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Background: An accurate and timely identification of bacterial species is critical in clinical
diagnostics. Species identification allows a potential first adaptation of empiric antibiotic
treatments before the resistance profile is available. Matrix assisted Laser Desorption
Ionization Time of Flight mass spectrometry (MALDI-TOF MS) is a widely used method for
bacterial species identification. However, important challenges in species identification
remain. These arise from (i) incomplete databases, (ii) close relatedness of species of
interest, and (iii) spectral quality, which is currently vaguely defined.

Methods:We selected 47 clinically relevant bacterial isolates from 39 species, which can
be challenging to identify by MALDI-TOF MS. We measured these isolates under various
analytical conditions on two MALDI-TOF MS systems. First, we identified spectral
features, which were associated with correct species identification in three different
databases. Considering these features, we then systematically compared spectra
produced with three different sample preparation protocols. In addition, we varied
quantities of bacterial colony material applied and bacterial colony age.

Results: We identified (i) the number of ribosomal marker peaks detected, (ii) the median
relative intensity of ribosomal marker peaks, (iii) the sum of the intensity of all detected
peaks, (iv) a high measurement precision, and (v) reproducibility of peaks to act as good
proxies of spectral quality. We found that using formic acid, measuring bacterial colonies
at a young age, and frequently calibrating the MALDI-TOF MS device increase mass
spectral quality. We further observed significant differences in spectral quality between
different bacterial taxa and optimal measurement conditions vary per taxon.

Conclusion: We identified and applied quality measures for MALDI-TOF MS and
optimized spectral quality in routine settings. Phylogenetic marker peaks can be
reproducibly detected and provide an increased resolution and the ability to distinguish
between challenging species such as those within the Enterobacter cloacae complex,
Burkholderia cepacia complex, or viridans streptococci.

Keywords: MALDI-TOF mass spectrometry, quality control, standardisation, species identification,
microbial diagnostics
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INTRODUCTION

Matrix assisted Laser Desorption Ionization Time of Flight mass
spectrometry (MALDI-TOF MS) has revolutionised microbial
diagnostics. Due to its minimal hands-on and turnaround time,
low costs, and high accuracy it has become the method of choice
for bacterial species identification in clinical diagnostics
(Angeletti and Ciccozzi, 2019; Rodrıǵuez-Sánchez et al., 2019).
Multiple studies have highlighted the potential of MALDI-TOF
MS to identify virulent or resistant bacterial sub-lineages within a
species (Wolters et al., 2011; Christner et al., 2014). Despite these
potential applications, important challenges remain for routine
diagnostics, such as the inability to properly differentiate
clinically relevant taxonomic groups, such as the species within
the Burkholderia cepacia complex (Fehlberg et al., 2013), the K.
pneumoniae complex (Dinkelacker et al., 2018) or viridans
streptococci (Angeletti et al., 2015). Challenges in species
identification arise from (i) incomplete databases, (ii) close
relatedness of the bacterial species of interest, and (iii) poor
spectral quality.

Species identification through commonly used MALDI-TOF
MS systems is based on the comparison of unknown spectra to
reference spectra databases through pattern matching. MALDI-
TOF mass spectra consist of peaks from highly abundant,
intracellular proteins including ribosomal subunit proteins,
which are present in high copy numbers in replicating
bacterial cells (Fenselau and Demirev, 2001; Ryzhov and
Fenselau, 2001). With the abundance of bacterial whole
genome sequences, reference databases comprising predicted
ribosomal subunit masses have become an alternative to
pattern based microbial identification in MALDI-TOF MS. The
mass of ribosomal subunits can be directly calculated from
genomic sequences, as they are relatively conserved and rarely
post-translationally modified. Their potential to serve as
MALDI-TOF MS biomarkers has been applied to clinically
relevant phylogenetic groups (Hotta et al., 2010; Ziegler et al.,
2015; Rothen et al., 2019), and multiple databases using marker
masses predicted from genomic data are now available (Kassim
et al., 2017; Ojima-Kato et al., 2017; Tomachewski et al., 2018). A
ribosomal marker based approach has successfully been applied
to distinguish between subspecies and clonal complexes within
species such as Streptococcus agalactiae and Escherichia coli
(Matsumura et al., 2014; Lafolie et al., 2015; Rothen et al., 2019).

When MALDI-TOF MS was first applied for microbial
species identification (Anhalt and Fenselau, 1975) and in its
first years in routine diagnostics, samples were processed using a
protein extraction protocol (Patel, 2015). However, as high
accuracies in species identification have been reported using a
much simpler procedure, applying bacterial colonies directly
onto the MALDI-TOF MS target plate has become the
standard sample preparation protocol in routine diagnostics
(Bizzini et al., 2010; van Veen et al., 2010). Although the
Clinical and Laboratory Standard Institute (Pennsylvania,
USA) has published a guideline on bacterial identification by
MALDI-TOF MS (Branda et al., 2017), the definition criteria of
spectral quality remain vague. Many diagnostic laboratories have
developed their own Standard Operating Procedures for sample
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
preparation and interpretation of species identification by
MALDI-TOF MS. Currently it is already well established that
MALDI-TOF mass spectral quality is influenced by the amount
of bacterial colony material added to the target plate, the age of
the bacterial colony, as well as the sample preparation protocol
used (Alatoom et al., 2011; Croxatto et al., 2012; Veloo et al.,
2014). However, there is a clear lack of an optimal and
standardised sample preparation and data analysis workflow.
Criteria defining the spectral quality will help to compare
differences in preparation and analytical workflows. Closing
this gap will substantially increase the reproducible detection
of phylogenetic marker peaks in MALDI-TOF mass spectra
acquired and thereby improve species identification in
routine diagnostics.

The purpose of this study is to (i) identify quantitative
spectral features suitable to define spectral quality, (ii) compare
the influence of sample preparation protocols for bacterial
identification by MALDI-TOF MS, and (iii) raise awareness for
the potential of an increased resolution of MALDI-TOF MS for
subtyping and associated limitations.

