk, NY, USA) or R
software, and P ≤ 0.05 was regarded as statistically significant.

Gene Ontology (GO) and Gene Set
Enrichment Analysis (GSEA)
Biological process, cell component and protein-protein
interactions among genes in the risk signature were analyzed
by the STRING database (https://string-db.org/) (31). Pearson
correlation analysis using R language to calculate genes that are
positively and negatively correlated with risk scores in TCGA
and CGGA datasets (|R| > 0.5, P < 0.0001). GO and KEGG
pathway analysis were performed for functional annotation of
the significantly correlated genes via the online Database for
Annotation, Visualization and Integrated Discovery (DAVID,

FIGURE 1 | Methyltransferase-related genes could classify the clinical and molecular features of gliomas. (A) Consensus clustering cumulative distribution function

(CDF) for k = 2 to k = 10. (B) Relative change in area under CDF curve according to various k values. (C) Consensus clustering matrix of 601 samples from TCGA

dataset for k = 2. (D) Heat map of two clusters defined by the top 50 variable expression genes. (E) Survival analysis of patients in Cluster 1 and 2 in TCGA cohort.
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https://david.ncifcrf.gov/). Gene set enrichment analysis (GSEA,
http://software.broadinstitute.org/gsea/index.jsp) was performed
to identify gene sets of statistical difference between low-risk and
high-risk groups.

RESULTS

Classification of Gliomas Based on
Methyltransferase-Related Genes
We obtained the methyltransferase-related gene expression
profiling of 601 samples from the TCGA RNA-seq dataset,
and the top 50 variable expression genes have been selected.
Consensus clustering of the 601 samples could divided patients
into two significantly different clusters (Figures 1A–C), and the
heatmap of the two clusters has been shown in Figure 1D.
We found that consensus clustering could make significant
differences in the clinical and molecular characteristics of the
two glioma clusters (Table 1). Cluster 1 patients were strikingly
correlated with older age at diagnosis (64.24%, P < 0.0001), high
grade (49.01%, P < 0.0001), classical or mesenchymal subtypes
(56.95%, P < 0.0001), IDH wildtype (68.87%, P < 0.0001),
1p/19q non-codel (91.40%, P < 0.0001), MGMT promoter
unmethylation (44.07%, P < 0.0001), and EGFR amplification
(34.34%, P < 0.0001) by Chi-square test. Compared with patients
in cluster 2, glioma patients in cluster 1 showed a shorter survival
time (Log-rank, P < 0.0001, Figure 1E). Then, the similar
results were shown in Figure S1 and Table S1 based on the
CGGA RNA-seq dataset (n = 309). These results demonstrated
that methyltransferase-related genes were associated with the
malignancy and prognosis of diffuse gliomas.

Construction of Prognostic Gene Signature
Related to Methyltransferase Complex in
Diffuse Glioma
First, we identified 65 genes that were statistically related with OS
of glioma patients in TCGA training cohort via univariate Cox
regression analysis (P < 0.05). Then, a 12-gene signature was
identified by LASSO regression algorithm (Figures 2A,B), and
their enrichment components, biological function and protein-
protein interaction have been annotated by STRING (Figure S2).
The risk scores for patients were calculated with their expression
level and regression coefficients (Figures 2B,C). Patients were
separated into high-risk and low-risk group by using the median
risk score as a threshold. As shown in Figure 2C and Table 2,
patients in high-risk group were mainly older, high grade,
classical or mesenchymal subtype, IDH wildtype, 1p/19q non-
codel, MGMT promoter unmethylated and EGFR amplification
(P < 0.0001), while patients in low-risk group represented
younger, lower grade, proneural or neural subtype, IDH mutant,
1p/19q codel, MGMT promoter methylated and without EGFR
amplification (P < 0.0001). The same regression coefficients were
applied in CGGA validation cohort to calculate risk scores of
patients. Consistently, the similar difference between the two
groups have been shown in Table S2.

