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Abstract

Background: Streptomyces coelicolor has long been considered a remarkable bacterium with a
complex life-cycle, ubiquitous environmental distribution, linear chromosomes and plasmids, and a
huge range of pharmaceutically useful secondary metabolites. Completion of the genome sequence
demonstrated that this diversity carried through to the genetic level, with over 7000 genes
identified. We sought to expand our understanding of this organism at the molecular level through
identification and annotation of novel protein domains. Protein domains are the evolutionary
conserved units from which proteins are formed.

Results: Two automated methods were employed to rapidly generate an optimised set of targets,
which were subsequently analysed manually. A final set of 37 domains or structural repeats,
represented 204 times in the genome, was developed. Using these families enabled us to correlate
items of information from many different resources. Several immediately enhance our
understanding both of S. coelicolor and also general bacterial molecular mechanisms, including cell
wall biosynthesis regulation and streptomycete telomere maintenance.

Discussion: Delineation of protein domain families enables detailed analysis of protein function,
as well as identification of likely regions or residues of particular interest. Hence this kind of prior
approach can increase the rate of discovery in the laboratory. Furthermore we demonstrate that
using this type of in silico method it is possible to fairly rapidly generate new biological information

from previously uncorrelated data.

Background

Streptomyces coelicolor — a complex prokaryote
Streptomyces coelicolor is a representative of a group of high
G+C Gram positive bacteria whose successful adaptation
to their niche is demonstrated by their almost ubiquitous
presence in soil. This is largely accounted for by their
broad metabolic capacity allowing them to cope with the
many variables in their environment. They are able to uti-
lise a wide range of food sources including the debris from
plants, insects and fungi. Streptomycetes are also famed
for their production of a range of secondary metabolites

including antibiotics and other chemotherapeutic
compounds.

Unusually for bacteria, streptomycetes exhibit complex
multicellular development, with branching, filamentous
mycelia giving rise to aerial hyphae which in turn bear
long chains of reproductive spores. These three develop-
mental stages also display differential 'tissue-specific' gene
expression.
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Also unusual is the size and structure of streptomycete
chromosomes. Streptomyces coelicolor has a linear chromo-
some which at 8,667,507 base pairs is the largest com-
plete bacterial genome sequence currently available [1]. It
is predicted to encode a remarkable 7825 proteins,
around twice as many as most sequenced bacterial ge-
nomes and more than the eukaryote Saccharomyces cerevi-
siae. This plethora of proteins reflects both a multiplicity
of novel protein families and an expansion within known
families when compared to other bacteria and thus is a
good resource in the search for novel protein domains

Protein Domains

The direct functional and structural determination of all
the proteins in an organism is prohibitively expensive and
time consuming. The sequencing of a genome is a power-
ful aid to understanding the molecular biology of an or-
ganism even in the absence of direct experimental work
on the organism. Given a complete genome sequence one
can begin to ask global questions about the organism's
metabolic potential as well as what molecular systems it
contains. The transfer of information between related pro-
teins is of fundamental importance into studies of the
proteome. While comparison of whole protein sequences
is a useful tool in finding close and direct relationships, it
also misses the subtler relationships between proteins. A
more sophisticated method of analysing proteins is
through the determination of their domain content [2].

Protein domains are discrete stable amino acids struc-
tures, typically globular and formed from between 40 and
400 amino acids. Homologous domains exhibit highly
similar tertiary structure, with the overall structure of the
protein being a composite of its domains and connecting
sections. To a varying extent biochemical and physiologi-
cal functions can also be transferred between homologous
domains. Some domain families exhibit a wide-range of
activities, specificities or interactions, whereas others
show far less variation. Of note, and analogous to do-
mains, are structural repeats, such as the WD40 repeat.
Typically such repeats are between 5 and 60 amino acid
residues in length, and occur in a tandem array in a pro-
tein. These fold together to form stable, and often very reg-
ular, 3-dimensional structures. A common example is the
B-propeller (covered in detail in [3]). It is important to re-
alize that repeats are different from repeated domains. Re-
peated domains would be expected to be stable in
isolation, contrasting with repeats which would not be.

Inference of Domain Function

In annotation of bacterial genomes a key step is to infer
the function of a protein by similarity to other known pro-
teins. This step usually takes each protein in the genome
and searches a large non-redundant database using a se-
quence search method such as BLAST or FastA [4,5]. The
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list of matches is then examined to find if any similar pro-
tein has a function that can reliably be transferred. Care
must be exercised in this process, as this approach can
lead to missannotation. In cases of multidomain proteins
the similarity to another protein may be due to a domain
similarity. For example, in the original annotation of the
Methannococcus jannaschii genome [6] several proteins
were annotated as inosine-monophosphate dehydroge-
nase (IMPDH) enzymes. The similarity to IMPDH lay not
in the enzymatic domain but to a regulatory domain [7].
Hence analysis of protein domain content is an important
component of the annotation process.

