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ABSTRACT

Most human genes generate multiple transcript iso-
forms. The differential expression of these isoforms
can help specify cell types. Diverse transcript iso-
forms arise from the use of alternative transcrip-
tion start sites, polyadenylation sites and splice
sites; however, the relative contribution of these pro-
cesses to isoform diversity in normal human phys-
iology is unclear. To address this question, we in-
vestigated cell type-dependent differences in exon
usage of over 18 000 protein-coding genes in 23
cell types from 798 samples of the Genotype-Tissue
Expression Project. We found that about half of
the expressed genes displayed tissue-dependent
transcript isoforms. Alternative transcription start
and termination sites, rather than alternative splic-
ing, accounted for the majority of tissue-dependent
exon usage. We confirmed the widespread tissue-
dependent use of alternative transcription start sites
in a second, independent dataset, Cap Analysis of
Gene Expression data from the FANTOM consor-
tium. Moreover, our results indicate that most tissue-
dependent splicing involves untranslated exons and
therefore may not increase proteome complexity.
Thus, alternative transcription start and termination
sites are the principal drivers of transcript isoform di-
versity across tissues, and may underlie the majority
of cell type specific proteomes and functions.

INTRODUCTION

Alternative splicing, alternative promoter usage and alter-
native polyadenylation enable the generation of multiple
transcript isoforms from a single gene (1–3). In mammalian
genomes, at least 70% of genes have multiple polyadenyla-

tion sites, >50% of genes have alternative transcription start
sites and nearly all genes undergo alternative splicing (4–7).
Hence, these molecular processes have the potential to sub-
stantially increase the repertoire of transcripts, proteins and
functions encoded by mammalian genomes (8–10).

Alternative transcript isoforms regulate important bio-
logical processes (11,12), and their mis-expression is asso-
ciated with diseases, including cancer (13–16). For dozens
of genes, alternative transcripts yield alternative proteins
with distinct protein interactions, subcellular localization,
stability, DNA-binding properties, lipid-binding properties
or enzymatic activity (17,18). Recently, it was reported that
the majority of alternatively spliced RNAs bind to ribo-
somes (19), suggesting that they are translated. This finding
suggests that the currently known instances of functional
protein isoforms could be the tip of an iceberg. However,
most alternative exons do not appear to be under selective
pressure and show reduced cross-species conservation (20).
Furthermore, analyses of protein structures and functional
features predict that most alternative transcript isoforms
would encode proteins with disrupted structures and func-
tions (21). Indeed, large-scale proteomics surveys indicate
that the abundance of isoforms with disrupted domains, if
not zero, is generally below levels that can currently be de-
tected with high confidence (22,23). This raises the possi-
bility that the function of a large proportion of transcript
isoforms, if any, is on the level of the RNA rather than the
protein.

If alternative transcript isoforms function primarily at
the mRNA level, one might expect an important role of
alternative transcription start and stop sites, since 3′ and
5′ untranslated regions (UTRs) frequently enhance post-
transcriptional regulation by fine-tuning the stability and
translation of mRNAs (24–27). Alternative transcription
start and stop sites have been reported to contribute to iso-
form diversity more than alternative splicing, based on anal-
yses of transcript annotation databases (28) and of mouse
cerebellar development (29).
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Previous studies have characterized various aspects of
isoform regulation across human tissues. For example, a re-
cent study analyzed 16 RNA-seq samples from the Illumina
Body Map and found that for 10–20% of exon-skipping
events, splicing ratios differed between any two given tis-
sues (30). Using the same data, another study analyzed the
expression of exon–exon junctions and found that 65% of
expressed genes contain at least one tissue-specific exon–
exon junction (31). By profiling transcriptional cleavage
sites, it has been shown that tissue-specific usage of alter-
native cleavage sites is prevalent (32). While tissue-specific
genes tend to have a single transcription cleavage site, genes
that are ubiquitously expressed across tissues have multi-
ple cleavage sites, suggesting that the selection of alternative
cleavage sites has an important role in the modulation of
RNA abundances (24). Similarly, using a protocol to quan-
titatively assay transcription start sites across 975 human
samples, it was shown that the majority of protein-coding
genes contain multiple tissue-dependent transcription start
sites (4,8). Supplementary Table S1 contains a summary
of samples, methods and main findings from recent stud-
ies that analyze transcript differences between human tis-
sues. Although these studies characterized tissue-associated
differences in either splicing, start sites or cleavage sites, it
remains unclear what is the balance of contributions from
each of these isoform-generating processes to transcript iso-
form differences across cell types.