TABLE 1 | Characteristics of patients in cluster 1 and 2 in TCGA cohort.

Characteristics n Cluster 1 Cluster 2 P-value

Total Cases 601 302 299

Age

<49 320 108 212 <0.0001

≥49 281 194 87

Gender

Male 351 178 173 0.8524

Female 250 124 126

Grade

II 211 52 159 <0.0001

III 236 102 134

IV 154 148 6

Subtype

Neural 36 9 27 <0.0001

Proneural 381 121 260

Classical 149 143 6

Mesenchymal 35 29 6

IDH status

Mutant 374 94 280 <0.0001

Wildtype 227 208 19

1p/19q status

Codel 149 8 141 <0.0001

Non-codel 223 85 138

NA 229 209 20

MGMT promoter status

Unmethylated 147 119 28 <0.0001

Methylated 420 151 269

NA 34 32 2

EGFR status

Amplification 106 102 4 <0.0001

No amplification 487 195 292

NA 8 5 3

Statistical significance is shown in bold.

Prognostic Risk Scores of the 12-Gene
Signature Is Related With Pathological
Characteristics in Glioma
We investigated the relationship between the risk scores of
the 12-gene signature and the patients’ pathological features.
We observed that risk scores are significantly different between
patients classified by age at diagnosis (P < 0.0001), WHO grade
(P < 0.0001), IDH status (P < 0.0001), 1p/19q status (P <

0.0001), MGMT promoter status (P < 0.0001), EGFR status (P
< 0.0001), different pathological features (P < 0.0001), TCGA
subtype (P < 0.0001), and Cluster 1/2 (P < 0.0001), but not by
gender in TCGA dataset (Figures 3A–J). The similar results were
shown in CGGA dataset (Figures S3A–E,G–J), except EGFR
status (Figure S3F). This is because the information of EGFR
status in CGGA dataset is incomplete. Subsequently, we used
the ROC curve to assess the specificity and sensitivity of risk
scores in the prediction of pathological features by calculating
the area under the curve (AUC) of risk score, age and grade.
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FIGURE 2 | Identification of a 12-gene risk signature for OS by LASSO regression analysis in TCGA cohort. (A) Cross-validation for tuning parameter selection in the

proportional hazards model. (B) Coefficient values and univariate Cox regression results for the 12 selected genes by LASSO. (C) Heatmap shows the association of

risk scores and clinic pathological features based on the 12-gene risk signature. LASSO, Least Absolute Shrinkage and Selection Operator.

The risk score can perfectly predict Cluster 1/2 subgroups (AUC
= 0.903 or 0.924), IDH mutant status (AUC = 0.979 or 0.925)
and 1p/19q codel status (AUC = 0.816 or 0.723) in TCGA
and CGGA datasets, which were higher than age and grade
(Figures 3K–M, Figures S3K–M).

Assessment of the Prognostic Value of the
12-Gene Signature
To evaluate the prognostic value of the signature, patients
were separated into high-risk and low-risk group by using the

median risk score as a threshold. By Kaplan–Meier survival
analysis, the overall survival time of patients in the low-risk
group were statistically longer than that in the high-risk group
in the TCGA RNA-seq cohort (P < 0.0001, Figure 4A). Then,
we explored the prognostic value of the 12-gene signature
in patients with lower-grade glioma (LGG, WHO grade II
and III) and GBM (WHO grade IV), respectively. High-risk
scores in patients with LGG and GBM were significantly
associated with lower overall survival time (P < 0.0001, P
= 1e-4, Figures 4B,C). Then, we separately stratified patients

Frontiers in Oncology | www.frontiersin.org 5 April 2020 | Volume 10 | Article 508

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Value Role of Methyltransferase Signature

TABLE 2 | Characteristics of patients in low and high risk scores in TCGA cohort.