In this paper we attempt to identify novel protein do-
mains in Streptomyces coelicolor. To be useful in under-
standing the biology of Streptomyces coelicolor and other
organisms we wish to infer the function of these novel do-
mains. There are two complementary approaches to this
problem. Firstly, similarity to other protein domains can
be used. By examining the function of each protein con-
taining the domain we try to infer what the common func-
tion might be between the proteins and hence the
function of the domain. This process is often hampered by
a lack of information about any of the proteins. Secondly
and more recently methods using genomic context have
been developed that allow increased confidence for func-
tional prediction. These approaches include using gene
order such as appearance of proteins in operons, the ap-
pearance of fusion proteins and phylogenetic profiles [8].
We can also use the knowledge of the biology of Strepto-
myces coelicolor to provide a species context. This allows in-
terpretation of domains and proteins in the context of the
whole organism's biology.

We use this principle to help elucidate putative biological
mechanisms and deepen our understanding of described
systems within the soil-dwelling prokaryote Streptomyces
coelicolor. Firstly a set of novel domains is predicted using
the recently completed genome sequence. Homologues in
other organisms were searched for and descriptive infor-
mation obtained through literature searching and other
analytical tools. This information was then viewed within
the context of the Streptomyces coelicolor organism. These
results provide functions for many proteins leading to a
number of testable hypotheses.

Methods

The Domain Hunt Methodology

The simplest way to accurately identify novel domains is
through examination of high resolution protein struc-
tures, usually derived crystallographic studies; however
only a small proportion of sequences have representative
structures. To get maximum value from the large amounts
of sequence data being produced, a variety of detailed se-
quence comparison methods are employed to predict
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domain families. Such predicted domains are actually rep-
resentative of evolutionary conserved sequences rather
than discrete protein structures; however experience
shows that they mostly represent such structures. This
finding has led to the consideration of domains as the
building blocks of protein evolution (reviewed by [9]).

Predictions of novel domains are normally derived from
one of two general methods. At one extreme a researcher
will take a single protein sequence and search for partial
matches against other sequences. They can then use these
short matches as starting points for building new families.
The success and ease of such manual building is often de-
pendant on the experience of the researcher. At the other
extreme are the fully automated methods that work on
large protein sets. An example is the ProDom database
[10], from which Pfam-B is derived. We used two methods
to investigate the S. coelicolor genome, using a combina-
tion of rapid automatic identification of potential novel
domains followed by detailed manual analyses. All de-
rived families were deposited in the Pfam database [11].

Method One

A significant mechanism in the evolution of novel pro-
teins is internal duplication. It has been suggested that
some types of domain - especially ligand binding do-
mains - often occur tandemly within a protein. Examples
of this are PDZ (PF00595), ubiquitin (PF00240) and cad-
herin domains (PF00028). Self-self comparisons of pro-
teins are a powerful way of taking advantage of this
occurrence of internal duplications, providing greater sen-
sitivity than all-against-all searching [12]. The reduction
of the number of sequences being compared increases the
likelihood that an apparent match is genuine and hence
gives an increased sensitivity. An additional advantage is
that duplications allow easier recognition of domain
boundaries - often a difficult task. The approach de-
scribed below for domain discovery has in essence been
used previously, with noted success (for example see
[12]). The following steps describe the procedure that we
have implemented to identify novel domains by detecting
internal protein duplications. These steps are also de-
scribed in the flow diagram Figure 1.

Step |

A set of 7846 potential and known coding sequences from
Streptomyces coelicolor was used as the starting point. Low
complexity regions were masked using 'seg' [13]. A com-
parison of each protein against itself was carried out using
Prospero [14]. Prospero returns the highest scoring self-
self matches with an E-value score measuring the signifi-
cance of each alignment.
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Step 2

Highest scoring matches were retained for each sequence
and a series of filters were applied to remove matches that
are unlikely to be novel domains. Firstly, all matches that
had an E-value greater than 0.001 were discarded. Given
the size of the Streptomyces coelicolor genome we would
expect very few false alignments to be detected at this
threshold. Secondly, alignments with a length of less than
30 residues were removed. Thirdly, alignments where the
start points of each subsequence were separated by less
than 45 residues ('shift') were discarded. Such short dupli-
cations are unlikely to be genuine domains. These are
more likely to be structural repeats that are not stable in
isolation. From this set any that overlapped a Pfam-A fam-
ily were also discarded unless both subsequences occurred
within the boundaries of single Pfam-A family. Such an
occurrence indicates that the family contains more than
one domain or repeat and needs refining. An overlap is
defined as there being residues that occur in both the test
alignment and the Pfam-A family alignment.

