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Abstract: In the current study, we report on the dielectric behavior of colossal-dielectric-constant
Na1/2La1/2Cu3Ti4O12 (NLCTO) ceramics prepared by mechanochemical synthesis and spark plasma
sintering (SPS) at 850 ◦C, 900 ◦C, and 925 ◦C for 10 min. X-ray powder diffraction analysis showed that
all the ceramics have a cubic phase. Scanning electron microscope observations revealed an increase
in the average grain size from 175 to 300 nm with an increase in the sintering temperature. SPS
NLCTO ceramics showed a room-temperature colossal dielectric constant (>103) and a comparatively
high dielectric loss (>0.1) over most of the studied frequency range (1 Hz–40 MHz). Two relaxation
peaks were observed in the spectra of the electrical modulus and attributed to the response of grain
and grain boundary. According to the Nyquist plots of complex impedance, the SPS NLCTO ceramics
have semiconductor grains surrounded by electrically resistive grain boundaries. The colossal
dielectric constant of SPS NLCTO ceramics was attributed to the internal barrier layer capacitance
(IBLC) effect. The high dielectric loss is thought to be due to the low resistivity of the grain boundary
of SPS NLCTO.

Keywords: colossal dielectric constant; spark plasma sintering (SPS); NLCTO; CCTO

1. Introduction

Colossal-permittivity (CP) materials (ε′ > 103) have potential uses in several technolog-
ical applications, such as multilayer ceramic capacitors and memory devices [1]. Intensive
studies on CP materials during the last two decades have given rise to several material fam-
ilies with CP properties. The titanate families such as CaCu3Ti4O12 (CCTO) [2–4], doped
TiO2, and their derived ceramics [5–12] are still attracting the attention of researchers.
Generally, the structural, electrical, and dielectric properties of CP materials are found to
be sensitive to the powder synthesis, calcination, and sintering methods and conditions.
Conventional solid-state-reaction (SSR) method is still by far the most used technique for
the preparation of CP ceramics [5,13]. Nevertheless, the SSR method has the drawbacks of
being a long, high-temperature process with less control on the resulting grain size of the
ceramic. Recently, promising results have been reported after successful combinations of in-
novated powder synthesis processes, e.g., sol–gel [6]; autocombustion [14]; and alternating
sintering methods, i.e., microwave [15] and spark plasma sintering (SPS) [3,8,16,17]. Com-
pared to the standard SSR process, other methods aim to simplify the fabrication process
and to reduce the maximum temperature and the time of the process without scarifying
the dielectric properties of the ceramic. SPS is a comparatively new sintering technique
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that has the advantages of being fast due to the rapid heating rates and short dwelling
times, which may lead to good control on the grain size of the resulting ceramics [17].
In the SPS process, the as-prepared powder is usually loaded in a graphite die-punch
set and pressurized mechanically using a controllable isostatic pressure on the graphite
punch. Afterward, a pulsed current is passed through the punch-die setup in order to heat
the sample. The whole SPS process takes place under vacuum in most cases. SPS was
deployed successfully to prepare ceramic materials such as CaCu3Ti4O12 [17], BaTiO3 [18],
Ba(Fe1/2Nb1/2)O3 [19], and SrZrO3 [20] at comparatively low temperatures. In the present
work, we report on the dielectric properties of the Na1/2La1/2Cu3Ti4O12 (NLCTO) ceramics.
NLCTO is a promising CP material that exhibited ε′~6.1–8.7 × 103 when prepared by the
SSR process that included two calcinations steps, at 950 ◦C for 15 h and at 1000 ◦C for
10 h, and conventional sintering at 1080–1090 ◦C for 5 h. In another study, the powder of
NLCTO was first prepared by sol–gel and then conventionally sintered at 1060–1100 ◦C for
5–15 h. The resulting ceramics exhibited ε′~1.1–1.8 × 104 [21]. Previously, we reported on
the colossal dielectric properties of NLCTO ceramics prepared by the mechanomechanical
synthesis of the powder and reactive sintering inside a conventional tubular furnace at
1025–1100 ◦C for 10 h [22]. The obtained ceramics showed ε′~3.8–9.6 × 103 at 1.1 KHz. In
the present study, we investigate the dielectric properties of NLCTO ceramics where the
powder was first synthesized by mechanochemical milling and then the SPS method was
used to obtain the dense, pure-phase ceramics. X-ray diffraction (XRD) and a field-emission
scanning electron microscope (FE-SEM) were used to investigate the phase purity and
microstructure of the ceramics. Impedance spectroscopy measurements were performed
in a wide frequency (1 Hz–40 MHz) and temperature (120–410 K) ranges under the flow
of nitrogen.