We have selected 47 clinically relevant bacterial isolates from
39 species and measured these under various conditions on two
different MALDI-TOF MS systems. First, we identified spectral
features, which positively correlate with correct species
identification. Considering these, we systematically compared
spectral quality produced with different sample protocols, with
varying amounts of bacterial colony material applied, and with
varying bacterial colony age.
MATERIALS AND METHODS

Bacterial Isolates
We selected 47 clinically relevant bacterial isolates from public
and in-house strain collections. The included 39 species can be
challenging to identify using MALDI-TOF MS, either because
intracellular proteins cannot be ionised easily due to cell wall
composition (e.g. Corynebacterium spp.), or because of their
close relatedness to another bacterial species (e.g. Klebsiella
oxytoca/Klebsiella michiganensis; Shigella/Escherichia coli).

The bacterial isolates were assigned to 8 phylogenetic groups
(Table 1). For the strains in each group, we expect both
comparable spectral features (e.g. total number of peaks
detected) and lysis characteristics, respectively. For the
evaluation of species identification, the group ‘Streptococcus’
was further split up into ‘viridans streptococci’ and ‘other
streptococci’ as the former group are of special interest in
clinical routine diagnostics.

Whole Genome Sequencing
Isolates were grown on Columbia 5% Sheep Blood Agar
(bioMérieux, Marcy-l’Étoile, France) and DNA was extracted
using the QIACube with the QIAamp DNA Mini Kit (QIAGEN,
Hilden, Germany). After quality control of the DNA by
Tapestation (Agilent, Santa Clara, USA), tagmentation libraries
were generated as described by the manufacturer (Nextera Flex
kit, Illumina, San Diego, USA). The genomes were sequenced
March 2021 | Volume 11 | Article 646648

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Cuénod et al. MALDI-TOF MS Quality Control Study
under 24x multiplexing using a paired end 150 base pairs V3
reaction kit on an Illumina NextSeq500 instrument (Illumina)
reaching an average coverage of approximately 60-fold for all
isolates. The resulting raw reads were and assembled using
Spades (v3.13) (Bankevich et al., 2012) via Unicycler (v0.3.0b)
(Wick et al., 2017) using default settings. All accession numbers
can be found in Table 1. Species identification of all strains was
performed by comparing genomic sequences to bacterial type
strains using Average Nucleotide Identity (ANIm) (Richter and
Rosselló-Móra, 2009) and via the TrueBac ID database (Ha et al.,
2019). For strains of the genus Bordetella we used ribosomal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Multi-Locus Sequence Typing for additional confirmation of the
species identity (Jolley et al., 2012).

In Silico Prediction of Ribosomal Subunit
Protein Masses From WGS Data
The molecular weight of 56 ribosomal subunits were predicted as
previously described (Ziegler et al., 2015; Rothen et al., 2019).
Briefly, tblastn (v 2.2.31+) was used to extract the amino acid
sequences of 56 ribosomal subunits from whole genome
assemblies. The most frequent post translational modifications
(Arnold and Reilly, 1999), specifically N-terminal methionine
TABLE 1 | Strains included in this study.

# Species Strain collection Internal strain number Group NCBI/ENA Accession Number

01 Klebsiella pneumoniae in-house 602149-19 Enterobacteriaceae SAMN16951201
02 Klebsiella oxytoca in-house 708776-17 Enterobacteriaceae SAMN12212273
03 Klebsiella grimontii in-house 132656-17 Enterobacteriaceae SAMN12212117
04 Klebsiella michiganensis in-house 401065-17 Enterobacteriaceae SAMN12212153
05 Klebsiella aerogenes in-house 717657-17 Enterobacteriaceae SAMN12212322
06 Klebsiella variicola in-house 717892-17 Enterobacteriaceae SAMN12212293
09 Escherichia coli in-house 807627-2-16 Enterobacteriaceae SAMN16951202
10 Escherichia coli in-house 807628-3-16 Enterobacteriaceae SAMN16951203
11 Escherichia coli in-house 804255-13 Enterobacteriaceae SAMN16951204
12 Escherichia coli in-house 805237-12 Enterobacteriaceae SAMN16951205
13 Shigella flexneri in-house 300666-18 Enterobacteriaceae SAMN16951206
14 Shigella flexneri in-house 301552-18 Enterobacteriaceae SAMN16951207
15 Shigella sonnei commercial DSMZ-5570 Enterobacteriaceae SAMN16951208
16 Shigella sonnei in-house 301974-17 Enterobacteriaceae SAMEA104430192
35 Enterobacter sichuanensis in-house 403902-15 Enterobacteriaceae SAMN16951209
36 Enterobacter hormaechei commercial ATCC-49162 Enterobacteriaceae SAMN16951210
37 Enterobacter asburiae commercial ATCC-35956 Enterobacteriaceae SAMN16951211
38 Enterobacter ludwigii commercial DSMZ-15213 Enterobacteriaceae SAMN16951212
07 Listeria monocytogenes in-house 107373-13 Listeria SAMN16951213
08 Listeria monocytogenes in-house O1910-17 Listeria SAMN16951214
17 Burkholderia cepacia in-house 208050-16 Burkholderia SAMN16951215
18 Burkholderia contaminans in-house O-13 Burkholderia SAMEA54114418
19 Burkholderia multivorans in-house O-10 Burkholderia SAMEA54118168
20 Burkholderia cenocepacia in-house O-3 Burkholderia SAMEA54110668
21 Bordetella bronchiseptica in-house 502474-16 Bordetella SAMN16951216
22 Bordetella pertussis commercial ATCC-9797 Bordetella SAMN16951217
23 Bordetella parapertussis commercial ATCC-53893 Bordetella SAMN16951218
24 Streptococcus pneumoniae in-house 144265-17 Streptococcus SAMN16951219
25 Streptococcus infantis in-house 131226-17 Streptococcus SAMN16951220
26 Streptococcus gordonii commercial ATCC-33399 Streptococcus SAMN16951221
27 Streptococcus gallolyticus in-house PRA0000041 Streptococcus SAMN16951222
28 Streptococcus lutetiensis commercial DSMZ-15350-TS Streptococcus SAMN16951223
29 Streptococcus pseudopneumoniae in-house 610886-17 Streptococcus SAMN16951224
30 Streptococcus equinus commercial ATCC-9812 Streptococcus SAMN16951225
31 Streptococcus dysgalactiae in-house STO0000159 Streptococcus SAMN16951226
32 Streptococcus dysgalactiae in-house 602125-13 Streptococcus SAMN16951227
39 Staphylococcus aureus in-house 351358-18 Staphylococcus SAMN16951228
40 Staphylococcus schweitzeri commercial DSM-28300-TS Staphylococcus SAMN16951229
41 Staphylococcus argenteus commercial DSMZ-28299-TS Staphylococcus SAMN16951230
42 Corynebacterium amycolatum commercial ATCC-700206 Actinobacteria SAMN16951231
43 Corynebacterium urealyticum commercial DSMZ-7109 Actinobacteria SAMN16951232
44 Gardnerella vaginalis commercial ATCC-14018 Actinobacteria SAMN16951233
45 Winkia neuii in-house STO0000012 Actinobacteria SAMN16951234
46 Actinomyces israelii commercial ATCC-10048 Actinobacteria SAMN16951235
47 Pasteurella multocida commercial ATCC-11039 Gram negative Anaerobes SAMN16951236
33 Bacteroides fragilis in-house 609216-11 Gram negative Anaerobes SAMN16951237
34 Bacteroides fragilis in-house 600609-16 Gram negative Anaerobes SAMN16951238
March 20
Strains were either retrieved from in-house or commercial strain collections. Strains which are assigned the same ‘Group’ are expected to respond similarly to varying sample protocols,
quantities of bacterial colony material applied and varying bacterial colony age.
21 | Volume 11 | Article 646648
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loss (Frottin et al., 2006) and methylation, were considered for
subsequent prediction of the monoisotopic molecular weights of
the ribosomal subunit proteins. For the ribosomal subunit
protein L33, we added 15 Daltons to the predicted molecular
weight for the genera Enterobacter, Escherichia, Shigella,
Klebsiella and Pasteurella, accounting for a single methylation
of these proteins.