Step 3

The alignments generated by Prospero were used as an in-
itial alignment to make profile-HMMs using the HMMER
2.2 software [15]. If the pair of sequences in the Prospero
alignment overlapped then these overlap regions were re-
moved from the alignment. Profile HMMs were built in
local (fs) and global (Is) mode. The resulting profile-
HMMs were scanned against the SWISS-PROT and TrEM-
BL databases [16]. An inclusion threshold of 0.01 was
chosen and an alignment of all homologues detected was
constructed using the hmmalign program from the HM-
MER package. This alignment was then compared again to
the Pfam-A database to see if the profile-HMM searches
had detected any similarities to known families. This step
removed distant homologues of previously described
families. In some cases the missing members were subse-
quently added to the Pfam SEED alignments.

Step 4

The previous three steps help to narrow down the number
of potential domains to analyze. The final step is a careful
manual inspection of the family to extend its membership
as well as improve the multiple sequence alignment and
hopefully to determine the domains function. This analy-
sis uses a wide variety of tools and methods (see below).

Method 2

A complementary method was also used to try to identify
novel domains that may be of significance to the biology
of S. coelicolor. The initial assumption of this process is
that short proteins are likely to consist of single domain.
Furthermore it seems likely that if a short protein family is
represented multiple times in the genome, it should be of
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Figure |
Flowchart of the domain hunt process. Note: results that end up in the 'Revise Pfam-A' category are not discussed.
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some importance. Using these principles we developed a
second four-step process:

Step |

A set of 597 short proteins (< 100 residues) was assem-
bled. An all-against-all BLAST was carried out and the pro-
teins clustered using single-linkage clustering with a cut-
off threshold of 50 bits, which we determined was suffi-
ciently high to prevent clustering of unrelated proteins.

Step 2

All clusters that corresponded to Pfam-A families and sin-
gle proteins that did not cluster were then removed from
the set. This step also provides a useful check on the strin-
gency of the clustering cut-off score. The clustered se-
quences were then aligned using T-Coffee [17].

Step 3

The aligned clusters were then used as seeds for an itera-
tive search process using HMMER 2.2, similar to above.
The families were iterated until convergence. They were
then realigned with T-Coffee and a single round of search-
ing carried out. If any new family members were identi-
fied then the iterative search process was repeated.

Step 4
Manual analysis as carried out in Step 4 of Method 1 (also
see below).

SoftwarelServers Used in Manual Analysis

All sequences provided in the alignments were obtained
from SWISS-PROT/TrEMBL. Known domains were identi-
fied in these sequences using the SMART [18], ProSite
[19], Pfam and InterPro [20].

To improve the accuracy of the sequence alignments, the
automatic alignment software ClustalW [21] and T-Coffee
were employed. These alignments were viewed using Bel-
vu (Sonnhammer ELL) and manually edited with Jalview
(Clamp M).

Although our primary interest is in detecting novel do-
mains, other features are of interest. For each sequence in
an alignment the following set of programs were run: Sig-
nalP [22], for secretory signal peptide prediction; TMH-
MM [23] to determine likely transmembrane regions;
NCOILS [24] to predict coiled-coil regions.

The final domain alignments were submitted to the Pre-
dictProtein server and a secondary structure prediction
made using PROF [25]. The results are shown in the se-
quence alignment figures for each domain provided.
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In order to determine genomic context the position of the
domains in the S. coelicolor genome was viewed using the
Artemis [26] genome viewer.

Results and Discussion

Overview of the Novel Domains

Method | Results

From an initial set of 124 possible domain targets, 31 nov-
el domains were identified, giving a 25% success rate. Six-
teen targets were removed by the step 3 of the process. Of
the targets that lay within Pfam families, most related to
the same set of overlapping families - Patched (PF02460),
SecD_SecF (PF02355), and MMPL (PF03176). These tar-
gets probably identify a highly divergent transmembrane
domain that occurs in pairs, and is found within these
families. Table 1 lists and briefly describes all novel do-
mains identified in the domain hunt processes. There
were also significant extensions to two Pfam-A families -
the SCP domain and FG-GAP repeats. SCP has not been
previously reported in bacteria.

Method 2 Results

From an initial set of 597 short proteins 35 clusters were
derived, accounting for a total of 102 proteins. There were
26 size two (two proteins) clusters, 4 size three clusters, 2
size five's, a size six, a size seven, and a size 15 cluster. All
the clusters above size three were part of Pfam-A families
- DUF397 (PF04149), CSD (PF00313), Whib (PF02467)
and DUF320 (PF03777). DUF397 accounted for the size
fifteen and the size six clusters. DUF320 was identified by
both hunt processes. As a positive control the iterative
search steps were carried out on the annotated clusters. All
produced larger alignments that were simple to further de-
velop to good approximations of the Pfam-A families.
When run on the test set of clusters only one family signif-
icantly extended - the MbtH family (see below). Three
small families (<10 sequences) - GvpG (PF05120), GvpK
(PF05121) and spdb (PF05122) - were also produced.