2. Results and Discussion

Room-temperature XRD patterns of the crushed pellets of NLCTO ceramics are shown
in Figure 1. All the observed diffraction peaks are consistent with the cubic structure
according to JCPDS#75-2188, with no secondary phase peaks. As can be seen in Figure 1,
the diffraction peak (220) shifts toward a lower value of 2θwith increasing sintering temper-
ature. This shift indicates an increase in the lattice constant of the ceramics with increasing
sintering temperature. The lattice constants of the cubic phase for the investigated ceramics
were calculated from the XRD patterns using the UnitCell program. The calculated values
of the lattice parameter were found to be 7.413(5), 7.423(1), and 7.419(7) Å for the ceramics
S-850, S-900, and S-925, respectively. These values are comparable to those reported for
the NLCTO system [23,24]. During the SPS process, some Ti4+ ions convert into Ti3+ ions
by capturing electrons resulting from oxygen vacancies [25]. Due to the difference in
the ionic radii of Ti4+ and Ti3+, which are 0.605 and 0.670 Å [26], respectively, the lattice
constant slightly increased with increasing sintering temperature. The densities of the
current ceramics as measured from the mass and geometrical dimensions of the pellet
were 5.03, 5.15, and 5.09 g/cm3 for S-850, S-900, and S-925, respectively. Besides, the
theoretical density (ρtheor) was calculated using ρtheor= ZM/NAV, where Z is the number
of atoms per unit cell (for body-centered cubic structures, Z = 2), M is the molecular weight
corresponding to the chemical formula, NA = 6.022 × 1023 mol−1 is Avogadro’s number,
and V is the unit cell volume determined from X-ray measurements [27,28]. The calculated
ρtheor values were found to be 5.33, 5.32, and 5.33 for S-850, S-900, and S-925, respectively.
Therefore, the experimental density of all the current samples was higher than 94% of the
theoretical value.
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Figure 1. XRD patterns of the SPS NLCTO ceramics. 

FE-SEM images of the scratched surface of the sintered pellets are shown in Figure 2. 
The average grain size is 175 ± 30, 275 ± 25, and 300 ± 55 nm for the ceramics S-850, S-900, 
and S-925, respectively. These values are considerably smaller than the reported values 
for NLCTO ceramics prepared by SSR (∼2–4 μm) [23] and modified SSR methods (∼2–30 
μm) [21]. The comparatively smaller grain size for SPS NLCTO ceramics is due to the fast 
heating rate and the short dwell time of the SPS process. Figure 3 shows the EDS spectra 
of the ceramic samples S-850 and S-975 as representative examples. Na, La, Cu, Ti, and O 
could be detected and were found to be homogeneously distributed in the prepared ce-
ramics. The results of the elemental composition analysis are summarized in Table 1. Con-
sidering the experimental error (±2% to ±5%) in EDS measurements, it can be concluded 
that the chemical composition of the prepared samples is close to the theoretical formula. 
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Figure 1. XRD patterns of the SPS NLCTO ceramics.