Spectra Quality Variables
All scripts used in the course of this study can be accessed via
GitHub (https://github.com/appliedmicrobiologyresearch/
MALDI-TOF-mass-spectral-quality-study).

We queried each spectrum for the following features: (i)
number of peaks, (ii) peak with the highest m/z value, (iii) m/z
value of the peak at the 90th percentile, (iv) fraction of peaks with
a m/z value > 10,000, and (v) sum of the intensity of all detected
peaks. As the highest peak often corresponds to technical
artefacts, we included the m/z value of the peak at the 90th

percentile for further analysis.
Furthermore, we queried each spectrum for the presence and

intensity of ribosomal marker peaks predicted from the genomic
sequence of the respective strain using an 800 ppm error range. If
multiple peaks were detected in this error range, the one with the
highest intensity and lower measurement error was considered
for further analysis. Bacterial strains encode variable number of
ribosomal markers in the mass range of 2,000–20,000 Da. We
therefore normalised the number of detected marker peaks by
dividing through the number of predicted ribosomal marker
peaks in the MALDI-TOF MS mass range, when comparing
between the bacterial taxa.

To quantify the measurement error, we calculated the mean
distance between predicted and detected m/z value of ribosomal
marker peaks for each spectrum. In order to estimate
reproducibility, we calculated the ‘fraction of reproducibly
detected peaks’. We defined this as the number of peaks, which
were detected in at least three out of four technical replicates
using a bin size of 800 ppm, divided by the number of peaks in
each spectrum. A more detailed and graphical explanation of the
MALDI-TOF mass spectral features analysed in this study can be
found in Supplementary Methods 1.

Further, we evaluate which of the above MALDI-TOF mass
spectral features are good proxies for spectra quality and are
associated with a correct species identification. We compared
spectra for which the correct species was identified to spectra
where the correct species could not be identified. Spectra for
which the correct species could not be identified included spectra
with wrong species being identified and spectra for which no
species identification was possible. Henceforward, we will refer to
these collectively as ‘incorrectly identified spectra’. We
performed this analysis exclusively on species which are
covered by all three databases included in this study
(Supplementary Table S1) and excluded empty spectra.

In order to assess how spectra quality impacts species
identification accuracy, we included spectra acquired using the
‘direct smear’, the ‘25% formic acid (FA) overlay’ or the ‘simple
protein extraction’ method (see section ‘Variation of sample
preparation’ for details) of the Enterobacter cloacae complex
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
(Enterobacter hormaechei, Enterobacter asburiae and Enterobacter
ludwigii), the Burkholderia cepacia complex (Burkholderia
contaminans, Burkholderia multivorans and Burkholderia
cenocepacia), and viridans streptococci (Streptococcus pneumoniae
and Streptococcus pseudopneumoniae). We assigned these spectra
to three intensity levels, by dividing the sum of the intensities
of all detected peaks in three equal parts per group.

MALDI-TOF MS Spectra Acquisition
All MALDI-TOF mass spectra acquired for this study can be
accessed via the Open Science Foundation (https://osf.io/ksz7r/).
The bacterial isolates were cultured from Microbank™ freezing
beads (Pro-lab Diagnostics, Toronto, Canada) onto 5% Sheep
Blood agar plates (bioMérieux, Marcy-l’Étoile, France) and
subcultured before MALDI-TOF mass spectra acquisition.
Strains were incubated under aerobic conditions at 37°C except
for strains of the species Bacterioides fragilis, Actinomyces israelii,
and Winkia neuii, which were incubated under anaerobic
conditions using a whitley A95 anaerobic workstation (Don
Whitley Scientific Limited, Bingley, United Kingdom). Strains
of the species Streptococcus pneumoniae, Bordetella pertussis, and
Bordetella parapertussis were incubated under 5% enriched CO2

conditions. All mass spectra were acquired on reusable steel
target plates [MBT Biotarget 96 (Bruker Daltonics, Bremen,
Germany) and steel target plates (Industrietechnik mab AG,
Basel, Switzerland)].

Variation of Sample Preparation
We cultured the bacterial strains as described above. We
prepared the strains under three different short protocols, all
of which are frequently used in microbial diagnostics: (i) ‘Direct
smear’ method: using a plastic inoculation needle, we
transferred bacterial colonies onto a steel target plate and
overlaid each spot with 1 µl a-Cyano-4-hydroxycinnamic
(CHAC) matrix (Sigma-Aldrich, St. Louis, USA) and left it to
air dry completely before MALDI-TOF MS measurements.
(ii) ‘25% FA overlay’: using a plastic inoculation needle, we
transferred bacterial colonies onto a steel target plate and
overlaid each spot with 1 µl of 25% formic acid (Sigma-
Aldrich, St. Louis, USA) and left it to air dry completely
before applying 1 µl of CHAC matrix onto each spot. The
target plates were left to air dry completely before MALDI-TOF
MS measurements. (iii) ‘Simple protein extraction’: we
transferred a heaped 1 µl inoculation loop of bacterial colony
material into 1 ml PBS, rigorously vortexed, and centrifuged for
5 min at 17,000 x g. We removed the supernatant and added
30 µl 70% formic acid and dissolved the pellet by pipetting up
and down. 30 µl acetonitrile (Sigma-Aldrich, St. Louis, USA)
were added and the mixture was vortexed before centrifuging
for 5 minutes at 17,000 x g. Next, 5 µl of the supernatant were
mixed with 25 µl of CHAC matrix before spotting onto the steel
target plate.