Domains of Significant Interest

Novel Families

HA (Helicase Associated domain; PF03457)

See Figure 2 for example alignment. The domain is typi-
cally seventy residues in length and is predicted to have an
o-helix-only fold. It appears to mostly only be found in
the streptomycetes, though an HA-containing helicase is
found in Chlamydia muridarum, and a protein consisting
of three copies of the domain (Swiss:Q98RX4) in the low-
er eukaryote Guillardia theta. The gene in C. muridarum is
likely to be a result of a lateral transfer event [27]. Exami-
nation of the position of the HA domain-containing pro-
teins, using Artemis, on the Streptomyces coelicolor genome
revealed a surprising result. From each end of the linear S.
coelicolor chromosome the second and third ORFs contain
HA domains. The second gene from each end is identical

Page 5 of 20

(page number not for citation purposes)



BMC Microbiology 2003, 3 http://www.biomedcentral.com/1471-2180/3/3

Table I: List of all domains identified by described methods, as well as their likely function and number in S. coelicolor.

Pfam Family Pfam Type Basic Function No of cop-  Antibiotic  CellWall Cell Replica-  Secreted
Accession Name iesin S. biosynthesis  Biosynth Walll tion
No coelicolor Peri-
plasm

A) Novel Families

PF03457 HA Domain Putative RNA binding 21 X
domain
PF03621 MbtH Domain Possibly involved in 2 X
antibiotic biosynthesis
PF03625 DUF302 Domain Unknown function 3 X X
PF03640 Lipoprotein Repeat Unknown function 6 X X
5
PF03703 DUF304 Domain Unknown function 4 X X
PF03704 BTAD Family Bacterial transcrip- 12 X
tional activator domain
PF03710 GInE Domain Glutamate-ammonia 2
ligase
adenylyltransferase
PF03713 DUF305 Domain Unknown function 6 X X
PFO3714 PUD Domain Putative carbohydrate 2 X X
binding domain
PF03724 DUF306 Domain Unknown function 2 X
PF03729 DUF308 Repeat Unknown function 6 X X
PF03733 DUF307 Domain Unknown function 2 X X
PF03752 ALF Repeat Putative signal trans- 16 X
duction domains
PF03756  AfsA_repea Repeat A-factor biosynthesis 2 X
t
PFO3771 SPDB Domain (Probably) mobile ele- 16
ment replication
PF03777 DUF320 Domain Unknown function I X X
PF03779 SPW Repeat Unknown function 2 X
PF03793 PASTA Domain Cell wall peptidoglycan 9 X X X X
sensor domain
PF03794 HHE Domain Unknown function 7 X
PF03795 YCII Domain Probably enzymatic 3
domain
PF03860 DUF326 Domain Unknown function 6 X
PF03984 DUF346 Repeat Unknown function (f3- 7 X X
propeller)
PF03988 DUF347 Repeat Unknown function 4 X
PF03990 DUF348 Domain Unknown function 3 X X
PF03992 ABM Domain Antibiotic biosynthe- 3 X
sis monooxygenase
PF03993 DUF349 Domain Unknown function 3
PF03994 DUF350 Domain Unknown function 2 X X
PF03995 DUF351 Domain Unknown function 4 X
PFO4151 PPC Domain PKD-like peptidase C- 3 X
terminal domain
PF04205 FMN_bind Domain FMN-binding domain 2 X X
PF05120 GvpG Domain Gas vesicle protein G 2 X
PFO5121 GvpK Domain Gas vesicle protein K 2
PFO5122 SpdB Domain Mobile element trans- 2
fer proteins
B) Previously Described New Pfam Families
PF03458 UPF0126! Domain Unknown function 4 X X
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Table I: List of all domains identified by described methods, as well as their likely function and number in S. coelicolor. (Continued)

PF03459 TOBEZ Domain Transport-associated 9 X
OB fold domain

PF03707 MHYT3 Repeat Putative ligand 6 X X
receptor

PF03989 DNA_gyras Repeat DNA-binding 3-pro- 8 X

eA_C4 peller
C) Significantly Extended Families
PF00188 SCP Domain Unknown function 4 X X
PFO1839 FG-GAP Repeat Putative 3-propeller 57 X X

This table shows all new Pfam families added during this investigation. Part A shows entirely novel families. Part B shows families that are new to
Pfam but have been previously described in the literature: (1) SWISS-PROT; (2) [54]; (3) [55]; (4) [56]. Part C shows families that have had signifi-
cant extensions to them — for instance SCP was previously thought to be present only in eukaryotes. Domains highlighted in blue are discussed in

further detail in section 3.2.

to the other (SCO0002 and SCO7845) as are the HA-con-
taining genes third from each end (SCO003 and
SCO7844). SCO0002 and SCO7845 have an N-terminal
DEAH/D helicase domain and 4 C-terminal HA repeats;
SCO003 and SCO7844 have 6 C-terminal HA repeats and
N-terminal region of unknown function, though it may
contain a helix-turn-helix DNA-binding motif (score =
3.12, ~50% probability as predicted at http://npsa-
pbil.ibep.fr/cgi-bin/primanal_hth.pl). One more gene en-
coding a single HA domain is found more centrally on the
chromosome (SCO0034).