Characteristics n Risk score P-value

Low High

Total Cases 601 301 300

Age

<49 320 211 109 <0.0001

≥49 281 90 191

Gender

Male 351 178 173 0.7774

Female 250 123 127

Grade

II 211 168 43 <0.0001

III 236 131 105

IV 154 2 152

Subtype

Neural 36 19 17 <0.0001

Proneural 381 279 102

Classical 149 3 146

Mesenchymal 35 0 35

IDH status

Mutant 374 293 81 <0.0001

Wildtype 227 8 219

1p/19q status

Codel 149 142 7 <0.0001

Non-codel 223 150 73

NA 229 9 220

MGMT promoter status

Unmethylated 147 20 127 <0.0001

Methylated 420 281 139

NA 34 0 34

EGFR status

Amplification 106 1 105 <0.0001

No amplification 487 298 189

NA 8 2 6

Statistical significance is shown in bold.

by IDH status, MGMT promoter status and EGFR status,
and investigated the prognostic value of this signature in
subgroups. The comparable results were demonstrated in
stratified patients (all P < 0.01, Figures 4D–I). Consistently, the
prognostic significance of this 12-gene signature was verified
in CGGA validation cohort (all P < 0.05, Figures S4A–G, I),
except EGFR amplification group which only contain four
samples (P = 0.3173, Figure S4H). In further analysis, the
results showed that high risk score had a worse prognosis
in LGG with IDH-mutant subgroup in both cohorts (P =

0.01 and 0.0026, Figure 4J, Figure S4J), but no significant
difference in GBM IDH-mutant subgroup (P > 0.05, Figure 4L,
Figure S4L). In LGG IDH-wildtype (Figure 4K, Figure S4K)
and GBM IDH-wildtype (Figure 4M, Figure S4M) subgroups,
we did not get consensus results in TCGA and CGGA RNA-
seq datasets, which probably due to the small sample size or
racial differences.

The Risk Score of 12-Gene Signature Is an
Independent Prognostic Indicator
Then, we used uni- and multi-variate Cox analysis to evaluate
whether the risk score is an independent prognostic indicator.
As shown in Table 3 and Figure 5A, factors including age at
diagnosis, WHO grade, IDH status, MGMT promoter status,
EGFR status and risk score were statistically related with the
overall survival (OS) of glioma patients. Among them, age at
diagnosis (HR, 1.053; 95% CI, 1.037–1.069; P = 3.60E-11) and
risk score (HR, 2.684; 95% CI, 1.935–3.722; P = 3.28E-09)
were independent prognostic indicators for OS in patients with
gliomas in TCGA dataset (Table 3, Figure 5A). Similar results
were found in the CGGA validation dataset; WHO grade (HR,
2.335; 95%CI, 1.412–3.861; P= 9.51E-04) and the risk score (HR,
1.936; 95% CI, 1.365–2.745; P = 2.12E-04) were independent
prognostic indicators for OS in patients with gliomas (Table S3,
Figure S5A). Compared to the traditional factors age (AUC
= 0.804 or 0.771) and grade (AUC = 0.829 or 0.808), the
risk score (AUC = 0.872 or 0.842) showed striking prognostic
predictive efficiency for 3 and 5 years survival rates in TCGA
dataset (Figures 5B,C). Consistently, The AUC of risk score
(AUC = 0.789 or 0.778) was substantially higher than that of
age (AUC = 0.654 or 0.635) and grade (AUC = 0.778 or 0.751)
in CGGA validation cohort (Figures S5B,C). Taken together, the
above results indicated that the risk score of 12-gene signature
was an independent prognostic indicator for OS in diffuse
glioma patients.

