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Abstract: Coconut is a tropical fruit whose flesh has high flavor quality and nutritional value; how-
ever, the differences between coconut varieties are still unclear. Here, volatiles and non-volatiles were
profiled at three ripening stages by HS-SPME/GC-MS and UHPLC-MS/MS in two coconut varieties
(Hainan Tall, HT and Green Dwarf, GD). Four metabolite classes of volatiles were associated with
good aroma including hydrocarbons, benzenoids, alcohols and esters, and these volatiles were gener-
ally higher in GD, especially at 7 and 9 months of coconut growth. Pathway-based metabolomics
revealed that flavonols and their derivatives were significantly enriched in HT, and some of these
metabolites were key determinants of HT flesh bitterness, including kaempferol 7-O-glucoside,
a known bitter metabolite. Despite the overall accumulation of amino acids, including L-alanine,
L-serine and L-methionine in GD, comparative metabolomics revealed that HT flesh provides
a higher content of vitamins than GD. This study sheds light on the metabolic pathways and key
metabolites differentiating the flesh flavor quality and nutritional value among coconut varieties, and
reveals the possible mechanisms of flavor formation and regulation in coconut fruits.

Keywords: coconut; flavor; nutritional value; HS-SPME/GC-MS; UHPLC-MS/MS

1. Introduction

Flavor and nutritional value are the main factors in the fruit selection of humans.
The flavor of any food is a combination of interactions between olfaction and taste [1].
Many volatile compounds can activate olfactory receptors and become the main factor for
consumer preference, so they are essential for good flavor [2]. Previous studies have shown
that alcohols, esters, aldehydes and ketones are the main fruit volatiles [3–5]. While most
esters have a fragrance associated with fruit and flowers, aldehydes and ketones, formed
by alcohol oxidation, have fruity and creamy aromas [6,7]. Specialized metabolites can also
affect the taste diversity of fruits and vegetables [8]. For example, sugars and acids activate
taste receptors, and flavor can be attained by increasing sugar and acid contents in many
fruits [9–12]. Flavonoids, specifically flavonol glycosides, are the critical factors causing
bitterness and astringency in some plants [11–14]. Despite flavor playing a critical role in
consumer fruit selection, obtaining dietary nutrition is the key to human health, and fruits
make a substantial nutritional contribution to the human diet [15]. Fruits are rich in amino
acids and vitamins which are essential nutrients to maintain life [16–18]. Passion fruit seeds
contained the 17 amino acids that are found naturally in plant protein [16]. Strawberries
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are rich in water-soluble vitamin C [18]. However, accumulation of these nutritional
compounds can vary greatly between different varieties of the same species [19,20]. Amino
acid levels fluctuate greatly in rice seed populations, and some amino acids could not
be detected in a few varieties [21]. There are also significant differences in the content
of vitamins such as nicotinamide among different varieties of rice and tomato [22,23]. In
addition, the content of metabolites varies between different growth stages of the same
fruit; therefore, selecting a fruit variety at the specific development stage that provides
flavor and nutritional value remains a challenge [24,25].

In recent years, metabolomics has progressed in many fields, and metabolomics is
now used widely to evaluate the flavor and nutritional quality of food [26,27]. The main
techniques for analyzing volatiles, including gas chromatography–mass spectrometry
(GC-MS), two-dimensional gas chromatography (GC × GC), and headspace solid-phase
microextraction coupled to gas chromatography–mass spectrometry (HS-SPME/GC-MS),
have been applied to determine the chemical compounds that contribute largely to the
flavors of many fruits and vegetables [28–30]. GC-MS was used to explore the composition
of the aroma of various tropical fruits, and these studies determined that myrcene, linalool
and geraniol were the main components of the aroma [31–35]. However, GC-MS is not
suitable for the detection of non-volatile metabolites, while liquid chromatography coupled
with mass spectrometry (LC-MS) is widely used in the detection of such metabolites [36,37].
Among LC-MS approaches, mass spectrometers commonly utilized include the ultra-
high-pressure liquid chromatography orbitrap mass spectrometer (UHPLC-Orbitrap-MS)
and the ultra-high-pressure liquid chromatography triple quadrupole mass spectrometer
(UHPLC-TQ-MS) [34,35]. Orbitrap-MS can obtain high-resolution data for accurate exact
mass and elemental composition assignment, while TQ-MS is often used for quantitative
analysis due to its high sensitivity. Several studies have demonstrated the power of using
these technologies for volatile and non-volatile metabolite analysis [34,38]. For example, the
nutritional components of six cruciferous vegetables were investigated by HS-SPME/GC-
MS non-targeted analysis, and a total of 55 nutritional metabolites and 190 volatiles were
detected [38]. In a separate study, a total of 47 nutritional components in the flavedo,
albedo and pulp of pummelo fruits were determined by UHPLC-TQ-MS targeted analysis.
Advancements in the field have made metabolomics an effective tool to explore flavor and
nutritional value.