Specific complexes are required for maintaining the ends
of the linear streptomycete chromosomes, and the appear-
ance of the genes encoding these domains specifically at
the ends suggests that the proteins may be involved in
forming these complexes. This is further evidenced by the
observation [28] that similar helicases appeared at the end
of several of the steptomycete chromosomes investigated
as well as the linear plasmids. A knockout mutation exper-
iment they carried out was inconclusive; chromosome lin-
earity was maintained, but the region of protein
substituted lay between the helicase domain and the HA
domains, so it is possible that the helicases still retained
functionality. The identification of an HA-containing hel-
icase (SCP1.136) in the SCP1 plasmid, which is also linear
and has the same type of telomere, further confirms this
hypothesis.

There are no clear conserved catalytic residues in the align-
ment, suggesting that these domains have a binding func-
tion. The secondary structure prediction of the HA
domain as a three-helical bundle is also suggestive of the
Myb-like domain - a general DNA-binding domain.
Aligning the sequence of the DNA-binding domain of
Htrfl (human telomeric protein) against the Pfam SEED
alignment with T-Coffee showed interesting similarities
between them. Two of the three key tryptophan residues

in Myb-like DNA binding domain align to tryptophan res-
idues in HA; in the place of a third is a leucine, which is a
structurally conservative replacement. The first helix ap-
pears to align well, however the second is longer in HA
whereas the third is shorter. As to whether there is a true
evolutionary or functional relationship between the HA
domain and the Myb-like domain, the evidence is not
conclusive but the number of similarities is at least strik-
ing. Eukaryotic and Streptomycete telomeres are signifi-
cantly different in structure, but the Myb-like domain may
provide a plausible structure model for determining if and
how the HA domains interact with DNA.

BTAD (Bacterial transcriptional activator domain; PF03704)

The following family was an interesting case, and has been
previously mentioned as an uncharacterized domain [29].
Although a repeat was detected with an E-value of 4.73 x
10-4 using Prospero on the masked sequence, the validity
of the repeat could not be verified by other means. How-
ever the amino terminal region was related to a number of
other bacterial proteins and was investigated further; see
Figure 3 for alignment. The BTAD domain is found in
small set of bacterial regulatory proteins that occur in the
streptomycetes and the closely related Mycobacteria,
though one is also found in Rhizobium loti (MLR2443/
Q98IEY). One of the proteins it is found in - AfsR - is a
global secondary metabolite regulator of S. coelicolor [30].
This protein has two basic functions - binding DNA and
recruiting RNA polymerase. The first of these is carried out
by the OmpR-like DNA-binding domain (PF00486),
whereas the second is carried out by the region C-terminal
to the BTAD domain. This region includes the ATP-bind-
ing NB-ARC domain (PF00931) and three TPR repeats
(PF00515). AfsR's DNA-binding activity is modulated by
serine/threonine phosphorylation [31]; however there are
no conserved serines or threonines in the BTAD domain
so the phosphorylatyed residues are likely to occur in the
DNA-binding domain. A mutation analysis by [32] on
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NREISVML KDRWRTMKK L

EGNWSIKI LLHYKFN.

RKRQAWLWEEDKNLRSIGVRKYG.

Htrf1/1-53

HtrF_SS

HA domain alignment. All proteins are from S. coelicolor except Q9PK68 (Chlamydia muridarum), Q9L8V8 (S. lividans), Q98RX4
(Guillardia theta). The line marked HA_SS is the predicted secondary structure of the HA domain. The line marked HtrF is the
secondary structure of the HtrF protein (PDB: 1BA5).
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complexity or coiled-coil region. For all three proteins In-

terProScan

finds

BTAD_SS

BTAD domain alignment. The predicted secondary structure is shown on the line BTAD_SS.

Dnil suggests that the BTAD domain is essential to its
function. A possible explanation is that it mediates oli-

Figure 3

sensory transducer region

chemotaxis

a

gomerisation with other transcription complex proteins,
or even mediates interactions between Dnrl monomers
that are binding tandem repeats in a promoter region.
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gions. However searching these regions with HMMER 2.2
against SWISS-PROT and TrEMBL found no significant
conservation in other positions. So it seems likely that the

apparent homology is incorrect. One of the proteins,
IPR002203) at its C-terminus, which is the first identified

terminus: SM00306, IPR003587; C-terminus: PS50818,
in S. coelicolor.

teins. The sequence in this stretch is very alanine rich, and
apparent conservation of the alanines despite a lack of
SCP1.201 (Swiss: Q9ACV2), also contained an intein (N-