Biological Characteristics and Pathway
Analysis of 12-Gene Signature
To explore the potential function of 12 gene signature, we
first used Pearson correlation analysis to determine genes
that were statistically positively (R > 0.5, P < 0.0001) or
negatively (R < – 0.5, P < 0.0001) related with the risk sore
of gene signature in TCGA and CGGA datasets. Totally, 867
positively and 787 negatively correlated genes were identified
in these two data sets. Then their biological characteristics and
pathway were annotated by GO terms and KEGG pathway
(P < 0.05, Benjamini and Hochberg method). Positively
related genes were mainly involved in biological process (BP),
including immune response (such as inflammatory response,
interferon-gamma-mediated signaling pathway, response
to interferon-gamma), extracellular matrix organization,
cell adhesion, angiogenesis (Figure 6A). The most enriched
cellular component (CC) terms were extracellular component
(extracellular exosome, extracellular space, extracellular matrix),
membrane system (membrane, cell surface, membrane raft)
and focal adhesion (Figure 6B). The most enriched molecular
function (MF) terms were protein binding (Figure 6C). The
most enriched pathways were focal adhesion, phagosome,
ECM-receptor interaction, leukocyte transendothelial migration,
complement and coagulation cascades by KEGG pathway
analysis (Figure 6D).

In contrast, negatively related genes were mainly involved
in BP terms, including learning, positive regulation of
synapse assembly, glutamate receptor signaling pathway,
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FIGURE 3 | Association between the methyltransferase-related signature and other pathological features in TCGA cohort. (A–J) Distribution of the risk score in

patients stratified by age (A), WHO grade (B), IDH status (C), 1p/19q status (D), MGMT promoter status (E), EGFR status (F), different pathological features (G),

TCGA subtype (H), cluster (I) and gender (J). (K–M) ROC curves showed the predictive efficiency of the risk signature, Cluster 1/2 subgroups (K), IDH status (L) and

1p/19q status (M). ****P < 0.0001; ***P < 0.001; *P < 0.05; ns, no significant.

neuron cell-cell adhesion, presynaptic membrane assembly.
The enriched CC terms were cell junction, postsynaptic
membrane, postsynaptic density, presynaptic membrane. The
enriched MF terms were ionotropic glutamate receptor activity,
extracellular-glutamate-gated ion channel activity. The enriched
KEGG pathway was retrograde endocannabinoid signaling
(Figure 6E).

Moreover, the GSEA analyses showed consistent results. The
high-risk groups were enriched in immune response (such as
adaptive immune response based on somatic recombination
of immune receptors built from immunoglobulin superfamily
domains, lymphocyte mediated immunity, complement and
coagulation cascades), extracellular structure organization,
ECM-receptor interaction, focal adhesion (Figure S6).
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FIGURE 4 | Prognostic significance of the 12-gene signature derived risk scores in TCGA cohort. (A–C) Prognosis efficiency of the 12-gene risk signature in all grades

(A), LGG (B) and GBM (C) in TCGA cohort. (D–I) Outcome prediction of the 12-gene signature in patients stratified by IDH status (D,E), MGMT promoter status (F,G)

and EGFR status (H,I) in TCGA cohort. (J–K) Kaplan–Meier survival curves for LGG patients with IDH-mutant (J) and IDH-wildtype (K), classified into two groups

based on 12-gene signature derived risk scores. (L–M) Kaplan–Meier survival curves for GBM patients with IDH-mutant (L) and IDH-wildtype (M), classified into two

groups based on 12-gene signature derived risk scores. LGG, lower-grade glioma; GBM, glioblastoma; OS, overall survival.

Discussion
In this study, for the first time, we found methyltransferase-
related genes could distinguish glioma patients into two

clusters which showed significant differences in clinical and
molecular features. Then, we built a methyltransferase-related
gene signature that could classify patients into high and low-risk
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TABLE 3 | Univariate and multivariate Cox regression analysis of clinical pathologic features for OS in TCGA cohort.