We performed measurements as quadruplicate on a Bruker
microflex LT/LS ‘smart’ (Bruker Daltonics, Bremen, Germany)
and a Shimadzu Axima Confidence (Shimadzu, Kyoto, Japan)
MALDI-TOF MS device as technical replicates and repeated on
three different days with fresh subcultures as biological replicates.
March 2021 | Volume 11 | Article 646648
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Variation of Bacterial Colony Age
We grew the strains over 1, 2, 3, 4, 5 or 6 nights before preparing
them for measurement using the ‘25% FA overlay’ method
described above. Each overnight culture corresponds to 18 - 24
hours of incubation time. We performed measurements as
quadruplicate on a Bruker microflex LT/LS ‘smart’ and a
Shimadzu Axima Confidence MALDI-TOF MS device.

Variation of Bacterial Colony Material
Quantity
The amount of bacteria transferred onto the MALDI-TOF MS
steel target plate has been shown to impact spectral quality
(Branda et al., 2017). The direct transfer of bacteria onto a
steel target plate is difficult to standardise. We therefore decided
to measure bacterial suspensions at different dilutions to assess
the impact of the amount of bacterial colony material measured
on mass spectral quality. We randomly selected the following
two strains per phylogenetic group for this experiment:
Enterobacteriaceae: #07, #08; Listeria: #09, #10; Burkholderia:
#17,#19;Bordetella:#21,#23;Streptococcus:#26,#27;Staphylococcus:
#39, #40; Actinobacteria: #45, #46; Gram negative anaerobes:
#33, #34.

We transferred a heaped 1 µl inoculation loop of bacterial
colony material into 200 µl of TMA (1x) buffer (Sigma-Aldrich,
St. Louis, USA). Next, 5 µl of the bacterial mixture was diluted in
25 µl of CHAC matrix (1:5 dilution) and spotted onto the target
plates. 5 µl of the suspension were transferred into a new tube
containing 25 µl CHACmatrix (1:25 dilution). We continued the
serial dilution up to a factor of 1:15,625. As the majority of
measurements with 1:3,125 and 1:15,625 dilutions yielded empty
spectra, these were excluded from further analysis. We measured
quadruplicates on two MALDI-TOF MS devices as technical
replicates and repeated on three different days as
biological replicates.

Variation of Time After Calibration to
Assess the Impact on Measurement
Precision
We performed the measurements on two microflex biotyper
devices (LH/LS and LH/LS ‘smart’). Both devices were calibrated
using the Bacterial Test Standard (BTS, Part.-Nr. 8255343,
Bruker Daltonics, Bremen, Germany) and steel target plates
(Bruker Daltonics, Bremen, Germany).

We used an E. coli strain from our strain collection (E. coli
805237-12) for these measurements as strains of this species
generally yield rich spectra using routine sample preparation. We
transferred bacteria onto a steel target plate, overlaid with 1 µl
70% FA, left to air dry completely before applying 1 µl CHAC
matrix. Each measurement was performed in quadruplicate on
two different target plates and MALDI-TOF MS devices as
technical replicates and repeated by picking three different
colonies as biological replicates. Spectra were acquired on days
1-7 after calibration on the same target plate which was used for
calibration. BTS was measured on the row A of the target plate,
measurements on day 1-7 after calibration were measured on
rows B, C, D, E, F, G and H, respectively. Both MALDI-TOF MS
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
devices where used for microbial species identification in routine
diagnostics over the duration of this experiment with a median of
39 (Interquartile range (IQR): [32, 51]) and 137 (IQR: [123, 173])
of routine measurements per day on the microflex biotyper LH/
LS and the microflex biotyper LH/LS ‘smart’, respectively.

MALDI-TOF MS Spectra Processing
In order to be most comparable to spectra acquired and
processed in microbial routine diagnostic, we picked the peaks
using default settings by the softwares included in the microflex
Biotyper or the Axima Confidence system. Spectra acquired on
microflex Biotyper devices were exported as ‘fid’ files and peak
picking was performed in the flexAnalyses software (v3.4) and
exported as ‘.txt’ files. Spectra acquired on the Axima Confidence
devices were exported as ‘.mzXml’ files. These do already
exclusively contain m/z values and intensities of picked peaks
and were converted to ‘.txt’ files. We subsequently exclusively
worked with the intensity and m/z value of these picked peaks,
and did not consider further peak characteristics such as the
resolution or the signal to noise ratio of a peak.

We excluded spectra as contaminations for which the
identified genus did not match the genus identified by ANIm.
Strain 17 and strain 20 are missing in one out of three repetitions
of the ‘simple protein extraction’ protocol, strain 32 is missing
from day 6 of the and of strain 46 only three technical replicates
were acquired on the Axima Confidence device using the ‘direct
smear’ method.