(IPR:004089; PS50111) between the two ALF-repeat re-
homology to other chemotaxis proteins; similarly using
PSI-BLAST at the NCBI found several false-positives (data
not shown), but no chemotaxis signal transduction pro-
so could lead to high-scoring matches on the basis of the

ters. It is possible that the BTAD domain mediates interac-
tions between the global regulator AfsR and the

downstream pathway-specific regulators.
This family occurs as two sets of four forty-five residue tan-

coelicolor that contain this domain, including Dnrl and
RedD, five of which are found in antibiotic synthesis clus-
dem repeats in three S. coelicolor proteins. The repeats have
a predicted secondary structure of three a-helices (See Fig-
ures 4 &5). The unusual architecture of these proteins is of
note. To the C-terminus of each set of repeats is a low-

There are eleven pathway-specific regulatory proteins in S.
ALF (Adenine-Leucine-rich conserved (F)phenylalanine; PF03752)
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30 40
| |
RTAAAARALYV. GNADSVATIFLGERLPTATA
RTGI GIQALSGG. DAAVAANL QGGFESAVH
KREFSEALATG DFALRDFLSSGQIQAHD
RENMIAERALDDGSPRAI RWELTTGQNI ARA
REAAEFALA. GSDEDVLRWI EADRV/II ALQ
AEAAAAALRTEDPAAI RTFLEKGAVEAAR
RRAAEAALTDGBIAEALHTFLHVKRAAAVH
QAAAKVALE. GDTHMLRQFI GTTQHEFAR
KL.EARALAAG.ATDIDGFLAEGLAKATA
ATASAAALEAG. EEAVAAFLDGGFKTAEL
KNAAQTALSDGISDALSVFLLDTQFTARN
AKNMAQRALDEGIPSAI HWFLAI [GQMI ARA
RAAAEYALA. GEDEDVLTWVSTDRQI AQR
ANAAADAIENSDPQSVRNFLTTGIEEAAA
KDAAQAALDDGIPSALHAFFRALPDKAAL
AAAAQVALE. G SWMRRDFITTVQISAAQ
KAAAEQALL. GGDEAJI'RKFLADAPSI|I QHD
RQAAKDAI R. LIEPAELEKFLLYGYEEPL.
REAGKAALQ. GTAEERELFLNSGQMTAQQ
QAAAKVALR. GTPEDMVEFLEVGQFETARN
QEAAARALS. G DQDVLD.%RTRWKEANH
RTAAAEALN. GTPEQI EAFHTTGQMTAGS
SQAAKTALADGTGKTLATIFLQI GQYGERL
QAAAKI ALA. GPPELLHEFVTTGQ¥YMAKR

ALF repeat alignment. Predicted secondary structure is shown on the line ALF_SS.

QOACV?2 (1336 res)
HintC

QOZ5A4 (1156 res)

087848 (1147 res))

Figure 5

Domain architectures of the ALF-containing proteins. ALF
repeats are represented by the blue ovals; the coiled-coil/low
complexity regions are signified by the green boxes; Intein N
and C-terminal domains are indicated by the yellow ovals.

Two of the proteins, SCO6198 (Swiss: Q9Z5A4) and
SCO6593 (Swiss: 087848), are located on the chromo-
some adjacent or close to secreted esterases (SCO6199
and SCO6590) and several other probable secreted
proteins of unknown function (SCO6197; SC0O6592,
SCO6591, SCO6594). SCP1.201 is located on the SCP1
plasmid. Again this gene is located near a secreted esterase
(SCP1.199) and a secreted protein of unknown function
(SCP1.200). Homology searches showed that SCO6197,
SCO6591 and SCP1.200 are all homologues, though no
other homologues were found. No relationships were
found for SCO6592, while SCO6594 was found to be ho-
mologous to the C-terminal portion of SCO0545.
SCO0545 does not have a known function but there are
several catabolic enzymes in the same region.

Given the conservation of the associated genes it seems
likely that they represent a conserved pathway and that
the ALF regions act as a substrate- or product-recognition
domain that passes a signal to or from the secreted esteras-
es. The intein does not contain the homing endonuclease,
and so is probably no longer an active mobile genetic ele-
ment; this concurs with the apparent lack of other inteins
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9KYB8/33-126 DDGIRIEY DNMVIA DAL A GG . S WTSL QVLRSTNVLH SIPBA
QOKYBS/149-234 SLAGAELVLDAV. AAHG WF R D | DQPEAV AMDIP
9KYC0/20-111 REWQLGPGRPMLVMDQFSAEDFHL I VDDRADVHVS EKBG
QIKYC7/29-116 PGQADLE.I-WAFPFDDG. CWHLH. QEIL EGMVFA ISP CA
QOKYC7/133-218 DRTAPHEVMTPL. L THG WSHS VKTDGIT QF L PPEG
9KYCO/126-212 TDRDPFQAVDPL|. I NRG WCF D RPDLRTEAI TSIPBIG
QIKYC9/23-110 STAVESIDPGLDPL. RDEG S WDLH. HDHL . [GNANIL T APDBIG
QIL1R0/29-113 GGGID I RHVISIEFL . RABSIG WR D K SKTCGPLLMEBIPBR
9L1R0/113-197 RSAHAPSVWEPRL. QEQN CWHT . . READQNNTATSPDG
QIL1R2/30-115 GPGDARHVEHGL. AAAG CWATH . SDPILSAE| VMASPBH
QIL1R2/116-203 PASPIQSDPWQPV. TSAG WR PDEAGAAHSPDA
9L1RA/109-192 PTDAPCDPEERPL. RQI A S ws . APIAVGADGL VISP DG
QIL1R4/20-105 GGGDPI«WIIVPLHRACG Ws HIG HDPL MPRALLSSPBQ
QoLIWY/330-414  GEKTVTTAMQPL. TEAG WK H TLTIGHGI RWT SIPDIG
9L 1W9/228-317 DAGDHDALLDSIFL DTHGEF EKWR . TWSDETHMMAI HESQ
SPDY_SS . S
.
Figure 6
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SPDY domain alignment. Predicted secondary structure is shown on the line SPDY_SS.