Coconut (Cocos nucifera L.) is an important economic crop, mainly distributed in
tropical regions such as Indonesia, Philippines, India, and Brazil [5]. In some tropical
countries and regions, millions of people consume food products containing coconut daily,
especially coconut flesh. Coconut flesh is also popular around the world as a snack and
powder because of its distinctive flavor and high nutritional value [39]. Coconut can
be divided into two distinct varieties: Cocos nucifera tall (Cn. tall) and Cocos nucifera
dwarf (Cn. dwarf ) [40]. Cn. tall has a strong tolerance to abiotic stresses, but it pro-
duces less fruit and the fruit have poor taste [40,41]. In contrast, the flesh of Cn. dwarf is
loved by consumers [42]. However, the growth stage that provides the best flavor and
nutritional quality of coconut has yet to be identified, and the molecular mechanisms con-
trolling the differences in flavor and nutrition between the two coconut varieties remain to
be investigated.

Here, we used HS-SPME/GC-MS and UHPLC-MS/MS to explore the differences
in flavor and nutrition of ripe coconut flesh between three growth stages (Figure S1).
Two representative coconut varieties, a Cn. tall named Hainan Tall (HT) and a Cn. dwarf
coconut named Green Dwarf (GD), were used for metabolomic comparison. We found
that GD has a higher abundance of flavorful volatiles, among which hydrocarbons, ben-
zenoids, alcohols and esters were higher overall in GD. We determined that high contents
of flavonol and their derivatives are the main cause of the bitterness of HT using pathway-
based metabolomics analysis. Metabolites associated with nutritional value also differed
between the two coconut varieties. Vitamin B3 and its precursor metabolites were highly
accumulated in HT, but methyl nicotinate, a downstream metabolite of B3, was signifi-
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cantly higher in GD than in HT. Most amino acids also showed significant enrichment in
GD, such as L-alanine, L-serine and L-methionine. This study analyzed the differences in
flavor and nutrition of two coconut varieties, and determined the differences in metabolite
accumulation patterns. Thus, we created a valuable resource that could be utilized for the
improvement of coconut flavor through crop breeding or genetic engineering.

2. Results
2.1. Identification and Analysis of Coconut Varieties Volatile Content

Fruit aroma is a key determinant that affects fruit flavor, customer selection and com-
petitiveness in the market. To investigate the aroma volatiles of coconut flesh,
two varieties with contrasting flavor qualities, HT and GD, were utilized to detect or-
ganic volatiles in the flesh. Three growth stages, from 7 months of growth (termed 7M
in this study) to 9 months (9M), were used to explore the differences in volatile content.
A total of 33 volatiles were detected using untargeted HS-SPME/GC-MS in the flesh of the
two coconut varieties (Tables S1 and S2). These volatiles were composed of hydrocarbons,
esters, benzenoids, aldehydes, alcohols and acids (Figure 1A). The number of hydrocarbons
detected was the largest (reaching 14), while just one acid could be detected. Thus, multiple
metabolite classes important for fruit aroma were measured in this analysis.
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aromas showed the same trend [43] (Figure S2). These results suggest that, at the 7M and 
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than HT, but this difference was not remarkable at 8M. 

Figure 1. Statistical analysis of volatiles. (A) Metabolite classes of the volatiles detected in HS-
SPME/GCMS analysis. (B) OPLS-DA scores plot analysis of detected volatiles between different
varieties of coconut over three growth stages. (C) Coefficient of variation (CV) analysis redundant of
the metabolome during flesh growth of HT and GD. (D) The distribution of the fold change between
HT and GD. The metabolites are ordered based on their fold change between HT and GD.
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To determine the differences in total volatile composition during coconut flesh growth,
orthogonal partial least squares-discriminant analysis (OPLS-DA) was performed on the
relative abundance of volatiles (Figure 1B). Then, we verified the model through the
permutation test and the values of R2Y and Q2 are 0.985 and 0.968, respectively. This
shows that the fitting accuracy of the model is very high. The analysis determined that
three biological replicates of samples from different growth stages were clustered together
clearly, indicating that the samples in this study were consistent. The volatile profiles from
coconut fruit at 7M and 8M were clustered together and separated from 9M in HT. This
result indicates that the difference between 7M and 8M was not significant, but the volatile
content at 9M differed from the other two growth stages. There were notable differences
in the relative content of each month in GD. The coefficient of variation (CV) statistic
showed that the CV of 20–40% is the most in HT and GD, with 13 and 11, respectively,
of which only GD has a CV greater than 120% (Figure 1C). These data indicate that GD
undergoes dynamic changes in volatile content between different stages. To analyze the
dynamic variations of the volatiles between HT and GD during flesh growth, differentially
accumulated metabolites (DAMs) analysis was used (Table S3). The total number of
volatiles significantly accumulated in HT was 13, while GD significantly accumulated
43 volatiles (Figure 1D). These results suggest that the content of volatiles in GD varies
more between different growth stages, and the content of volatiles in GD is higher than the
volatile content in HT.