Species Identification
Each spectrum acquired on a Bruker device was compared to the
MALDI Biotyper database (MALDI Biotyper Compass Library,
Revision E (Vers. 8.0, 7854 MSP, RUO)) included in the
flexControl Software v3 (Bruker Daltonics, Bremen, Germany).
Spectra acquired on the Axima Confidence device were analyzed
with the VitekMS database (bioMérieux, Marcy-l’Étoile, France)
(v3.2). Furthermore, we compared each spectrum to a ribosomal
marker based database (PAPMID™ (Kassim et al., 2017),
Mabritec AG, Riehen, Switzerland). In this study, we used this
marker based approach as a subtyping module and each
spectrum was compared only to a subset of bacterial species.
Spectra of the species Escherichia coli, Shigella flexneri, Shigella
sonnei, Streptococcus gordonii, Streptococcus gallolyticus,
Streptococcus lutetiensis, Streptococcus equinus, Streptococcus
dysgalactiae, Corynebacterium amycolatum, Corynebacterium
urealyticum, Gardnerella vaginalis, Winkia neuii, Actinomyces
israelii, Pasteurella multocida, and Bacteroides fragilis were
compared to databases including mass profiles of the respective
bacterial family. Spectra of the closely related Klebsiella spp.,
Enterobacter cloacae complex, Listeria spp., Burkholderia cepacia
complex, Bordetella spp., Staphylococcus aureus complex, and
viridans streptococci were identified using marker based
subtyping modules exclusively including the species of the
respective phylogenetic complex. Henceforward, species
identification by these subtyping modules and using
PAPMID™ database, both based on the detection of ribosomal
marker peaks will be referred to as PAPMID™.
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The MALDI Biotyper system classifies species identification
according to log scores: mass spectra yielding a log score above
2.0 are assigned the label ‘highly confidence identification’,
whereas spectra with a log score between 1.7 and 2.0 are
assigned ‘low confidence identification’. Spectra with a log
score lower than 1.7 are assigned ‘no organism identification
possible’. For each spectrum with a log score above 1.7, we
evaluated whether the species assigned by the MALDI Biotyper
database corresponds to the true species identity determined by
whole genome sequence analysis and ANIm. For species with a
log score ≥ 2.0 we furthermore evaluated, howmany species were
assigned a log score ≥2.0.

Similar to theMALDI Biotyper database, the VitekMS database
assigns scores to each species classification. Furthermore, each
species identification is assigned a Confidence level [%] and a Type
of identification, which is either ‘Single Choice’ or ‘Low
Discrimination’ and indicates whether the species identification
was unambiguous or whether the database could not
unambiguously discriminate between two or more species entries.
Identifications with an assigned probability, lower than a
probability threshold (60%) are not assigned an unambiguous
species label. In this situation, due to low confidence values, the
Type of identification ‘No Identification’ or ‘LowDiscrimination’ is
assigned. For spectra with a Type of identification other than ‘No
Identification’, we evaluated the Type of Identification andwhether
the assigned species corresponds to the true species identity of the
measured strains.

We compared all spectra in our dataset to a ribosomal marker
based database (PAPMID™) . Marker based species
identification tools such as the PAPMID™ database assign
scores which correspond to the number of ribosomal marker
peaks detected. The bacterial species is assigned for which most
marker masses could be detected in a mass spectrum.

If a spectrum matches a maximal number of marker masses
for multiple profiles of the same species, an unambiguous single
species identification is assigned. If a spectrum matches an equal
maximal number of marker masses from different species,
multiple species are assigned (‘multi-species Identification’).
Species identifications with fewer marker peaks detected than
the taxon-specific identification threshold, are assigned the label
‘No identification possible’. The taxon specific thresholds used in
this study were 20 for the species of the Enterobacter cloacae
complex, 15 for Klebsiella spp. and Escherichia coli/Shigella, 7 for
the species within the S. aureus complex, and 10 for all other
phylogenetic groups included in this study.

Statistical Analysis
We used paired Wilcoxon rank tests when comparing spectra
acquired from the same strains under different conditions. We
excluded spectra of strains which were missing in one of the sets
of interest. We used unpaired wilcoxon rank tests when
comparing spectra acquired from different strains, e.g. when
comparing between different phylogenetic groups or between
correctly and incorrectly identified spectra.

When reporting comparisons in the running text, we refer to
spectra acquired on the microflex Biotyper if not explicitly stated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
otherwise and use the nomenclature ‘median (lower bound of the
IQR, upper bound of the IQR)’, throughout the study. Results
and summary plots for spectra acquired on the Axima
Confidence system can be found in the supplement.

We report the exact p-values when these are > 0.0001 and
report use ‘****’ for p-values < 0.0001. All analysis was performed
in R (4.0.3) using the ggpubr (4.0) package.
RESULTS

Defining MALDI-TOF Mass Spectral
Quality
In order to investigate spectral quality of the different datasets,
we first assessed which spectral features are associated with a
correct species identification with all databases and therefore
suitable as quantitative measures for spectral quality. The
spectra analysed here include a range of mass spectral quality,
and were acquired using all different sample preparation
protocols examined in this study and for the species included
in three databases (MALDI Biotyper, VitekMS, PAPMID™)
(Supplementary Table S1).

Five spectral features are good proxies for the correct species
identification. In correctly identified spectra (i.e. high spectral
quality) over all phylogenetic groups we found an increase in the
number of ribosomal marker peaks detected (median = 22 IQR =
(18, 25) (same nomenclature used throughout the paper) vs. 13 (6,
20)), their median relative intensity (1.27 (1.02, 1.65) vs. 1.00 (0.77,
1.27)), the sum of the intensity of all detected peaks (1.69✕106 mV
(0.97✕106 mV, 2.39✕106 mV) vs. 0.90✕106 mV (0.27✕106 mV,
1.62✕106 mV)) and a decrease in the measurement error (249
ppm (186 ppm, 338 ppm) vs. (289 ppm (213 ppm, 388 ppm)) (all
p-values < 0.0001) when compared to incorrectly identified
spectra (Figure 1 and Supplementary Figures S1 and S2). In
order to account for reproducibility, we included the fraction of
reproducibly detected peaks between technical replicates as fifth
quality measure. These five features were henceforth used to
evaluate the spectral quality in the dataset.

When comparing correctly to incorrectly identified spectra we
observed, over all phylogenetic groups, a small increase in total
number of peaks (173 (146, 203) vs. 163 (128, 206), p-value <
0.0001)). However, when comparing within each phylogenetic
group, and especially for spectra acquired on the microflex
Biotyper, we did not observe a beneficial effect of an increased
total number of peaks (Supplementary Figure S1). Therefore, we
did not include the number of peaks as a quality measure. The
fraction of peaks > 10’000 Da (30.5% (23.0%, 38.2%) vs. 31.6%
(18.1%, 42.4%), p-value = 0.91) and the m/z value at the 90th

percentile (15,323 Da (13,304 Da, 16,128 Da) vs. 15,387 Da
(11,394 Da, 16,264 Da), p-value = 0.07) were comparable
between correctly and incorrectly identified spectra, respectively.