in the S. coelicolor genome. This implies that the plasmid
has passaged through another species that has mobile in-
tein elements.

SPDY (Serine-Proline-Aspartate-Tyrosine motif; PF03771)

This domain typically occurs in pairs, is approximately 90
residues in length and has two conserved tryptophans and
a proline (See Figure 6). It is only found in a region of the
S. coelicolor that is believed to be an integrated genetic el-
ement, e.g. a plasmid or transposon [1]. The region ap-
pears to consist of two sections: a 'core' mobile element
region with the essential replication genes and a flanking
region containing a polyketide synthase and arsenic resist-
ance genes. So this element may be important in mobilis-
ing these loci between strains. All of the SPDY domains
occur in the core region, indicating that they are impor-
tant in the replication of the element - though it is not
possible to assign them a precise role. The lack of occur-
rences of this domain in any other known proteins indi-
cates that this region of the genome represents a
previously undescribed type of mobile genetic element.

PASTA (Pbp And Serine/Threonine kinase Associated; PF03793)

The PASTA domain is discussed in greater detail in [33]. It
is a small (~70 residues) globular domain that binds cell
wall peptidoglycan. With regards to S. coelicolor's genome
it shows an unusual distribution. Typically organisms that
have PASTA domains have one PASTA-containing serine/
threonine protein kinase (pPSTK), which is, putatively,
the master regulator of cell wall peptidoglycan cross-link-
ing and essential to growth and development, and one
PASTA-containing penicillin-binding protein (pPBP),
which is the primary cross-linking enzyme. For a type ex-
ample see Streptococcus pneumoniae. However, uniquely
amongst the sequenced microbial genomes, S. coelicolor
has three pPSTKs and no pPBP. The PASTA domains show
very little identity to each other in each PSTK. The simplest

explanation is that each pPSTK regulates different stages
of growth and division, each of which uses different pep-
tidoglycans. This also fits there being no pPBP as it would
be specific to a single peptidoglycan structure; so we pro-
pose it uses an alternative localisation system, perhaps
similar to that used by Deinococcus radiodurans or Gram-ve
bacteria. Intriguingly S. coelicolor has three principle cell
morphologies and it may be that each pPSTK regulates the
development of each type.

HHE (Histidine-Histidine-Glutamate motif; PF03794)

This domain normally occurs as tandem repeats, is ap-
proximately 70 residues in length, and is predicted to be
composed of 2 a-helices (See Figure 7). It is mostly found
in prokaryotes, though four Arabidopsis proteins were
identified with multiple HHE repeats and a Schizosaccha-
romyces pombe protein. Typically an HHE-containing pro-
tein consists of two HHE domains only, though there are
exceptions like the Arabidopsis proteins (e.g. QILJQ1).
There are two conserved histidines, both in the middle of
predicted helices, and a conserved glutamate. It shows a
slightly disparate phylogenetic distribution, but is found
in eubacteria, archaea, fungi and plants. In several cases it
appears to be involved in NO response - for instance
DnrN from Pseudomonas stutzeri [34]. Deletion of dnrN
leads to slower response to nitrite of the nirSTB operon, so
it may be involved in regulation or signal recognition.
However, in Ralstonia eutropha deletion of the HHE-con-
taining genes norAl and norA2, despite being co-tran-
scribed with the NO reductases-encoding norBl and
norB2, does not appear to affect growth or ability to cope
with NO stress [35]. It is also found in the ScdA protein of
Staphylococcus aureus, which has been implicated in
growth, development, and peptidoglycan cross-linking
[36]. The two conserved histidines and the glutamate are
suggestive of a cation-binding site, such as the binding of
Zn2+in Carboxypeptidase A. This hypothesis is supported
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HHE_SS

Figure 7

E_SS. The conserved histidines and

The predicted secondary structure is shown in the line marked HH

HHE domain alignment.

glutamate are indicated with purple arrows.

but prior to activation of the peptidase. The actual func-
tion of them is not clear but they may aid secretion/local-
isation or inhibit the peptidase until needed. Visual
inspection of the alignment, as well as predicted similari-

ties in the secondary structure,

by its occurrence in the putative cation-transporting AT-
Pase SCO0164 (Swiss:Q9RJ01) where it might sequester

cations for transport.

suggests that it may be

C-terminal domain; PFO4151)

PPC (Bacterial Pre-peptidase

related to the PKD domain (PF00801), but no significant
homology was detected using computational methods.