FE-SEM images of the scratched surface of the sintered pellets are shown in Figure 2.
The average grain size is 175 ± 30, 275 ± 25, and 300 ± 55 nm for the ceramics S-850,
S-900, and S-925, respectively. These values are considerably smaller than the reported
values for NLCTO ceramics prepared by SSR (~2–4 µm) [23] and modified SSR methods
(~2–30 µm) [21]. The comparatively smaller grain size for SPS NLCTO ceramics is due
to the fast heating rate and the short dwell time of the SPS process. Figure 3 shows the
EDS spectra of the ceramic samples S-850 and S-975 as representative examples. Na, La,
Cu, Ti, and O could be detected and were found to be homogeneously distributed in the
prepared ceramics. The results of the elemental composition analysis are summarized
in Table 1. Considering the experimental error (±2% to ±5%) in EDS measurements, it
can be concluded that the chemical composition of the prepared samples is close to the
theoretical formula.
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Figure 2. FE-SEM images of the scratched surface of SPS NLCTO ceramics: (a) S-850; (b) S-900; (c) 
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Table 1. Atomic % of the elements in the grain for NLCTO ceramics. 

 Na La Ti Cu O 
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S-900 1.58 1.88 16.65 12.16 67.73 
S-925 1.59 1.77 15.44 11.35 67.73 

The frequency dependence of the dielectric constant (ε′) and dielectric loss (tanδ) at 
room temperature is depicted in Figure 4. All the samples showed colossal dielectric con-
stants (ε′ > 103) over most of the frequency range. As seen in Figure 4, with increasing 
sintering temperature, both ε’ and tanδ increase. Moreover, the sample S-900 showed the 
best compromise between the minimum tanδ (∼0.39) and colossal ε′ (∼1420) at 200 kHz. 
The dielectric constant of SPS NLCTO ceramics is comparable with the literature values 
[22,23]. Meanwhile, their dielectric losses are noticeably high compared to literature val-
ues. Figure 5 shows the frequency dependence of ε’ at selected measuring temperatures. 
The spectrum of ε′ at a given temperature of each sample was found to decrease with 
increasing frequency, accompanied by a relaxation peak in the spectrum of tanδ. It is seen 
that the relaxation peak shifts toward a higher frequency with increasing measuring tem-
perature, which signifies a thermally activated process. 
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Figure 3. EDS analysis of the grain region of the ceramic samples: (a) S-850; (b) S-925.

Table 1. Atomic % of the elements in the grain for NLCTO ceramics.

Na La Ti Cu O

S-850 1.51 2.05 17.66 12.72 66.07
S-900 1.58 1.88 16.65 12.16 67.73
S-925 1.59 1.77 15.44 11.35 67.73

The frequency dependence of the dielectric constant (ε′) and dielectric loss (tan δ)
at room temperature is depicted in Figure 4. All the samples showed colossal dielectric
constants (ε′ > 103) over most of the frequency range. As seen in Figure 4, with increasing
sintering temperature, both ε′ and tan δ increase. Moreover, the sample S-900 showed the
best compromise between the minimum tan δ (~0.39) and colossal ε′ (~1420) at 200 kHz. The
dielectric constant of SPS NLCTO ceramics is comparable with the literature values [22,23].
Meanwhile, their dielectric losses are noticeably high compared to literature values. Figure 5
shows the frequency dependence of ε′ at selected measuring temperatures. The spectrum of
ε′ at a given temperature of each sample was found to decrease with increasing frequency,
accompanied by a relaxation peak in the spectrum of tan δ. It is seen that the relaxation peak
shifts toward a higher frequency with increasing measuring temperature, which signifies a
thermally activated process.
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Figure 4. Room-temperature frequency dependence of ε′ and tan δ.
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Figure 5. Frequency dependence of ε′ and tan δ at selected temperatures for (a) S-850, (b) S-900, and
(c) S-925.