In the following, we evaluated which sample preparation
yielded highest quality spectra, over all phylogenetic groups,
for unknown samples and within each phylogenetic
group separately.
March 2021 | Volume 11 | Article 646648

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Cuénod et al. MALDI-TOF MS Quality Control Study
Mass Spectral Quality Improvement With
Different Sample Preparation Methods
In order to identify the best sample preparation, we first tested
three different protocols. Over all phylogenetic groups, we found
the ‘25% FA overlay’method yielded the highest spectral quality.

We observed the median relative intensity of ribosomal
marker peaks (1.49 (1.14, 1.91) vs. 1.27 (0.97, 1.73), p-value =
0.025), the sum of the intensity of all detected peaks (2.16✕106

mV (1.53✕106 mV, 2.73✕106 mV) vs. 1.80✕106 mV (1.22✕106

mV, 2.36✕106 mV)) and the fraction of reproducibly detected
peaks (74.0% (66.0%, 80.1%) vs. 69.5%, (59.7%, 77.7%)) to be
higher for spectra acquired under the ‘25% FA overlay’ method
compared to the ‘smear’ method (p-values < 0.0001).
Furthermore, we observed less variation when comparing the
number of ribosomal marker peaks detected (22 (19, 25) vs. 22
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
(16, 25)) for spectra acquired under the ‘25% FA overlay’method
compared to the ‘smear’ method.

Spectra acquired with the ‘simple protein extraction’method
yielded overall lower values for these measures (‘median relative
intensity of the ribosomal marker peaks detected’: 1.17 (1.03,
1.37); ‘sum of the intensity of all detected peaks’: 1.22✕106 mV,
(0.74✕106 mV, 2.14✕106 mV); ‘number of ribosomal marker
peaks detected’: 19 (12, 23)) when compared to spectra acquired
under the ‘smear’ method (p-values < 0.0001), except for the
fraction of reproducibly detected peaks, where we observed
higher values for spectra acquired under the ‘simple protein
extraction’ (73.7%, (65.3%, 82.2)) when compared to spectra
acquired under the ‘smear’ method (p-value < 0.0001). The
accuracy of identification by PAPMID™ generally follows
quality measures, with the highest fraction of correctly
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identified spectra under the ‘25%FAoverlaymethod’ (Figures 1,
Supplementary Figure S3).

Increased Bacterial Age Decreased
Spectral Quality
In order to assess how the age of a bacterial colony influences
mass spectral quality, we measured the strains in our dataset after
varying incubation time. We found a younger bacterial colony to
be associated with a higher mass spectral quality. Increasing
colony age had a negative impact on spectral quality with less
ribosomal marker peaks detected (19.5 (17, 22) vs. 22 (20, 24))
and with a lower relative intensity (1.24 (0.96, 1.75) vs. 1.65 (1.34,
2.12)), and a lower fraction of reproducibly detected peaks
(69.5% (64.8%, 74.6%) vs. 71.2% (64.6%, 77.6%)) after three
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
days when compared one day incubation time (p-values <
0.0001) (Figure 2).

The accuracy of identification by PAPMID™ generally
follows quality measures, with an increasing number of spectra
not being identified, and decreasing spectral quality over the
time period.
The Amount of Bacterial Colony Material
Applied Has a Significant Impact on
Spectral Quality
In order to identify the best preparation procedure, we tested
varying concentrations of the bacterial sample applied to the steel
target plate.
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Over all phylogenetic groups, we found that diluting the
bacterial sample 1:5 did not decrease the number of ribosomal
marker peaks detected (22.5 (14, 26) vs. 22 (19, 24)), nor the
fraction of reproducibly detected peaks (75.2% (65.0%, 81.4%) vs.
72.4% (65.0%, 80.1%)) when compared to spectra acquired
under the ‘25% FA overlay’ method (Figure 3).

However, we observed a decreased median intensity of the
ribosomal marker peaks (1.06, (0.94, 1.21) vs. 1.53 (1.16, 2.02))
and a decreased sum of the intensity of all detected peaks
(1.17✕106 mV (0.50✕106 mV, 1.92✕106 mV) vs. 2.15✕106

mV (1.53✕106 mV, 2.64✕106 mV)) for 1:5 diluted samples
when compared to samples processed using the ‘25% FA
overlay’ method (p-values < 0.0001).

Diluting bacterial colony material 1:25 or more generally
decreased mass spectral quality (‘number of ribosomal marker
peaks detected’: 21 (8.75, 24); ‘median intensity of the ribosomal
marker peaks: 1.07 (0.95, 1.29); ‘sum of the intensity of all
detected peaks’: 0.51✕106 mV, (0.16✕106 mV, 0.85✕106 mV)).
However, we found taxon specific effects e.g. with Burkholderia
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
yielding highest quality spectra with the highest number of
ribosomal marker peaks detected with an additional dilution to
1:25 (Supplementary Figures S5 and S6).

Calibration Is Crucial
All MALDI-TOF MS were externally calibrated in a routine
setting and the effect of calibration has been previously
investigated (Mitchell et al., 2015). Here, we tested the impact
of time between calibration and the measurement on
measurement precision. We found that the measurement error
increased with time after calibration, (Day 1: 194 ppm (166 ppm,
235 ppm) vs. Day 7: 296 ppm (236 ppm, 379 ppm)) (p-value <
0.0001) (Figure 4).

Major Differences in Spectra Quality
Between Bacterial Taxa
Testing whether the mass spectral quality is sufficient for spectra
acquired with the ‘25% FA overlay’ method for all bacterial taxa,
we found important differences (Figure 5, Supplementary
Figure S7). Enterobacteriaceae was the biggest family in our
dataset (18 strains) and strains within this family generally
yielded rich MALDI-TOF mass spectra with a high fraction of
ribosomal marker peaks detected 57.1%, (50.0%, 61.9%)). For
statistical analyses, we used Enterobacteriaceae as a reference
group (Figure 5, Supplementary Figure S7). On both MALDI-
TOF MS systems, we found Gram positive bacteria generally
yielded lower quality spectra than the Gram negative strains,
with a lower fraction of ribosomal marker peaks detected (46.1%
(34.7%, 53.6%) vs. 55.0% (50.0%, 61.9%), a lower sum of the
intensity of all detected peaks (1.64✕106 mV (1.11✕106 mV,
2.39✕106 mV) vs. 2.38✕106 (1.91✕106 mV, 3.05✕106 mV)) and
a lower fraction of reproducibly detected peaks (66.7% (60.2%,
73.9%) vs. 77.7% (72.0%, 82.8%)) (p-values < 0.0001).
Actinobacteria and streptococci other than viridans
streptococci yielded lowest quality MALDI-TOF mass spectra
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with the lowest fraction of ribosomal marker peaks detected
(43.6% (19.8% - 57.1%), 43.2% (33.5% - 48.3%), respectively) and
the lowest fraction of reproducibly detected peaks (66.1% (57.2%
- 72.4%), 62.3% (58.2% - 69.5%), respectively).