Here, we developed an analytical strategy to approach
this question using data from 23 cell types across 94 indi-
viduals from the largest collection to date of tissue tran-
scriptomes established by the Genotype-Tissue Expression
(GTEx) Project V6 (33). We found that there is tissue-
specific regulation of alternative transcript isoform choice
for a large fraction of the human genome, affecting about
half of multi-exonic genes. The majority of these events can-
not be explained by alternative splicing; rather, most appear
to arise from alternative usage of transcription start and
termination sites. Integration of data from the Functional
Annotation of The Mammalian Genome (FANTOM) con-
sortium (8) confirmed prevalent tissue-dependent usage of
alternative transcription start sites. We also found that al-
though tissue-dependent alternative splicing generates a
large diversity of RNA isoforms, most of this diversity
is unlikely to be reflected at the proteome level. Further-
more, our results suggest that alternative transcript start
and polyadenylation sites play an important role in estab-
lishing cell type specificity.

MATERIALS AND METHODS

Data processing and sample selection

We downloaded and decrypted the GTEx data using the
Short Read Archive Toolkit software. We used genomic and
annotation files of the human reference genome version
GRCh38 as provided by release 84 of ENSEMBL (34). To
avoid mapping biases, we standardized the read length of
all samples. Since most samples consisted of reads of 76
nucleotides (nt), we trimmed the reads to 76 nt for sam-
ples with longer reads and excluded samples with shorter
read lengths. Next, we mapped the resulting reads to the

human reference genome using STAR v2.4.2a (35). We pro-
vided the aligner with annotated exon–exon junctions and
followed the recommended ‘2-pass alignment’ pipeline to
optimize mapping accuracy. We excluded samples with <1
000 000 reads mapping uniquely to the reference genome as
well as those samples where less that 60% of the reads could
be assigned to a unique position in the reference genome.
Since the GTEx data did not contain the samples for all tis-
sues of each individual, we defined three large subsets of
samples that would enable us to analyze each subset as a
fully crossed design (containing all tissue-individual combi-
nations) while at the same time keeping as many different
individuals and tissues as possible. A description of these
subsets, which comprised a total of 798 samples, is given in
the ‘Results’ section.

Based on the transcript isoform annotations, we defined
reduced gene models with non-overlapping exonic regions
(36) using the HTSeq (37) python scripts from the DEXSeq
package. Importantly, reduced gene models enabled us to
unambiguously assign reads to exonic regions. For each of
the 798 samples, we tabulated the reads to each exonic re-
gion. Only reads mapping uniquely to the reference genome
were considered for further analysis.

Relative exon usage coefficients

We modeled the counts using generalized models of the
Gamma-Poisson family for each subset of the GTEx data
(36,38). We denoted kij1 as the number of reads mapping to
exonic region i in sample j. When estimating Relative Exon
Usage Coefficients (REUCs), kij0 denoted the sum of reads
mapping to exonic regions of the same gene as exonic region
i but excluding exonic region i (Figure 1B). kij0 and kij1 are
realizations of a random variable Kijl that is modeled by a
Gamma-Poisson distribution,

Ki jl ∼ GP(mean = s j μi j l ; dispersion = αi l ), (1)

where sj is a scaling factor that accounts for between-sample
differences in sequencing depth and �il is the dispersion pa-
rameter that describes the spread of the count data distribu-
tion. sj is estimated using the DESeq method (39) and �il is
estimated as in DEXSeq (36). The mean �ijl was predicted
by the model:

log μi j l = βS
i j + lβE

i + lxsex
j βsex

i + lβREUC
i,u( j ),t( j ), (2)

where l = 1 when referring to the exonic region i and l = 0
when referring to the counts from the rest of the exons of
the same gene. The coefficients of the model are explained
as follows:

(i) The coefficient βS
i j represents overall gene expression

effects on sample j.
(ii) Since βE

i is only included when l = 1, it estimates the
mean across samples of the logarithmic ratio between
the counts from exon i with respect to the counts of
the rest of the exons of the same gene (i.e. Kij1/Kij0).
Therefore, this coefficient is a measure of the average
exon usage across all samples.

(iii) The coefficient βsex
i captures sex-dependent differences

in exon usage. Including it in the model prevents con-
founding in situations of unbalanced sex distribution
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Figure 1. Quantification of exon usage. (A) Exemplary gene model in the reference genome (green) and alignments of RNA-seq reads (upper panel).
Sequenced fragments whose alignments fall fully into an exonic region are shown by a gray box; alignments that map into two (or more) exonic regions
are shown by shorter gray boxes connected by a horizontal line. For a particular exon (highlighted in orange), we consider two strategies to quantify its
usage, as illustrated in Panels (B and C) (see ‘Materials and Methods’ section for the formal description). The first strategy is illustrated in Panel B, where
sequenced fragments are counted into two groups: those that map fully or partially to the exon (�) and those that map to the rest of the exons (ε). �REUC

is defined as the ratio between � and ε, and the REUC for the exon in sample j is computed as the ratio between �REUC in that sample to the mean �REUC