2.2. Dynamic Changes of Volatiles during Flesh Growth in HT and GD

To better understand the accumulation patterns of different metabolite classes of
volatiles during ripening between two coconut varieties, specific compounds, identified in
the multivariate statistical analysis, were analyzed according to the heatmap (Figure 2A).
The heatmap indicated that four classes of volatiles—alcohols, benzenoids, esters and
hydrocarbons—had higher content in GD than HT from 7M to 9M. Since these four metabo-
lite classes of volatiles, which produce the fragrances of fruit, flowers and cream. We
concluded that they were responsible for the pleasant aroma of GD. Additionally, the key
factors leading to the difference in flavor were analyzed between GD and HT. The content
of benzaldehyde with cherry and nutty aromas was significantly higher in GD (Figure 2B).
The levels of 2,3-butanediol and ethyl octanoate, the most representative of floral flavor
volatiles, were also enriched in GD when compared to HT. However, the content of these
volatiles was the lowest at 8M in GD, and there were no significant differences between the
two varieties for most of the detected volatiles at this growth stage. Some other key volatiles
such as ethyl decanoate and ethyl dodecanoate with grape and leaf aromas showed the
same trend [43] (Figure S2). These results suggest that, at the 7M and 9M growth stages,
the coconut flesh of GD had a more consumer-friendly volatile flavor than HT, but this
difference was not remarkable at 8M.

2.3. Identification of Metabolite Signals by UHPLC-Orbitrap-MS

Fruits are rich in primary and secondary metabolites, which determine taste and
nutritional value. To dissect the differences in taste and nutritional value among these
two coconut varieties, metabolic profiling via UHPLC-MS/MS was performed based on
a nontargeted method combined with a targeted metabolic profiling method. In short,
we conducted a LC–MS-based nontargeted metabolomics analysis in which 4409 mass
spectrometric signals were detected in mixed samples after filtering by signal-to-noise ratio
and subtract background (Figure 3A). Additionally, we found that 3864 metabolic signals
had secondary mass spectra. Next, we annotated the metabolites based on the accurate
precursor ions (Q1), retention times (RT), mass spectral fragmentation information, the
standard and local databases.

In these samples, metabolic signals (Cm181 and Cm182) with retention time of 4.28 min
and 4.35 min were detected, and with an exact m/z value of 433.11188 for their precursor
ion (Figure 3B). Moreover, similar characteristic fragments of 433.11124, 271.05893 and
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153.01761. And the ion 153.01761, was observed in the MS fragment, which was due to the
characteristic fragment of flavonoids. It’s speculated that the mass spectrum signals are
apigenin O-glucoside (Figure 3C,D). Through comparison with the standard, the metabolic
signal Cm182 was identified as apigenin 7-O-glucoside due to the same mass spectral
fragmentation information and retention time (Figure 3B). Therefore, we speculate that
Cm181 may be the apigenin 5-O-glucoside, because of the same fragment information
and earlier retention time. A total of 237 metabolites were identified by UHPLC-HRMS
(Table S4). These metabolites included amino acids and derivatives (85), organic acids and
derivatives (47), flavonoids (40), lipids (29), sugars (22) and vitamins (14).
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(B) Comparative analysis of volatiles in the flesh of two coconut varieties at three different growth
stages. Student’s t test was performed (ns: not significant, ** p < 0.01, *** p < 0.001).
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Figure 3. Detection and identification of secondary metabolites by UHPLC–HRMS. (A) TIC (total
ion chromatogram) of metabolites in different varieties and stages of coconut flesh obtained from
UHPLC–MS/MS analysis. (B) EIC (extracted ion chromatogram) of apigenin 5-O-glucoside and
apigenin 7-O-glucoside detected at 4.28 min and 4.35 min in sample. Apigenin 7-O-glucoside detected
at 4.35 min in standard. (C) MS/MS spectra at m/z 433.11124, and the metabolite was identified as
apigenin 7-O-glucoside. (D) The molecular structure of the apigenin 7-O-glucoside and apigenin
5-O-glucoside and their general fragmentation rules.