Among the generally lower performing Gram positive
bacteria and against the general trend, we detected the highest
median fraction of detected ribosomal marker peaks for Listeria
(58.0% (54.5% - 61.4%)), whereas Gram negative anaerobes
yielded the highest fraction of reproducibly detected peaks
(79.0%, (75.6% - 83.7%)).

Differences Between MALDI-TOF MS
Databases
In order to evaluate different available databases we compared
spectra acquired on the microflex Biotyper to the MALDI
Biotyper database (MALDI Biotyper Compass Library,
Revision E (Vers. 8.0, 7854 MSP, RUO)) and spectra acquired
on the Axima Confidence system to the VitekMS database (v3.2)
for species identification. All spectra compared were acquired
under the ‘25% FA overlay’ method. Please note that, while
spectra were compared to the entire latter two databases for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
species identification, they were compared only to a subset of
entries or subtyping modules of the PAPMID™ database.

Neither the MALDI Biotyper nor the VitekMS database cover
all species included in this study (Supplementary Table S1).
Spectra of strains belonging to species missing in these databases
are often wrongly identified as closely related species represented
in the database (Figure 6). The MALDI Biotyper database covers
more species represented in our strain collection than the
VitekMS DB (Supplementary Table S1) and more often
results in a correct species assignment (Figure 6). However,
comparison of spectra to MALDI Biotyper databases can
lead to ambiguous results with multiple species yielding
Scores > 2.0.

We observed the biggest difference between the MALDI
Biotyper and the VitekMS database for Staphylococcus spectra,
including spectra of the species S. aureus, S. argenteus and S.
schweitzeri, with correctly identified species in 94.4% of spectra
using the MALDI Biotyper database compared to 30.6% using
the VitekMS database.

Species identification by the PAPMID™ yielded more often
correct single species identification for spectra acquired on the
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Axima Confidence device than for spectra acquired on the
microflex Biotyper device.

Increased Mass Spectral Quality
Increased Species Identification Accuracy
In order to understand the impact of mass spectral quality on
species identification accuracy in more detail we looked at three
species complexes, namely the Burkholderia cepacia complex,
viridans streptococci and the Enterobacter cloacae complex, and
exclusively considering species which are covered by all three
databases examined in this study. We split the spectra of these
three complexes into three equal groups according to the sum of
the intensity of all detected peaks in each spectrum, using this as
a universally applicable proxy for spectral quality. We observed
that with increasing intensity, the number of detected ribosomal
marker peaks, their median relative intensity, the reproducibility
and measurement precision increase, suggesting that these
quality features are correlated.

Importantly, we found a larger fraction of correctly identified
species with a higher confidence level (MALDI Biotyper log
score) with increasing spectral quality (Figure 7 and
Supplementary Figure S19). As an exception, we observed
within the Enterobacter cloacae complex, an increase of
incorrectly identified spectra using the MALDI Biotyper
database with an increasing spectral quality.

Taxon-Specific Sample Preparation for
Highest Spectral Quality
Following the inherent differences in mass spectral quality
between the phylogenetic groups (Figure 5) we hypothesise
taxon-specific improvement of spectral quality when using
different sample preparation, quantity, and age of the bacterial
colony. In order to assess these we have compared the sample
preparation conditions evaluated in this study, for each group
separately (Supplementary Figures S5, S6, S8–S16). Here, we
suggest optimized taxon-specific sample preparation and
handling protocols in order to achieve optimal spectral quality.
We summarised the optimal sample preparation and bacterial
colony age per group which yielded good quality spectra
(Table 2).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
DISCUSSION

In this study we determined MALDI-TOF mass spectra quality
features, associated with correct identification and showed that
these features can be increased in routine diagnostics by adapting
sample preparations protocols.

Comparing the spectra quality yielded by varying sample
preparations we found that over all phylogenetic groups and for
unknown samples, measuring bacterial samples at a young age
and overlaying the sample with 25% formic acid yielded the best
quality spectra. As Enterobacteriaceae was the biggest group in
our dataset, it had the strongest influence on the optimal sample
preparation protocols when we analysed all strains congruently.
Nonetheless, also when analyzing the impact of different sample
preparation protocols for each group separately, the ‘25% FA
overlay’ method was amongst the best performing methods for
most phylogenetic groups and with little hands-on time.

Over all phylogenetic groups, we observe the highest mass
spectral quality after one overnight culture, followed by a
decrease in mass spectral quality with increasing bacterial
colony age. However, slower growing bacteria might require a
longer incubation time before sufficient bacterial material can be
transferred onto a target plate and before entering a phase of
exponential growth, where ribosomal proteins are highly
abundant (Fenselau and Demirev, 2001).

We find that, over all phylogenetic groups, diluting the bacterial
sample 1:5 does not decrease mass spectral quality and a dilution
step can in fact increase the spectral quality for certain taxa.

Overlaying the bacterial colony material with 25% formic acid
does not increase spectral quality for all phylogenetic groups and
can in fact often be omitted, and these samples can be prepared
using the ‘direct smear’ method when the taxon of an isolate is
known. On the other hand, not all phylogenetic groups yielded
good-quality spectra even when overlaying the sample with 25%
formic acid, most notably Actinobacteria. Here, a ‘simple protein
extraction’ might be required to detect intracellular proteins
(Alatoom et al., 2011).

Summarizing our sample preparation experiments, we
encourage laboratories working in routine diagnostics to
measure unknown microorganisms after one night of growth,
with little bacterial colony material, and overlaying each spot
with 25% formic acid. If the spectra acquired using this protocol
do not yield satisfying identification results, we furthermore
propose the application of taxon-specific protocols. These can
also be used to obtain optimal quality mass spectra for subtyping.