across all samples. Panel C illustrates the second strategy, where sequenced fragments are also counted into two groups: those that map fully or partially to
the exon (�) and those that align to exons both downstream and upstream of the exon under consideration (� ). The latter represent transcripts from which
the exon was spliced out. �RSIC is then defined as the ratio between � and � . The relative spliced-in coefficient (RSIC) for the exon in sample j is the ratio of
�RSIC in this sample to the mean �RSIC across all samples. Note that while differences in exon usage due to alternative splicing are reflected in both REUCs
and RSICs, differences due to alternative transcription or termination are only reflected in REUCs. (D) Heatmap representations of the REUCs for three
exonic regions (E004, E005 and E006) of the gene 5-Aminolevulinate Synthase 1, computed using subset A of the GTEx data. The rows of the heatmaps
correspond to the eight tissues, and each column corresponds to one individual. The horizontal color patterns of exon E005 indicate elevated inclusion of
cerebellum and cerebellar cortex as compared to the rest of the brain cell types. (E) RNA-seq samples from two cell types (cortex and cerebellum) from
individual 12ZZX (also indicated by the arrows below each heatmap in Figure 1D) are displayed as sashimi plots. The three exonic regions presented in
Panel D are shown. The middle exon, E005, is an untranslated cassette exon (ENSEMBL identifier ENSE00002267562) that is spliced out more frequently
in cortex than in cerebellum.

among the individuals, and reduces noise otherwise. In
the Generalized Linear Model (GLM) model matrix,
xsex

j takes the value of −1/2 if sample j is from a male
individual and 1/2 if sample j is from a female indi-
vidual. Thus, this coefficient estimates the logarithmic
fold change of the usage of exonic region i for each sex
with respect to the average exon usage.

(iv) The REUC, βREUC
i,u( j ),t( j ), is the interaction coefficient be-

tween individual u( j ) and tissue t( j ) from which sam-
ple j was taken. For exonic region i, the coefficient
βREUC

i,u( j ),t( j ) thus estimates the logarithmic fold change in
exon usage for each individual-tissue combination with
respect to the average exon usage.

The REUCs are subjected to an empirical Bayes shrink-
age procedure in order to improve their precision (38,40).
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Relative spliced-in coefficients

To estimate relative spliced-in coefficients (RSICs), we used
Equations (1) and (2) to model a modified read counting
scheme. kij1 remains the same as for the REUCs fit but kij0
(i.e. l = 0) now denotes the number of reads supporting
the splicing out from transcripts of exonic region i (Figure
1C). For exonic region i, the coefficient βE

i from Equation
(2) now measures the mean across samples of the logarith-
mic ratio between the number of reads supporting the splice
in of exonic region i and the number of reads supporting
the splice out of exonic region i (i.e. the average spliced-in
(SI) coefficient). The coefficient βsex

i for exonic region i now
measures the change of SI between each sex with respect
to the average SI. The RSIC for exon i, βRSIC

i,u( j ),t( j ), measures
the logarithmic fold change in the exon’s SI for each tissue-
individual combination with respect to the average SI. As
for the REUCs, the RSICs are also subjected to the em-
pirical Bayes shrinkage procedure to eliminate the mean-
variance trend (38).

Changes in exon usage driven by alternative splicing are
reflected in both REUCs and RSICs. Changes in exon us-
age due to alternative initiation or termination sites of tran-
scription, which do not result in exon–exon junction reads,
are only reflected by RSICs.

Estimation of tissue-dependance score

For each exonic region on each subset of the data, we esti-
mated a score based on the REUCs to measure to what ex-
tent the usage of each exonic region was tissue-dependent.
First, the REUCs of a given exonic region i were expressed
as the number of standard deviations away from the median
of the exon’s REUCs,

Ziut =
βREUC

iut − median
u,t

(βREUC
iut )

σ
u,t

(βREUC
iut )

. (3)

Then, the tissue-dependence score for exonic region i was
defined by:

Ti = max
t

{ ∣∣∣∣∣
1
m

m∑
u=1

Ziut

∣∣∣∣∣
}
, (4)

with m being the number of individuals on the data subset.

Analysis of variance of REUCs and RSICs

For each exonic region on each subset of the data, we fitted
an analysis of variance model,

βREUC
iut = β0

i + βIndividual
iu + βTissue

i t + εiut, (5)

using ordinary least squares regression to minimize the
residual sum of squares (RSS),

RSSi =
∑
u,t

ε2
iut =

∑
u,t

(βREUC
iut − β̂REUC

iut )2, (6)

where β̂REUC
iut are the REUC values predicted by the model.

In order to estimate the coefficient of partial determination

(R2) for the tissue predictor (i.e. the proportion of total vari-
ance that can be attributed to variance across tissues), we
fitted a reduced model lacking the βTissue

i t term,

βREUC
iut = β0

i + βIndividual
iu + εiut. (7)

The R2 for a given exon i was then calculated by,

R2
i = 1 − RSSi (full)

RSSi (reduced)
, (8)

where, RSSi(full) is the RSS from the full model (i.e. Equa-
tion (5)) and RSSi(reduced) is the RSS from the reduced
model (i.e. Equation (7)). The same procedure was followed
to estimate R2 on the RSICs but using βRSIC

iut as the response
variable in Equation (5) and in Equation (7).