2.4. Metabolic Profiles by UHPLC-TQ-MS of Two Coconuts Varieties

Next, the 237 metabolites were quantified by UHPLC-TQ-MS (Table S5). We used
principal component analysis (PCA) to differentiate the metabolomes of these coconut
varieties at different growth stages (Figure S3). To analyze the individual metabolite features
contributing to the differences in the model, DAMs were calculated between HT and GD
during coconut ripening (Figure 4A). A total of 115 metabolites differed significantly in
at least one stage; the number of DAMs was largest in the 7M stage and was the least
at 8M (Table S6). There were nine metabolites that showed distinct differences in all
three stages, including five flavonoids, two amino acids and derivatives, and two organic
acids and derivatives. Furthermore, to dissect which categories of metabolites were most
different, we further analyzed these DAMs by metabolite class. Figure 4B showed that
vitamins, followed by flavonoids, accounted for most DAMs. The number of DAMs that
were vitamins was the least at the 7M stage, and the number of differentially accumulated
flavonoids was the largest at the 8M stage. However, less than 50% of amino acid and their
derivatives were significantly different between the two varieties. These results suggested
that vitamins were the main metabolite class differentiating the two coconut varieties.

Next, the accumulation pattern of 115 DAMs at the three growth stages was visualized
by heatmap (Figure 4C). Overall, these metabolites showed some accumulation patterns,
including amino acids, amino acid derivatives and flavonoids. Most amino acids and
amino acid derivatives were located in cluster III. Amino acid and amino acid derivative
abundances were low in HT at all three growth stages, while they accumulated in GD.
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Most flavonoids were located in cluster II, and they showed a higher accumulation at the
8M and 9M growth stages of HT. These results suggest that metabolites such as amino
acids and flavonoids differ globally between the two coconut varieties, and changes in the
biosynthetic pathway could be responsible for these differences.
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Figure 4. Differential accumulation metabolite analysis. (A) Venn diagram shows the number
of differentially accumulated metabolites among three growth stages. (B) Statistical analysis of
differentially accumulated metabolites in different metabolite classes. (C) The levels of nonvolatile of
coconut flesh in two coconut varieties over three growth stages are shown the heatmaps. Hierarchical
cluster analysis of differentially accumulated metabolites. Each column in the figure represents
a metabolite, each row represents either GD or HT coconut varieties at three different growth stages.

2.5. Flavor Biosynthesis during Ripening of Different Coconut Varieties

Since sugars and organic acids are the key determinants of taste, we sought to compare
these metabolites between the two coconut varieties. There was no significant difference in
the relative content of sugars between GD and HT, including sugars with a pronounced
sweet taste such as DL-arabinose, D-(+)-glucose, D-(+)-mannose, D-(+)-galactose and D-(+)-
sucrose (Figure S4). However, the content of a few organic acids in GD was significantly
higher than that in HT, including citric acid and succinic acid, and these metabolites could
enrich the taste of the fruit (Figure S5). While these results show that there is no significant
difference in the metabolites responsible for fruit sweetness between the two coconuts’
flesh, the increase in organic acids could create a better coconut flavor, and account for the
popularity of GD over HT.

Flavonoids are most abundant in HT, so the flavonoid biosynthesis pathway may
account for the bitter taste of HT flesh (Figure 4C). A pathway including 15 flavonoids
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was constructed, including flavonols, flavonoids, flavanones and catechins (Figure 5).
Seven glycosylated flavonols accumulated in HT at multiple growth stages. One of these
glycosylated flavonols, kaempferol 7-O-glucoside, that was determined to be the key bitter
and astringent tasting compound in the tea plant, was over four times more abundant at the
9M growth stage compared to the 7M growth stage in HT. Other precursors and products
of flavonoids displayed the same accumulation pattern, including (−)-epiafzelechin and
vitexin 2′′-O-beta-L-rhamnoside. Among them, catechin and L-epicatechin are both bitter
and astringent compounds, and accumulate in HT compared to GD. These flavonoid
accumulation patterns indicate that the total accumulation of flavonols and their derivatives
may be the main reason for the poor taste of HT.
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Figure 5. Flavonoid biosynthesis pathway in the coconut flesh. The heatmaps are drawn according
to the relative content of metabolites, and the contents of each metabolite are normalized. Columns
and rows in the heatmap represent stages and varieties, respectively. In each heatmap, the upper row
represents HT, the lower row represents GD. In the columns of each heatmap, 7M, 8M and 9M are
represented from left to right. The metabolites with blue frames have a bitter taste.