Variables Univariate Cox Regression Multivariate Cox Regression

HR 95% CI P-value HR 95% CI P-value

Gender 1.028 0.765–1.382 8.52E−01

Age at diagnosis 1.076 1.064–1.089 1.07E−34 1.053 1.037–1.069 3.60E−11

WHO Grade 9.581 6.857–13.388 5.16E−40 1.226 0.775–1.938 3.85E−01

IDH status 10.711 7.568–15.159 7.71E−41 1.346 0.687–2.638 3.86E−01

MGMT promoter status 0.297 0.214–0.411 3.02E−13 0.828 0.565–1.212 3.31E−01

1p/19q status 0.639 0.348–1.170 1.47E−01

EGFR status 5.056 3.637–7.029 5.38E−22 0.7 0.458–1.070 9.98E−02

Risk score 3.317 2.831–3.886 8.70E−50 2.684 1.935–3.722 3.28E−09

P < 0.05 was considered statistically significant. Gender (female vs. male); WHO grade (lower grade vs glioblastoma); IDH status (mutant and wildtype); 1p/19q status (codeletion

and non-codeletion); MGMT promoter status (methylated and unmethylated); EGFR status (amplification and no amplification). CI, confidence interval; HR, hazard ratio; IDH, isocitrate

dehydrogenase; MGMT, O6-methylguanine-DNA methyltransferase.

FIGURE 5 | Univariate and multivariate analysis shows prognostic value of 12-gene signature in the TCGA dataset. (A) Univariate and multivariate Cox regression

analyses of the association between clinic pathological factors and OS of patients in the TCGA dataset. (B,C) The receiver operator characteristic (ROC) curves to

predict the sensitivity and specificity of 3 and 5 years survival according to the 12-gene signature derived risk scores in TCGA cohort. OS, overall survival.

group by an elastic net regression Cox model (32). Most of the
genes in the signature are mainly enriched in methyltransferase
complex and nucleoplasm (Figure S2A). And they can bind with
DNA or/and protein (Figure S2B). Protein-protein interaction
analysis showed that five genes (EZH2, SUZ12, EED, PHF1
and SIRT1) are core components of PRC2 complex, which
execute transcriptional inhibition via catalyzing H3K27me3
(Figure S2C). EZH2 protein expression is significantly higher
in GBM, and it is a negative prognostic factor in GBM (13,
33, 34). EZH2 has been reported as an oncogene and is
involved in several glioma cell processes, including cell cycle,
invasion, GSC maintenance, drug and radiotherapy resistance,
etc (35). The expression of SUZ12 protein was significantly
upregulated in tumor compared with its adjacent brain tissue
by western blot and immunohistochemistry analysis (36). miR-
128, miR-105 and miR-767-5p are suppressors for glioma
cell malignancy by targeting SUZ12 (36–38). The function of
SIRT1 in glioma is complicated. On the one hand, SIRT1
knockdown significantly inhibited glioma cell proliferation,
migration, invasion, promoted its apoptosis and potentiated
TMZ toxicity (39–41). On the other hand, the expression of

SIRT1 in GBM is significantly lower than normal brain tissue
(42, 43). Up-regulation of SIRT1 by genetic modification or
treatment of melatonin significantly attenuated the adhesion
molecular VCAM-1 and ICAM-1 expression in GBM, which
modulated the monocytes interaction with GBM (43). SIRT1
activator SRT2183 suppresses glioma cell growth and destroyed
neurospheres in vitro (44). The effect of SIRT1 on glioma
progression still needs more in vivo experiments to verify. MEN1
expression was activated in 44.4% of adult gliomas and predicted
poor prognosis of patients with glioma (45). Importantly,
MEN1 inhibitors significantly decreased the proliferation of adult
glioma cells (45). CLNS1A is a co-factor of methyltransferase
PRMT5. They are components of methylosome, a multi-
subunit complex which modifies specific Sm-proteins to facilitate
small ribonucleoprotein (snRNP) assembly (46, 47). CLNS1A
knockdown increased sensitivity to PRMT5 inhibitor EPZ015666
in malignant glioma, which may due to the reducing of splicing
capacity (48). The protein expression of PPP1CA is high in
GBM, but it showed no correlation with prognosis in all
GBMs or on stratification based on IDH1 or ATRX expression
(49). However, PPP1CA expression is associated with poor
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FIGURE 6 | Functional annotation related to the 12-gene signature. (A–D) Functional annotation of genes positively correlated with the risk score using GO terms of

biological process (A), cellular component (B), molecular function (C) and KEGG pathway (D) by DAVID. (E) Functional annotation of genes negatively correlated with

the risk score using GO terms and KEGG pathway by DAVID.