Figure 6 shows the Nyquist plots of complex impedance at room temperature for
the investigated NLCTO samples. The Nyquist plot of each sample is composed of two
semicircles, which indicate the existence of two electrically active elements with consid-
erable difference in resistivity. This structure is well presented by the internal barrier
layer capacitance (IBLC) model [4,29]. According to the IBLC model, the high-frequency
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semicircle (inset of Figure 6) signifies the response of the grain while the larger semicircle is
related to the response of the grain boundary. The resistivity values of the grain (Rg) and
the grain boundary (Rg.b.) could be obtained from the intercept of the relevant semicircle
with the Z′-axis. The room temperature values of Rg and Rg.b. are included in Table 2.
Rg.b. is about 2 orders of magnitude greater than Rg at room temperature for the current
samples. Under the effect of an applied alternating voltage, charges are displaced from the
less resistive grains toward the resistive grain boundary, where they pile up, thus forming
the Maxwell–Wagner (M–W) interfacial polarization effect. This effect is thought to be
responsible for the colossal dielectric constant of the current samples at low frequency. At
high frequencies, charge carriers are not able to follow the variation in the applied alternat-
ing electric field. As a result, ε′ decreases due to the reduced polarizability. Moreover, the
values of resistivity of the grain boundary for SPS NLCTO ceramics is less than the reported
values for NLCTO ceramics prepared by other techniques [22,23]. This result explains
the comparatively higher dielectric loss of the SPS NLCTO. The higher conductivity of
SPS NLCTO ceramics is thought to be due to the reducing effect of vacuum during the
SPS process. Besides, as shown in Figure 7, the resistivity of the samples decreases with
increasing temperature, which indicates a semiconductor behavior.
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Figure 6. Nyquist plot of complex impedance for the SPS NLCTO ceramics. The inset represents a
close-up of the high-frequency region of the plot.

Table 2. The room temperature resistivity of the grain (Rg) and the grain boundary (Rg.b.) and the
activation energy for conduction (∆E) and relaxation (∆ER).

Rg
(kΩ.cm)

Rg.b.
(kΩ.cm)

∆E (eV) ∆ER (eV)

Grain G.B. HFP LFP

S-850 0.75 229 0.155 0.337 0.143 0.319
S-900 0.61 75 0.153 0.318 0.145 0.271
S-925 0.49 23 0.157 0.297 0.141 0.269
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Figure 8 depicts the Arrhenius plot for the conductivity of the grain and the grain
boundary of the current ceramics. Therefore, the electrical conduction mechanism is via
the nearest-neighbor hopping according to the Arrhenius law of resistance, Equation (1):

σ = σ0 exp
(
−∆E
kBT

)
(1)

where σ0 is the pre-exponential factor, kB is the Boltzmann constant, and ∆E is the activation
energy for conduction. The obtained values for ∆E are summarized in Table 2. These values
are on the order of 0.15 and 0.3 eV for the grain and the grain boundary, respectively.

Figure 9 shows the spectra of M′′ at selected measuring temperatures for each sam-
ple, where M′′ is the imaginary part of the electric modulus M′′ (M* = M′ + jM′′ = 1/ε*,
where ε* is the complex dielectric constant. Two relaxation peaks exist in the spectra of
M′′ at a given temperature. The height of the M′′ peak is known to be inversely pro-
portional to the capacitance C (M′′/ε0 = 1/2C) [30], where ε0 is the permittivity of free
space (ε0 = 8.854 × 10−14 F/cm). Therefore, the low-frequency peak (LFP) and the high-
frequency peak (HFP) were attributed to the influence of the grain and the grain boundary,
respectively, on conductivity relaxation of the samples. Both LFP and HFP peaks shifted
toward high frequency with increasing temperature, which indicates that the relaxation
time decreases with increasing temperature.
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The mean value of the relaxation time, τ, was calculated from the peak frequency
(fmax) as τ = 1/2πfmax. As seen in Figure 10, the temperature dependence of τ was found to
fit the Arrhenius relation, Equation (2) [13,31]:

τ = τ0 exp
(

∆ER

kBT

)
(2)

where τ0 is the pre-exponential factor, ∆ER is the activation energy for the relaxation process,
and kB is the Boltzmann constant. The obtained values of ∆ER are indicated in Table 2.
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It can be seen that the activation energy values extracted from the complex plan plots
and those extracted from the M′′ spectra are close to each other. It is widely accepted that
oxygen vacancies develop in titanium-based ceramics during high-temperature sintering
due to the loss of oxygen [25]. Subsequently, both singly and doubly ionized oxygen
vacancies would form. This process can be described simply by Equations (3) and (4),
where the Kroger–Vink notation of defects is used.