Genomic analyses

To test for over-representation of features among the genes
with tissue-dependent usage (TDU), we used the R CRAN
package MatchIt (41) to generate background sets of genes
with the same distribution of expression strength and num-
ber of exonic regions as the genes with TDU. Genes were
classified according to ENSEMBL annotations and we used
a � 2-test for differences between genes with TDU and the
background set of genes. Gene biotypes were retrieved from
ENSEMBL using the Bioconductor (42) package biomaRt
(43). For enrichment of features among exons with TDU,
we also used MatchIt to generate background sets of exons
with the same distribution of expression strength and exon
widths. We tested for differences between exons with TDU
and the background set of exons using a � 2-test.

Operations on genomic ranges were done using the Bio-
conductor package GenomicRanges (44). Data visualiza-
tions and graphics were generated using the Bioconductor
packages ggplot2 (45) and Gviz (46).

RESULTS

Quantitative analysis of transcript isoform regulation across
tissues.

To evaluate the scope and regulation of differential tran-
script isoforms in humans, we analyzed transcriptome data
(RNA-seq) from the V6 release of the GTEx project (33).
The overall dataset comprises 9795 RNA-seq samples from
54 tissues from a total of 551 human individuals. Since
the dataset does not contain each tissue for each individ-
ual, we identified subsets of data that could be analyzed
as fully crossed designs (i.e. contained all possible tissue-
individual combinations). We mapped the sequenced frag-
ments to the human reference genome version GRCh38, ob-
tained from ENSEMBL release 84 (34), using the aligner
STAR v2.4.2a (35). We excluded samples where the number
of reads mapping uniquely to the reference genome was be-
low 1 000 000 or where the percentage of uniquely mapping
reads was below 60%. Using these data quality criteria, we
defined three subsets of GTEx data for our analyses. Subset
A consisted of eight brain cell types (frontal cortex [BA9],
nucleus accumbens, putamen, cortex, cerebellum, caudate,
cerebellar hemisphere and hippocampus) across 30 individ-
uals. Subset B included nine tissues (skeletal muscle, thy-
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roid, whole blood, lung, subcutaneous adipose, skin, tibial
artery, tibial nerve and esophagus [mucosa]) from 34 indi-
viduals. Subset C comprised six tissues (heart, aorta, esoph-
agus [muscularis], pancreas, colon and stomach) from 42
individuals. These subsets were non-overlapping, and alto-
gether our analysis employed 798 unique samples from the
GTEx dataset.

For each gene, we determined its non-overlapping ex-
onic regions (36) based on the ENSEMBL transcript an-
notations (‘Materials and Methods’ section). We obtained
499 667 non-overlapping exonic regions in 35 048 multi-
exonic genes, of which 412 116 belonged to 18 295 protein-
coding genes. For each subset, we computed two measures
of exon usage per exonic region: REUCs (38) and RSICs.
Both coefficients measure exon usage in a specific tissue in
a particular individual relative to the average exon usage
across all tissues and individuals (‘Materials and Methods’
section). The REUC defines exon usage as the fraction of
sequenced fragments that map to the exonic region among
all fragments mapping to the rest of the exonic regions from
the same gene. In contrast, the RSIC measures the fraction
of sequenced fragments that map to the exonic region com-
pared to the number of reads that support the skipping of
that exonic region via alternative splicing (Figure 1C). Note
that differences in exon usage due to alternative splicing are
reflected in both REUCs and RSICs (Figure 1B and C).
Changes in exon usage due to alternative transcription ini-
tiation sites or alternative polyadenylation sites, which do
not result in exon–exon junction reads, are only reflected in
REUCs (Figure 1D).

We exemplify the analysis on the 5-Aminolevulinate Syn-
thase 1 (ALAS1) gene (Figure 1D and E). ALAS1 encodes
an enzyme required for the biosynthesis of heme, a co-
factor essential for the proper function and differentiation
of many cell types, including those of the hematopoietic,
hepatic and nervous systems (47). Induction of ALAS1 has
been associated with acute attacks of porphyria disease (48).
By exploring the REUCs for ALAS1, we found that a 5′ un-
translated exon was included more frequently in the tran-
scripts generated in cerebellum and cerebellar hemisphere
than in the other brain cell types (E005, Figure 1D). The
same pattern of TDU was also evident from the RSICs
(Supplementary Figure S1), which indicates that the TDU
pattern is a consequence of alternative splicing rather than
alternative transcription initiation or termination (Figure
1E). ALAS1 transcripts that include this 5′ exon are resis-
tant to heme-mediated decay, and their translation is inhib-
ited in cultured cells (49). The detected splicing pattern sug-
gests that ALAS1 is post-transcriptionally regulated differ-
ently in cerebellum than in the rest of the brain.