2.6. Evaluation of Nutritional Value of Different Coconut Varieties

After analyzing the volatile smell and taste of the two coconuts, we focused on the
comparison of metabolites significant in dietary nutrition. Vitamins and amino acids are
important nutrients needed by humans. The content of vitamins in HT is higher than that
in GD, and there are distinct differences in multiple metabolites in the vitamin B3 and B6
pathways (Figure 4C). Some vitamins, including nicotinic acid and pyridoxine, are more
abundant in HT overall (Figure 6A). Other key vitamins also have conspicuous differences
between the two coconuts, including biotin, thiamine, riboflavin and D-pantothenic acid
(Figure 6B). Unlike vitamins, most amino acids accumulated notably during the growth
of GD. L-methionine, L-(+)-arginine and L-tryptophan were highly abundant in GD flesh
at the 7M growth stage. There were no remarkable differences in L-alanine and L-serine
content between GD and HT at the 7M growth stage; however, these metabolites were
significantly higher in GD at 8M and 9M (Figure 6C). In contrast, L-(+)-lysine accumulation
was higher in HT than it was in GD at every growth stage. From these results, we concluded
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that the nutrient contents of the two coconuts are diverse, and while the accumulation of
amino acids overall was relatively abundant in GD, the vitamin content is higher in HT.
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three growth stages. (A) Vitamin pathways in coconut flesh. The heatmaps are drawn according to
the relative content of metabolites, and the contents of each metabolite were normalized. Columns
and rows in the heatmap represent stages and varieties, respectively. In each heatmap, the upper row
represents HT, the lower row represents GD. In the columns of each heatmap, 7M, 8M and 9M are
represented from left to right. (B) Differences in vitamin levels between two coconut varieties across
three growth stages. (C) Differences in amino acid levels between two coconut varieties across three
growth stages. Student’s t test was performed (ns: not significant, * p < 0.05, ** p < 0.01, *** p < 0.001).

3. Conclusions

Flavor and nutrition are essential elements for the consumer. In this study, we ex-
plored differences in flavor and nutrition of mature coconut flesh among three key stages,
attempted to unravel the metabolic mechanisms regarding the biosynthesis of flavor and
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nutrition compounds in coconut, and the primary and secondary metabolites of coconut
flesh were comprehensively analyzed, in which more than 200 compounds were reported
for the first time. Our results revealed that the main components of the coconut flesh
included volatile substances and non-volatile substances. Some of these volatile odorous
esters, such as caprylic acid ethyl ester, may con-tribute to the more fragrant GD, while
some glycosylated flavonols, such as quercetin-4′-O-glucoside, may cause the HT to have
a poorer taste; regarding vitamin amino acids analysis, there are more nutrients in HT.
Therefore, compared with previous studies, our results have the advantage of comprehen-
sively clarifying the chemical composition of coconut flesh.

4. Discussion

Metabolites are not only the basis of plant survival, but are also the source of flavor
and nutrition [44,45]. Plant metabolomics has developed rapidly in the past decade, es-
pecially GC-MS and LC-MS, for utilization in the detection of key flavor and nutritional
compounds in fruits and vegetables [46,47]. For example, Tieman et al. used GC-MS to
identify the chemicals in modern, heirloom and wild tomatoes that contributed the most
to flavor and consumer liking [2]. The compounds that impact the consumer preference
of strawberry preserves were also investigated by using untargeted LC-MS flavoromics
analysis [48]. Thus, metabolomics is an effective and meaningful tool to measure the flavor
and nutrition of food. Indeed, a total of 217 metabolites have been identified from coconut
water, including 54 organic acids, 44 amino acids, 30 sugars and other metabolites based on
LC-MS. Moreover, 25 compounds were identified based on GC-IMS, including 12 esters,
5 alcohols, 3 ketones and other volatiles. The same E-tongue can also be used to eval-
uate umami, sweetness and bitterness [49]. In this study, we detected 33 volatiles and
237 compounds among three stages of coconut flesh development in two coconut varieties
using HS-SPME/GC-MS and UHPLC-MS, respectively. This suggested that although co-
conut water is widely consumed, the coconut flesh is richer in metabolite diversity. Among
the different growth stages, the metabolome underwent dramatic dynamic changes that are
comparable to other fruits, and flavonoids and vitamins accounted for the most significant
differences in this study [50–52].