prognosis in p53 expressing GBMs (49). METTL1 mediated
tRNA andmicroRNA processing via N7-methylguanosine (m7G)
methylation (50, 51). In addition to the essential role of METTL1
in embryonic stem cell self-renewal and differentiation (52),
it is elevated in hepatocellular carcinoma (HCC) and shows
carcinogenic activity through PTEN/AKT signaling pathway
(53). DYDC1 is a component of MLL3/4 complex, which can
methylate lysine-4 of histone H3. Collectively, the expression
of EZH2 (33), SUZ12 (36), SIRT1 (42, 43), MEN1 (45) and
PPP1CA (49) at RNA levels are consistent with protein levels
in previous reports, indicating that analysis based on RNA
sequencing data can be verified by other techniques. Fifty
percentage (6/12) of genes in this signature have been reported

to participate the progression of glioma, which verified the value
of methyltransferase-related signature.

Based on TCGA training set and CGGA validation
set, we observed that the risk scores are much higher in
WHO grade IV, IDH wildtype, 1p/19q non-codel, MGMT
promoter unmethylated, EGFR amplification and worse TCGA
subtypes (classical and mesenchymal). It implies that this
methyltransferase-related gene signature may predict the
prognosis of patients with glioma. Next, we evaluated the 12-
gene risk signature prognostic value in patients with glioma. This
methyltransferase-related signature was a mighty prognostic
indicator regardless of WHO grade, IDH status, MGMT
promoter status and EGFR status in both datasets. After stratified
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patients into four subgroups by WHO grade and IDH status, it
only predicted the prognosis of LGG IDH-mutant diffuse glioma
patients, which may due to the small sample size of other groups.
Moreover, we found the risk score of methyltransferase-related
signature was an independent prognostic indicator for OS
in diffuse glioma patients when considering several clinical
and molecular characteristics. And it is could better predict
the prognosis of glioma than the traditional factors “age” and
“grade.” These analysis indicated that this signature is a mighty
prognostic indicator, and it might be used to classify patients and
guide targeted therapy in the future.

For biological characteristics and pathway analysis of 12-gene
signature, the significantly correlated genes (|R| > 0.5, P <

0.0001) were performed GO and KEGG analysis. Results showed
that positively correlated genes are significantly enriched in BP,
such as immune response, extracellular matrix organization,
cell adhesion and angiogenesis. For KEGG, these genes
were enriched in focal adhesion, phagosome, ECM-receptor
interaction, leukocyte transendothelial migration, complement
and coagulation cascades. These results indicated that the high
risk score group may affect the glioma progression by affecting
these biological processes or pathways. Meanwhile, the negatively
correlated genes were closely related to GO terms of the
normal nervous system, such as learning, positive regulation of
synapse assembly, glutamate receptor signaling pathway, neuron
cell-cell adhesion, presynaptic membrane assembly, ionotropic
glutamate receptor activity, extracellular-glutamate-gated ion
channel activity. It indicated that the low risk score group were
more similar to the normal nervous system. GSEA analyses is
consistent with the above results.

Conclusions
We identified that the methyltransferase genes could classify
the glioma patients with different clinical and molecular
characteristics. We then built a 12-gene risk signature, which
was strongly associated with pathological features in glioma.
Moreover, the risk score of this signature was an independent
prognostic indicator. Furthermore, the biological process and
pathway related with this risk signature had been annotated.
Our study provides new understanding of methyltransferase
in the carcinogenesis and development of glioma. It provided

important evidence for future application of methyltransferase
inhibitor in glioma therapies. However, our study is based on
RNA sequencing technology for large-scale detection of gene
expression at the RNA level. Therefore, the ability of this
signature to predict prognosis should be retested in further
research by other techniques or validated in pathological sections,
primary gliomas cells before clinical application.
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