To further validate our quantitative approach on the
GTEx data, we compared our results to a series of tissue-
dependent splicing events that were previously character-
ized based on different data, different experimental as-
says and/or different computational methods. We show ten
such cases in the Supplementary Material, involving the
genes SLC25A3 (6) (Supplementary Figure S2), MEF2C
(50) (Supplementary Figure S3), ANK3 (51) (Supplemen-
tary Figure S4), SGCE (52) (Supplementary Figure S5),
MYO1C (53) (Supplementary Figure S6), KSR1 (54) (Sup-
plementary Figure S7), ATP11B (55) (Supplementary Fig-

ure S8), TPD52 (55) (Supplementary Figure S9), ATP5C1
(56) (Supplementary Figure S10) and NDUFV3 (57) (Sup-
plementary Figure S11). These examples demonstrate how
REUCs and RSICs capture tissue-dependent patterns of
exon usage that had been previously characterized using dif-
ferent experimental and computational approaches.

Tissue-dependent usage of exons is widespread in humans.

We observed multiple instances of tissue-dependent exon
usage analogous to that for the ALAS1 gene. To investi-
gate how widespread this phenomenon is across the human
genome, we defined a tissue score based on the REUCs that
measures the strength of TDU of an exonic region (‘Mate-
rials and Methods’ section). Based on this, we considered
an exonic region to be tissue-dependent if its differential us-
age pattern was statistically significant at a false discovery
rate (FDR) of 10%, according to the DEXSeq method (36),
and if it had a tissue score >1. We found that 23% of the
exonic regions (116 601 out of 499 667; Supplementary Fig-
ure S13) and 43% of the genes displayed TDU in at least
one of the three GTEx subsets. Specifically, TDU was ob-
served for 9% (47 659/499 667) of exonic regions and 28%
(9839/35 048) genes in subset A, 15% (76 562/499 667) of
exonic regions and 35% (12 295/35 048) of genes in sub-
set B, and 6% (30 719/499 667) of exonic regions and 20%
(7025/35 048) of genes in subset C (Figure 2A and Supple-
mentary Figure S12). For highly expressed genes, defined
as those with an average of at least 100 sequenced frag-
ments, these fractions were even larger (Supplementary Ta-
ble S2). For example, 65% of highly expressed genes within
subset A (8741/13 535) showed differential usage of at least
one exonic region. Furthermore, the set of genes with TDU
was enriched for protein-coding genes compared to a back-
ground set of genes matched for expression strength and
number of exonic regions (P-value < 2.2 · 10−16, odds-ratio
= 3.4; Supplementary Table S3), suggesting that TDU plays
a substantial role in regulating the tissue specificity of the
proteome.

We next investigated the nature of transcript isoform dif-
ferences between tissues. For each gene containing exons
with TDU, we estimated the fraction of exonic regions that
were subject to TDU and the fraction of altered exonic
nucleotides. For most tissue-dependent genes, a relatively
small fraction of exons displayed TDU (Figure 2B, Figure
2C and Supplementary Figure S14). For instance, <25% of
exonic regions were differentially regulated in 70% of the
subset A genes with TDU. Further, <25% of nucleotides
were affected in 53% of the subset A genes with TDU
(Supplementary Table S4). The remaining cases, where a
larger fraction of the gene displayed tissue-dependent reg-
ulation, reflected the expression of substantially different,
tissue-specific isoforms. For example, all 27 exonic regions
of the gene Erythrocyte Membrane Protein Band 4.1 Like
4B (EPB41L4B) showed similar expression in tibial nerve
and skeletal muscle, which was distinct from the other tis-
sues in subset B of the GTEx (Supplementary Figures S15
and S16). This pattern can be explained by the two an-
notated transcript isoforms of the gene: whereas most cell
types in subset B tend to express the short isoform, tibial
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Figure 2. Tissue-dependent exon usage is widespread in the human genome. Panels (A–C) show data from subset A of the GTEx data. The same plots using
data from subsets B and C can be found in Supplementary Figures S12 and S14. (A) Similar to a volcano-plot, this figure shows statistical significance
(P-value on −log10 scale) versus effect size (tissue score) of our tissue-dependence test for each exonic region of the human genome. The solid red lines
show the thresholds used in this study to call an exonic region tissue-dependent. The P-value threshold 4.28 · 10−2 corresponds to an adjusted P-value of 0.1
according to the Benjamini–Hochberg method to control FDR. (B) Histogram of the fraction of exonic regions within each gene that are subject to TDU
(X-axis). The Y-axis shows the number of genes. (C) Similar to Panel B, but expressed in terms of fraction of base-pairs within a gene affected by TDU. (D)
Exemplary data from four out of nine tissues of individual 131XE from subset B. Shown is RNA-seq coverage (Y-axis) plots along genomic coordinates
(X-axis) at the locus of the gene EPB41L4B on chromosome 9. The lower panel shows the transcript annotations for this gene. Skin and thyroid express
short isoforms, while tibial nerve and skeletal muscle express longer isoforms.

nerve and skeletal muscle preferentially express the longer
isoform (Figure 2D).