Oo ⇔
1
2

O2 + V••o + 2e− (3)

V••o + e− ⇔ V•o (4)

where V•o and V••o are the singly and doubly ionized oxygen vacancies, respectively. The
released electrons in this process may be captured by Ti4+ and/or Cu2+, thus forming
of Ti3+ and Cu+ ions. It has been reported that the activation energy for the hopping of
electrons among titanium ions of different valences (Ti4+/Ti3+) is ~0.13 eV [26]. Moreover,
the activation energy for conduction and for relaxation caused by singly ionized oxygen
vacancies has been frequently reported as 0.3–0.5 eV [32,33]. Considering the activation
energies of the current study (Table 2), we believe that the LFP and HFP relaxation peaks
in SPS NLCTO could be attributed to the electron hopping among multivalent ions and
singly ionized oxygen vacancies, respectively.

3. Materials and Methods

Na1/2La1/2Cu3Ti4O12 (NLCTO) powder was synthesized by mechanochemical milling
of stoichiometric amounts of high-purity La2O3, TiO2, CuO, and Na2CO3. The Fritsch P-7
premium line machine was used for 30 h at a rotation speed of 500 rpm using a 45 mL
pot and balls made of tungsten carbide. Spark plasma sintering (SPS) was carried out
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under vacuum using the SPS 4–10 system (Thermal Technology LLC, Santa Rosa, CA,
USA). The powder was confined in a 12 mm graphite die-punch system under 60 MPa
pressure. Dense ceramics were obtained by sintering at 850 ◦C (S-850), 900 ◦C (S-900), and
925 ◦C (S-925) for 10 min. A heating rate of 200 ◦C/min was used for all the samples. The
experimental density of the current ceramics was estimated from the mass and volume of
the pellet. The phase composition was investigated by using a Stoe Stadi-P Image Plate,
IP, (Stoe and Cie GmbH, Darmstadt, Germany), and Cu Kα1 radiation (λ = 1.5406 Å). The
morphology and the elemental composition analysis were determined by using a field-
emission scanning electron microscope (FE-SEM) (Joel, SM7600F, Tokyo, Japan) and an
attached energy-dispersion X-ray spectroscope (EDS) system (Inca Oxford, High Wycombe,
UK). The average grain size (D) of NLCTO ceramics was measured by the linear intercept
method, given by D = 1.56 L/MN, where L is the random line length on the micrograph,
M is the magnification of the micrograph, and N is the number of the grain boundaries
intercepted by lines [34,35]. Impedance spectroscopy studies were performed on silver-
paste-coated pellets in a wide frequency range (1–10 MHz) and at various temperatures
(120–410 K) in a dry nitrogen atmosphere. A turnkey concept 50 system from Novocontrol
was used for impedance spectroscopy (IS). The sample temperature was automatically
controlled by Quatro Cryosystem.

4. Conclusions

Na1/2La1/2Cu3Ti4O12 ceramics were prepared by mechanochemical ball mill synthesis
of the powder followed by SPS at 850–1025 ◦C for 10 min under vacuum. Structural
characterization by XRD and SEM revealed a cubic phase with fine grain size (175–300 nm).
SPS NLCTO ceramics showed colossal dielectric constants (ε′ > 103) over most of the
studied frequency range (1 Hz–40 MHz), but with comparatively high dielectric losses
(tan δ > 0.1). Using Nyquist plots of the complex impedance and the modulus spectroscopy
formalism, the SPS NLCTO ceramics were found to be electrically inhomogeneous and
have two relaxation peaks. The relaxation peaks were attributed to the response of the
grain and the grain boundary. The colossal dielectric constant and the high dielectric loss of
the SPS NLCTO ceramics could be attributed to the combined effect of the internal barrier
layer capacitance (IBLC) and the comparatively low resistivity of the grains.
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