To define mass spectral quality, we analysed several spectral
features among which we identified the following five as best
proxies: (i) number of ribosomal marker peaks detected, (ii)
median relative intensity of ribosomal marker peaks, (iii) sum of
the intensity of all detected peaks, (iv) measurement precision,
and (v) reproducibility of all peaks. The first four were increased
in spectra which were correctly identified with all three databases
when compared to incorrectly identified spectra. The effect of
these features is more pronounced when spectra are acquired on
the Axima confidence than on the microflex Biotyper.
Incorrectly identified Axima Confidence spectra appear to be
signal poor with a low total number of peaks (Supplementary
TABLE 2 | Optimal sample protocol and bacterial age summarised per
phylogenetic group.

Group Protocol Day

Enterobacteriaceae 25% FA overlay Day 1
Listeria 25% FA overlay/Dilute 1:5 Day 1/2/3/4
Burkholderia Dilute 1:25 Day 2
Bordetella 25% FA overlay/Dilute 1:5 Day 1/2
Streptococcus Simple protein extraction Day 1/2/3/4/

5
Staphylococcus Dilute 1:5/Simple protein

extraction
Day 1/2

Actinobacteria Simple protein extraction Day 1
Gram - Anaerobes Dilute 1:5 Day 1/2
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Figure S2). Incorrectly identified microflex Biotyper spectra can
harbour a high number of peaks, but are sparse in ribosomal
marker masses and sum of the intensity of all detected peaks,
which suggests that these spectra are noisy (Supplementary
Figure S1). This is also reflected in the higher number of false
positive hits in ribosomal marker masses leading to a higher
fraction of wrongly identified microflex Biotyper spectra than
Axima Confidence spectra when compared to the PAPMID™

database. As hardware settings, such as the tension of the
detector, might affect the total number of peaks, it remains
unclear whether the observed trends hold true for all microflex
Biotyper devices. A study involving multiple devices is required
to assess this question.

When using the ‘25% FA overlay’ method, we found a
median of 74.0% of peaks reproducibly detected in technical
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
replicates of the same sample (Figure 2). This measure
assesses the reproducibility of picked peaks with which we
decided to work with, as they are the bases for species
identification. This measure of reproducibility is different
from the pearson correlation, comparing the shapes of two
or more spectra (Zhang et al., 2014; Oberle et al., 2016). A
reproducible detection of 75% of the picked peaks in a
spectrum with 100 peaks, would mean that 75 peaks were
detected in at least 3 out of 4 technical replicates of the same
measurement. By using optimal sample preparation methods,
we can increase the number of reproducibly detected peaks.
These reproducibly detectable peaks could potentially be used
as marker peaks, additional to ribosomal subunit masses and
for spectra identification, further increasing the resolution of
this method.
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We observed the measurement error to increase with
increasing time after calibration and therefore advise for
frequent calibration of MALDI-TOF MS devices.

Microbiology taxonomy is in flux and many bacterial species
have been newly described or have changed the genus in recent
years (Janda, 2020). It is hardly possible for any diagnostic
database to be up to date at every moment in time. We would
like to emphasise that we have included strains in this study
which pose difficulties for bacterial species identification and that
bacterial species identification by MALDI-TOF MS is highly
accurate in routine diagnostics (Croxatto et al., 2012). The
challenges posed by the species included in this study are
known and also clearly communicated by the MALDI-TOF
MS manufacturers by e.g. displaying a warning message
indicating which species cannot, or not reliably be
distinguished from one another.

As the MALDI Biotyper database covers more of the species
included in this study than the VitekMS database, spectral
assignment from this database more often results in a correct
species identification (Figure 6). This is most remarkable for
spectra of the S. aureus complex, where the MALDI Biotyper
database includes all three species (S. aureus, S. argenteus and S.
schweitzeri), whereas the VitekMS database lists only S. aureus
(Supplementary Table S1). However, interpreting the MALDI
Biotyper species identification is not always trivial as multiple
species can yield a log score > 2, which is used as a threshold for
the assignment ‘highly confidence identification’.

Importantly, we have shown that an increased spectra quality
can increase the accuracy of species identifications by all three
databases. However, against the general trend, the number of
incorrectly identified spectra increases with increasing spectra
quality for species of the Enterobacter cloacae complex analysed
with the MALDI Biotyper database. A possible explanation could
be the MALDI Biotyper database frequently assigning the more
frequent sister species E. cloacae sensu stricto.

We find Actinobacteria yielding the lowest spectra quality of
all phylogenetic groups analysed in this study. When comparing
spectra of this group to the PAPMID™ database we find less
often correctly identified spectra, compared to the other
phylogenetic groups. For Actinobacteria only few ribosomal
marker peaks can be detected, which makes distinction solely
based on these, difficult. For this group, species identification
using a pattern matching approach, applied by the MALDI
Biotyper and the VitekMS database, more often yielded correct
results. As it remains unclear which proteins form the basis of
this species identification and how these vary between closely
related species, it is possible that discrimination between closely
related species might be challenging within Actinobacteria using
a pattern matching approach.

MALDI-TOF mass spectra quality might be influenced by
factors not considered in this study including: (i) hardware
factors such as the age and intensity of the laser; (ii) the type
of MALDI-TOF MS target plates and matrix used; (iii) culturing
variables such as the agar media used or the atmosphere in which
bacterial isolates are grown; (iv) spectra acquisition settings such
as the number of laser shots applied and spectra averaged per
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
measurement and (v) factors considering technical knowledge on
acquiring MALDI-TOF mass spectra including regular training
of staff and quality control of MALDI-TOF MS measurements.
In order to assess and standardise MALDI-TOF mass spectral
quality in routine diagnostics, a broader study comparing spectra
acquired in multiple laboratories by different personnel
is required.

The reliable detection of marker peaks in clinical
routine would allow for higher resolution typing based on
MALDI-TOF mass spectra, also distinguishing between closely
related species e.g. within the Klebsiella pneumoniae complex,
the Staphylococcus aureus complex and within viridans
streptococci. An effective standardisation in culture
conditions and spectra quality assessment might help the
automation process of colony picking and mass spectral
acqui s i t ion . Us ing a marker based approach for
identification, we can congruently query spectra acquired on
different MALDI-TOF MS systems around the world. Using
the potential of routinely generated MALDI-TOF MS data for
sublineage detection would open up new avenues of disease
control by tracing the spread of important sub-lineages in real
time with little additional effort.
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