Thus, transcript isoform regulation across tissues is per-
vasive across the human genome, particularly for protein-
coding genes. In general, a small proportion of exons and
nucleotides of genes are changed in tissue-dependent iso-
forms.

Alternative transcriptional initiation and termination drive
most transcript isoform differences between tissues.

The example of EPB41L4B shows tissue-dependent expres-
sion of transcript isoforms that is driven not by alterna-
tive splicing, but by the usage of an alternative polyadeny-
lation site, here also referred to as transcription termina-
tion site (Figure 2D). Therefore, we asked what fraction of
exon TDU is driven by alternative splicing versus alterna-
tive transcription start or termination sites. For each ex-
onic region, we searched for evidence of alternative splic-
ing by counting the number of sequenced fragments that
supported exon skipping in each sample (Figure 1C). We
found that a minor fraction of exonic regions with TDU
had appreciable evidence of being spliced out from tran-
scripts (Supplementary Table S5). For instance, the mean

of read counts supporting exon skipping was larger than 10
in only 30% (9282) of the exonic regions with TDU in sub-
set C. On the other hand, 53% (16 385) showed no or only
weak evidence of being alternatively spliced (Figure 3A and
Supplementary Figure S17). We estimated that alternative
splicing explains tissue-dependent transcript differences for,
at most, 35% of the genes (Supplementary Table S6).

As a second line of evidence, we quantitatively compared
the relative exon usage and SI coefficients (REUCs and
RSICs, as defined above). For each exonic region and each
subset of the GTEx data, we fit two analysis-of-variance
models, one for the REUCs and one for the RSICs, using
tissues and individuals as categorical covariates. We deter-
mined the coefficient of partial determination (R2) of the
tissue covariate for each fit. A large value of R2 in the RSIC
fit indicates that the TDU arises only from alternative splic-
ing. Conversely, a large R2 in the REUC fit indicates that the
TDU arises from alternative splicing, alternative transcrip-
tion initiation sites or alternative transcriptional termina-
tion sites. The REUCs and the RSICs were highly correlated
for the minority of exonic regions with TDU that also had
strong evidence of alternative splicing, and their R2 statis-
tics were in good agreement, confirming that the TDU was
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Figure 3. Alternative splicing underlies only a minor fraction of exons with TDU, while the rest are consistent with alternative transcription start or stop
sites. The three panels show data from subset A of the GTEx data. Analogous plots for subsets B and C are shown in Supplementary Figure S17. (A) The
heights of the bars show the number of exonic regions with TDU, grouped according to the number of reads that support their splicing out from transcripts.
Most exonic regions with TDU have either no or weak evidence of being spliced out from transcripts (bar colored in pink salmon). The bar colors serve
also as color legends for Figure 3B and C. (B) Each point represents one of the 47 659 exonic regions that were detected to be used in a tissue-dependent
manner. The X-axis shows the fraction of REUC variance that is attributed to variance between tissues (R2). Analogously, the Y-axis shows the R2 statistic
for the RSICs. Exonic regions with strong evidence of being spliced out from transcripts (purple points) lay along the diagonal. (C) Cumulative distribution
functions of the Pearson correlation coefficients between the REUCs and the RSICs are shown for exonic regions with TDU. The regions are stratified
according to the number of sequenced fragments supporting their splicing out from transcripts. The REUCs and RISCs are highly correlated for the minor
fraction of exons that have strong evidence of being spliced out from transcripts (purple line).

due to alternative splicing (Figure 3B and C; Supplemen-
tary Figure S17). Nevertheless, for the majority of exonic
regions with TDU, the TDU was consistent with alterna-
tive transcription initiation and termination sites.

Analysis of CAGE data confirms prevalent tissue-dependent
usage of alternative transcription start sites.

To further investigate the hypothesis that alternative start
sites substantially drive transcript isoform diversity across
tissues, we analyzed the Cap Analysis of Gene Expression
(CAGE) data from the FANTOM consortium (8). These
data provide genome-wide quantitative information of tran-
scriptional start sites (TSS) for many cell types. For each
subset of the GTEx data, we generated a subset of FAN-
TOM samples with the same composition of cell types (as
long as the samples existed and had replicates). For in-
stance, based on the cell types from subset A of the GTEx
data, we selected a set of FANTOM samples consisting
of caudates, cerebellums, cortexes, hippocampus and puta-
mens. Then, for each of the three subsets of the FANTOM
data, we tested each gene for changes in the relative usage
of alternative TSS across cell types. At a false discovery rate
of 10%, we found 2402, 6763 and 2778 genes with TDU of
TSS across subsets A, B and C, respectively. Furthermore,
the three lists of genes with differential TSS usage were in
very good agreement with the counterpart lists of genes
with TDU from the GTEx subsets (Supplementary Table
S7). When considering the genes with differential TSS us-
age across cell types, 79% (1904) of subset A, 80% (5427) of
subset B and 60% (1657) of subset C also showed transcript
isoform regulation in the corresponding GTEx subsets.