Comparing coconut varieties with contrasting traits allowed us to study biosynthetic
pathway differences, and key compounds which influence flavor in other fruit bearing
species were significant in our results. For example, ethyl acetate, ethyl caproate and
ethyl caprylate have been reported to have obvious fruity and floral aromas [53–55], and
the content of these volatiles is significantly higher in GD than HT. This difference may
account for GD being more fragrant than HT. However, not all fragrance compounds are
increased in GD; for example, 2-ethyl-1-hexanol has been reported to have a rose aroma,
and the content in HT is higher than GD [56]. We speculate that these volatiles may give
HT its distinctive smell. In addition to volatiles, there are also large differences in some
compounds that affect taste. As shown in Figures 4 and 5, the level of flavonoids was
relatively higher in HT compared to GD varieties. There are many key enzymes in the
two pathways, such as cinnamic acid hydroxylase (C4H), 4 coumarate-CoA ligase (4CL),
flavonoid 3-hydroxylase (F3H) and trehalose phosphate synthase (TPS) [57,58]. Multi-
omics analysis shows that C4H was affected by DNA methylation, causing flavonoids
metabolism diversity and revealing the mechanism underlying the edaphic adaptation
in wild barley [59]. Natural variation of 4CL was found to lead biosynthesis of coumaric
acid derivatives [60], and overexpressed F3H can increase dihydrokaempferol content in
tobacco [61]. TPS catalysis can produce trehalose-6-phosphate (T6P), which can adjust
the sugar level [62]. Thus, we surmise that the variety in flavonoids are caused by the
differential transcription levels of these key enzymes in HT and GD varieties, while TPS
has no differential expression in different varieties. In addition, sugar is the main source
of sweetness in fruit, and fruit with a moderately higher content of sugar was favored
by consumers [63,64]. However, the content of sugars, including sucrose, glucose and
mannose, was not significantly different between the two coconuts in the three stages
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(Figure S4). Thus, we believe that the sweetness of the flesh is not the reason for the
difference in flavor between the two varieties.

Nutrient quantity obtained from fruits and vegetables has been a concern all over the
world because of malnutrition in humans. Studies have shown differences in nutrients
at different stages of plant development; for example, carotenoids, such as violaxanthin,
neoxanthin, together with vitamin K1, were higher in the seedlings of Brassica rapa subsp.
chinensis var. parachinensis [65,66]. In this study, we detected classes of compounds that
were beneficial to human health, including primary and secondary metabolites. Some
amino acids such as L-theanine, L-valine and L-glutamic acid were accumulated at high
abundances at 7M and 9M in GD (Table S5). This result indicates that humans can obtain
higher levels of amino acids by consuming coconut flesh at 7M and 9M stages. Secondary
metabolites such as vitamins, flavonoids and organic acids can promote digestion and
enhance immunity [67], and they have different accumulation patterns in different varieties
of the same fruit [68]. This study detected 14 vitamins, 40 flavonoids and 47 organic acids
among the two varieties of coconut. Although HT has a worse flavor, it is higher than
GD in some nutritional values such as vitamin B1, vitamin B3, vitamin B5 and vitamin B6.
Flavonoids that provide a bitter taste of HT can prevent chronic diseases, and plants rich
in flavonoids can enhance tolerance to biological or abiotic stresses [69]. Except for the
high accumulation of citric acid in GD, most organic acids were not significantly different
between the two varieties. These results indicate that eating HT flesh can provide more
vitamins, while eating GD flesh can provide a higher content of organic acids, amino acids
and amino acid derivatives.

This research accomplished the metabolomics characterization and nutritional analysis
of coconut flesh by using GC-MS and LC-MS based on the metabolomics approaches. We
performed metabolite profiling on the major flavor and nutritional pathways (flavonoid
metabolism and vitamin metabolism) to investigate metabolic flux through the pathways,
and the relationships between flavor precursors and products in each pathway. Based on
these results, possible metabolic mechanisms of key flavor and nutrition formation and
regulation in coconut were identified and discussed.

5. Materials and Methods
5.1. Plant Materials and Sampling

To investigate the coconut metabolome, coconut flesh of different varieties was ana-
lyzed. Coconuts were collected from trees maintained at the Coconut Research Institute
(Wenchang, China). We harvested fruit at different stages for analysis, and the selection of
materials was obtained from two representative coconut varieties, HT and GD. Varieties
were harvested randomly from trees in three positions and pooled for each biological
replicate. After the fruit was picked, flesh samples were removed from the shell with
a spoon and chopped, and then collected in a 50 mL polypropylene centrifuge tube which
was placed in liquid nitrogen.

5.2. Reagents and Standards

HPLC-grade acetonitrile, acetic acid and methanol were purchased from Merck (Darm-
stadt, Germany); water was purified with a MilliQ ULTRA purification system (Millipore,
Vimodrone, Italy). The internal standard used in this study was lidocaine, which was
bought from Shanghai New Asiatic Pharmaceuticals Co., Ltd. (http://www.xinyapharm.
com/ accessed on 10 August 2021). N-alkanes series (C6–C40) (purity > 98%) were pur-
chased from Sigma Aldrich (St. Louis, MO, USA).

5.3. Sample Preparation and Extraction

The fresh tissues of different varieties were ground using a mixer mill (MM 400, Retsch)
with a zirconia bead for 30 s at 30 Hz.

Then, 1 g powder was weighed and transferred into a 22-mL glass headspace vial,
incubated for 10 min at 37 ◦C, and then 2.2 g of CaCl2·2H2O and 1 mL of a 100 mM EDTA-

http://www.xinyapharm.com/
http://www.xinyapharm.com/
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NaOH (pH 7.5) solution were added. The sample was gently mixed and sonicated for
5 min. Samples were preheated for 10 min at 50 ◦C and extracted for 20 min at 50 ◦C before
GC-MS analysis [70].

Next, 100 mg powder was weighed and extracted overnight at 4 ◦C with 1.0 mL
70% aqueous methanol for metabolites. Following centrifugation at 12,000 rpm for 10 min,
all of the supernatants were pooled and filtrated (SCAA-104, 0.22 lm pore size; ANPEL,
Shanghai, China). In addition, to ensure the stability and suitability consistency of MS
analysis, a quality control (QC) sample was prepared by mixing equal volumes (10 µL)
of all the filtered supernatants before LC-MS analysis [71]. Additionally, we also used
the internal standards (0.1 mg L−1 lidocaine) to divide and normalize the relative signal
strength of the metabolite.

5.4. HS-SPME/GC-MS Analysis

Volatiles were detected on a gas chromatography apparatus (7890A GC, Agilent
Technologies, Santa Clara, CA, USA) coupled to an Agilent 7000D triple quadrupole
mass detector. An HP-5 MS capillary column (30 m × 0.25 mm i.d. × 0.25 µm film
thickness; Agilent Technologies) was used to separate volatile compounds. The initial
column temperature was 40 ◦C, held for 3 min, and the temperature was increased by
2 ◦C/min to 160 ◦C, then the temperature was increased by 50 ◦C/min to a final temperature
of 300 ◦C and held for 3 min. The injection temperature was 270 ◦C, and the splitless
mode was used with a 0.75-mm i.d. inlet liner (Agilent Technologies). The flow rate was
1.0 mL/min of He (99.999%). The scan range was 50–650 m/z in full scan mode.

The chromatograms of volatile compounds were extracted by MassHunter Qualitative
Analysis software (Agilent Technologies, Inc., Santa Clara, CA, USA). The isolated volatile
compound was identified by its mass spectrometry fragment, matched with the National
Institute of Standards and Technology (NIST search 2.3) and the Human Metabolome
Database (HMDB), assisted by the mixture of n-alkanes series (C6–C40) to compare the
experimental retention index (RI) with the values available in the NIST MS libraries. Then,
the data were taken as valid according to the relevant literature retention indices (LRIs) for
manual qualitative analysis with a similar index (SI) > 80. In addition, the content of the
volatile compound was calculated by dividing the peak area of the isolated compound by
the peak area of the internal standard.

5.5. UHPLC-Orbitrap-MS Analysis

UHPLC-MS/MS analysis was performed on a Thermo Fisher Q Exactive Plus mass
spectrometer (Waltham, MA, USA; Thermo, Bremen, Germany) equipped with a heated
electrospray ionization (HESI) ion source, using a Thermo Scientific Vanquish ultra-high-
performance liquid chromatography (UHPLC) system (Thermo Fischer Scientific, Bremen,
Germany). Chromatographic separation was performed on a Waters CORTECS T3 Column
(2.7 µm, 2.1 mm× 100 mm) from Waters Corporation (Milford, MA, USA). The temperature
of the autosampler and column was set at 10 ◦C and 40 ◦C, respectively. The flow rate in
gradient mode was 0.4 mL/min. The mobile phase was acidified water (0.04% acetic aicd
in water, v/v) (mobile phase A) and acidified acetonitrile (0.04% acetic acid in acetonitrile,
v/v) (mobile phase B). The linear gradient of mobile phase B was 5–95% within 0–10 min,
95% within 10–11 min, 95–5% within 11–11.1 min, and 5% within 11.1–15 min (total run
time: 15 min). The samples (2 uL) were injected onto the system and analyzed in the
positive electrospray ionization (ESI) mode. The mass spectrometer performed full MS and
ddMS2 scans. Full MS scan optimized acquisition parameters were: resolution 70,000 full
width at half maximum (FWHM); Automatic Gain Control (AGC) target 3× 106; maximum
injection time 100 milliseconds (IT, the maximum time allowed to obtain the set AGC
target); and scan range 120–1800 m/z. DdMS2 scan optimized acquisition parameters
were: resolution 35,000 FWHM; AGC target 1 × 105; maximum IT 50 milliseconds; loop
count 12 and MSX count1 (TopN 12); isolation window in quadrupole 3 m/z; and specific
normalized collision energy (NCE) for each precursor m/z in 20, 40, 60: Dynamic exclusion
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auto. During acquisition, the mass spectrum was collected by the Xcalibur 4.1 software
(Thermo Fisher Scientific, San Jose, CA, USA) for metabolomic analysis.