Figure 4 shows three examples of genes with tissue-
dependent exon usage patterns that were explained by the
usage of an alternative TSS. The first example, from sub-
set A, is Growth Arrest Specific 7 (GAS7, Supplementary
Figure S18). From the coverage of sequenced RNA frag-
ments along the genome, we suspected that transcription
initiated more downstream in cerebellum as compared to

cerebral cortex. The CAGE data revealed five major clus-
ters of TSS for GAS7, of which two were strongly used in
cerebral cortex and were practically absent from cerebel-
lum (Figure 4A). The differential usage of these two TSS
clusters explained the upstream transcription seen in cere-
bral cortex that was not observed in cerebellum. Similarly,
by exploring the data for the gene Keratin 8 (KRT8) in sub-
set B, we found patterns of TDU that were very prominent
in thyroid tissue compared to subcutaneous adipose tissue
(Supplementary Figure S19). These patterns of TDU were
explained by the usage of a TSS located in the middle of the
gene body that resulted in the expression of shorter tran-
script isoforms. This internal TSS of KRT8 was used very
frequently in thyroid tissue and was absent in subcutaneous
adipose tissue (Figure 4B). We found the exact same pattern
for the gene Nebulette (NEBL) in subset C of the data. For
this gene, the usage of an internal TSS resulted in transcript
isoforms that excluded several 5′ exons. This internal TSS
was used very frequently in heart tissue, whereas it was ab-
sent in pancreas tissue (Figure 4C and Supplementary Fig-
ure S20).

Our integrative analysis of two orthogonal sources of
data (independent samples, different technologies) confirms
that there is an abundance of alternative TSSs that are used
in a tissue-dependent manner and that result in TDU.

Tissue-dependent splicing of protein-coding exons is rare

Next, we asked which regions of genes were subject to
tissue-dependent exon usage. We integrated information
from the ENSEMBL and APPRIS databases to annotate
each exonic region. Importantly, APPRIS uses information
about protein structures, functional data, selective pressure
analyses and cross-species conservation to infer which tran-
script isoforms are likely to encode functional proteins and
flags these as principal isoforms, whereas the rest of the
transcripts are marked as non-principal isoforms (21).

Using these sources of information, we classified each ex-
onic region into five categories: (i) exonic regions encoding
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Figure 4. Integration of RNA-seq and CAGE data. Each panel displays an example of a gene where the usage of alternative transcription start sites
explains the patterns of TDU. (A) Coverage tracks (Y-axes) of RNA-seq and CAGE data for cerebral cortex and cerebellum are shown along the genomic
coordinates (X-axis) of the locus of gene GAS7, located on chromosome 17. The upper two tracks show RNA-seq data from individual 12ZZX. The lower
two tracks show mean CAGE counts (on log2 scale) for each annotated TSS. Cortex uses two transcription start site clusters (see red arrows) that are absent
in cerebellum. The differential usage of these two TSS explains the upstream RNA-seq coverage seen in cortex. (B) Analogous to Figure 4A, showing data
of thyroid and subcutaneous adipose tissue along the genomic coordinates of the KRT8 locus on chromosome 12. The RNA-seq data are from individual
11EI6. The internal TSS cluster that is indicated by the red arrow is strongly used in thyroid tissue, resulting in the expression of short transcript isoforms.
(C) Same as in Figure 4A, but showing data of heart and pancreas along the genomic coordinates of the NEBL locus on chromosome 10. The RNA-seq
data corresponds to the individual ZF29. In heart, the usage of an internal TSS (indicated by the red arrow) results in the expression of transcript isoforms
that exclude several 5′ exons of the gene.

principal isoforms, (ii) exonic regions encoding only non-
principal isoforms, (iii) 5′ untranslated exonic regions (5′
UTR), (iv) 3′ untranslated exonic regions (3′ UTR) and
(v) untranslated exons belonging to non-coding processed
transcripts. Then, for each subset of the GTEx data, we gen-
erated a background set of exons with the same distribu-
tions of mean counts and exon widths.

We found that the proportions among the five exon cat-
egories were different between exonic regions with TDU
arising from alternative splicing (TDU-AS), exonic regions
with TDU but no evidence of alternative splicing (TDU-
NAS) and the background sets of exons (P-value < 2.2
· 10−16, � 2-test; Figure 5A, Supplementary Figure S21
and Table S8). Exonic regions with TDU-AS were de-
pleted among those coding for principal isoforms and en-
riched among exonic regions coding for non-principal iso-
forms and 3′ UTRs. Our analysis also revealed that ex-

ons from non-coding processed transcripts, despite being
weakly expressed, were alternatively spliced very frequently
in a tissue-dependent manner (Figure 5A–C; Supplemen-
tary Figures S21 and S22).

Exonic regions with TDU-NAS showed a slight yet sig-
nificant enrichment among 5′ UTR exons compared to the
background (P-value < 1.2 · 10−7, � 2-test; Figure 5A and
Supplementary Figure S21). It also occurred frequently
among 3′ UTR regions compared to the background (P-
value < 1.2 · 10−7, � 2-test), however, we observed this only
in subsets B and C of the GTEx data (Supplementary Figure
S21).

DISCUSSION

We analyzed transcript isoform diversity across 798 human
transcriptomes covering 23 different cell types. This large
and comprehensive dataset together with the analytical ap-
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Figure 5. Alternative splicing is infrequent among coding exons. (A) The percentage of exonic regions (Y-axis) is shown for three subsets of exons: (i) exonic
regions with TDU due to alternative splicing [DEU (AS)], (ii) exonic regions with TDU without evidence of alternative splicing [DEU (NAS)] and (iii) a
background set of exons matched for expression and exon width. Each color represents a different category of exons according to transcript biotypes: exons
coding for principal transcript isoforms [Coding (PI)], exons coding for non-principal transcript isoforms [Coding (non-PI)], 5′ UTRs, 3′ UTRs and exons
from non-coding processed transcripts [Processed transcripts]. (B) Sashimi plot representation of the RNA-seq data from frontal cortex and cerebellum of
individual WL46. The lower data track shows the transcript isoforms of the gene PKD1. The transcripts are colored according to their biotype (the color
legend is the same as in Figure 5A). The highlighted exon (E051) belongs to a non-coding transcript and is differentially spliced across tissues. (C) Same as
in Figure 5B, but showing data from tibial artery and whole blood of the individual ZTPG. Transcripts from the gene MAN2B2 along chromosome 4 are
shown. The highlighted exon (E018) belongs to a non-coding transcript and is differentially spliced across tissues. (D) Same as in Figure 5B, but showing
data from esophagus tissue (muscularis) and heart tissue (left ventricle) of the individual 111YS. The lower track shows the transcripts annotated for gene
NISCH along chromosome 3. The highlighted exon (E009) belongs to a non-coding transcript and is differentially spliced across tissues.

proach illustrated in Figure 1A–C enabled us to identify al-
ternative transcription initiation and polyadenylation sites
as the principal sources of transcript isoform differences
across human cell types. It has been suggested that the reg-
ulation of gene expression levels is the main driver of cell
type specificity, with splicing playing a complementary role
(58). Our analysis suggests that alternative transcription ini-
tiation and polyadenylation sites make a sizeable contribu-
tion to cellular phenotypes in normal human physiology,
and that this contribution is more prevalent than that of
splicing. Our analysis highlights two important aspects of
RNA splicing. First, alternative splicing is not the main pro-
cess by which transcript isoform diversity is regulated across

tissues. Second, most of the splicing that is regulated dif-
ferentially across tissues affects untranslated transcripts or
non-principal isoforms, and therefore may not have direct
consequences on proteome isoform diversity.

Transcriptome-wide studies have shown that most genes
express one major isoform at high levels in a given cell type,
whereas the remaining (‘minor’) isoforms are expressed at
lower levels (9,59). Importantly, protein isoforms detected
in large-scale proteomic experiments are consistent with
both the major RNA isoforms and the principal isoforms
from the APPRIS database (20). We found that tissue-
dependent splicing is enriched among untranslated exons,
particularly among exons from non-coding transcript iso-
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forms. Further, tissue-specific splicing is depleted among ex-
ons encoding principal protein isoforms. Indeed, the exon
categories that display abundant tissue-dependent splicing
are weakly expressed. Thus, many patterns of tissue-specific
splicing could be explained by tissue-specific expression of
minor transcript isoforms. Together, these results suggest
that most tissue-dependent splicing does not contribute to
proteomic isoform diversity. Only around 15% of tissue-
dependent splicing involves exons from principal isoforms.
Although these splicing events are only a minority, they
could result in different protein isoforms if they are trans-
lated.

The remaining open question is, if tissue-dependent splic-
ing has little effects at the proteome level, what are its func-
tions at the transcriptome level? Since patterns of splicing
of untranslated exons are very frequently tissue-dependent,
it seems unlikely that these splicing events are all just noise.
A parsimonious possibility is that tissue-dependent splic-
ing plays a widespread role in post-transcriptional regula-
tion, as in the example of the gene ALAS1 (47). Recent
CRISPR-mediated interference screens identified 499 long
non-coding RNAs that were essential for cell growth, of
which 89% of these showed growth-modifying phenotypes
that were exclusive to one cell type (60). Similar screens
at the transcript isoform level would be instrumental to
evaluate the essentiality of the thousands of non-coding
and non-translated tissue-specific isoforms derived from
protein-coding loci.

Alternative usage of promoters, splice sites and
polyadenylation sites are highly interleaved (1,61). While
alternative splicing may have limited effects on protein
complexity in normal human physiology, it remains to be
seen to what extent tissue-dependent choice of alternative
start and termination sites results in truncated versions of
proteins. Furthermore, it will be important to investigate
to what extent misregulated splicing results in protein
isoforms that contribute to disease phenotypes.
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