5.6. UHPLC-TQ-MS Analysis

For each sample, three biological replicates were independently analyzed. The UHPLC-
MS/MS analysis was carried out using a 7500 triple quadrupole-linear ion trap mass spec-
trometer (AB Sciex, Framingham, MA, USA). The analytical conditions were as follows:
HPLC column, Waters ACQUITY UPLC HSS T3 C18 (1.8 µm, 2.1 mm × 100 mm); sol-
vent system, water (0.04% acetic acid): acetonitrile (0.04% acetic acid); gradient program,
95:5 v/v at 0 min, 5:95 v/v at 11.0 min, 5:95 v/v at 12.0 min, 95:5 v/v at 12.1 min, 95:5 v/v at
14.0 min; flow rate, 0.35 mL/min; temperature, 40 ◦C; injection volume: 2 µL. The effluent
was alternatively connected to an ESI-triple quadrupole-linear ion trap (Q TRAP)-MS.
Linear ion trap (LIT) and triple quadrupole (QQQ) scans were acquired on an ESI 7500
QTRAP LC/MS/MS System, equipped with an ESI turbo ion-spray interface operating in
a positive ion mode and controlled by Sciex OS 2.1.6 software (AB Sciex). The operating
parameters of the ESI source were as follows: ion source, turbo spray; source temperature,
500 ◦C; ion-spray (IS) voltage, 2500 V; ion source gas I (GSI), gas II (GSII), and curtain gas
(CUR) set at 45, 75, and 45.0 psi, respectively; and collision gas (CAD) set at 11 psi. Instru-
ment tuning and mass calibration were performed with 10 and 100 µmol/L polypropylene
glycol solutions in the QQQ and LIT modes, respectively. QQQ scans were acquired in
multiple reaction monitoring (MRM) mode, and the collision energy (CE) for individual
MRM transitions was determined and further optimized. A specific set of MRM transitions
was monitored for each stage in accordance with the metabolites eluting during that stage.

After obtaining the metabolite spectrum analysis data of different samples, we used
MultiQuant 3.0.3 to perform peak area integration on the mass spectrum peaks of all
metabolites to obtain the content of the metabolites in these samples. And analyzed the
mass spectrum peaks according to the metabolite retention time and peak shape information
to ensure the accuracy of the quantification.

5.7. Metabolome Data Analysis

The filtered data were submitted to Simca-P software (version 13.0, Umetrics AB,
Umea, Sweden) for unsupervised PCA and OPLS-DA. Hierarchical clustering analysis
of the metabolites between the samples was performed using R software (R version 4.0.
www.r-project.org (accessed on 1 October 2021)). For identifying DAMs, a fold change ≥ 2
or a fold change ≤ 0.5 was used as the screening criteria.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo12080691/s1: Figure S1. The graphical abstract of this article as follows;
Figure S2. Differences in ester content in coconut flesh between two varieties (HT and GD) over
three growth stages. Student’s t test was performed (ns: not significant, ** p < 0.01, *** p < 0.001);
Figure S3. PCA score plot of LC-MS metabolomes between two varieties of coconut over three growth
stages; Figure S4. Differences in amino acid relative content between two coconut varieties over
three growth stages. Student’s t test was performed (ns: not significant); Figure S5. Differences in
vitamin relative content between two coconut varieties over three growth stages. Student’s t test
was performed (ns: not significant, * p < 0.05, ** p < 0.01, *** p < 0.001); Table S1. Characterization
of volatiles from two coconut varieties over three growth stages by GC-MS; Table S2. Quantitative
results of volatiles from two coconut varieties over three growth stages by GC-MS; Table S3. Statis-
tics of differentially accumulating volatiles from two coconut varieties over three growth stages;
Table S4. Characterization of compounds from two coconut varieties over three growth stages by
LC-MS; Table S5. Quantitative results of metabolites from two coconut varieties over three growth
stages by LC-MS; Table S6. Statistics of differentially accumulating metabolite from two coconut
varieties over three growth stages.
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