They are often found in the same protein as the PKD do-

These domains are typically ninety residues in length and
found at the C-termini of secreted peptidases (See Figure

8). Surprisingly these domains are found in at least four

main and in very similar contexts, and it is tempting to
suggest that they are functionally interchangeable (see Fig-

different classes of peptidases. The PPC domain is found

in some members of metallopeptidase families M4, M9
and M28 as well as the serine peptidase family S8 [37].
The PPC domains are cleaved off subsequent to secretion,

ure 9 for example domain architectures). PKD domains
are thought to be involved in protein-protein interactions.
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for example the RnfG electron transport
part of a chain that supplies electrons to both ni-

(Flavin MonoNucleotide-binding; PF04205)
This domain represents a sixty residue region that includes
trogen fixation and DNP reduction in Rhodobacter capsula-

an FMN-binding site (indicated in alignment, Figure 10),

’

teins, which also bind FMN through a threonine residue

and are part of the same complex, do not show any ho-
mology. The region is found in several electron transport
tus [40]. Other examples include the NosR/Nirl nitrous
oxide reduction regulatory proteins. FMN_bind-contain-
ing proteins appear to split into two groups, which relate
length to function. The shorter proteins, typically 200~
350 residues, are components of electron transport chains
whereas the longer proteins, typically 680-800 residues,
have a regulatory function. The regulatory proteins typi-

cally have five transmembrane helices in the C-terminal
4Fe-4S domains present, suggesting that the regulatory

Unlike the PKD domain the PPC domain is only found in
as determined in the NqrC proteins of Vibrio cholerae [38]
and Vibrio alginolyticus [39]. Interestingly the NqrB pro-
half of the protein. Members of both groups often have
mechanisms also involve charge movement.

This domain is named after the MbtH protein from Myco-
bacterium tuberculosis (Swiss: 005821). The domain is

bacteria and archaea, and not in eukaryotes.
MbtH (MbtH-like proteins; PF03621)

chain proteins;

FMN_bind
protein

GG

PPC_SS
Q46085 (1021 res.)
Q9LCJ5 (595 res.

QIX721 (1118res)
Q59208 (715 res))

QIX4F8 (806 res.)

PPC domain alignment. The predicted secondary structure is shown in the line marked PPC_SS.

Example collagenase precursors Q9X4F8 (Vibrio cholerae),

Q9X721 (Clostridium histolyticum), Q46085 (Clostridium histo-
sents a common protease architecture. Q59208 (esterase;

Bacillus licheniformis) is an example of the PPC domain occur-
ring at the N-terminus rather than the C-terminus. Domain

names shown are Pfam identifiers.

Iyticum) and O54108 (S. coelicolor; SCO5912) demonstrate
the apparent interchangeability of PPC and PKD domains.

Example domain architectures of PPC-containing proteins.
QILCJ5 (Protease precursor; Aeromonas punctata) repre-

Figure 8
Figure 9
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Figure 10
FMN_bind domain alignment. The FMN-binding residue is indicated by the green arrow. The predicted secondary structure is
shown in the line marked FMN_bind_SS.
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MbtH_SS

Figure 11

!

MbtH domain alignment. Conserved tryptophans are marked with purple arrows. Predicted secondary structure is shown on

the line MbtH_SS

typically 70 residues in length and covers the full length of
the protein, though NikP1 from Streptomyces tendae
(Swiss:Q9F2E7) also contains two domains common to
antibiotic synthesis proteins: an AMP-binding domain
(PF00501) and a Phosphopantetheine attachment site
domain (PF00550). It is found in the Actinomycetes, the
Proteobacteria gamma subdivision and Rhizobium legumi-
nosarum. Several of these proteins have been implicated in
antibiotic biosynthesis in several streptomycetes (for in-
stance nikkomycins: [41]; simocyclinone: [42]; coumer-
mycin Al: [43], and the formation of siderophores such as
E. coli's enterobactin or M. tuberculosis's mycobactin (re-
viewed in [44]). In the biosynthesis of siderophores they
do not seem to have a direct role, as a complete synthetic
pathway can be built up of mycobactin without assigning
to arole to MbtH (and similarly with enterobactin and the
Mbth-like YbdZ); so it is likely that it is involved in either
regulation of expression or transport of the siderophores
out of the cell, with a similar role in antibiotic synthesis.
There are several conserved residues, including three tryp-
tophans that may have functional importance (See align-
ment in Figure 11).

Extended Families

SCP (PF00188)

This domain family has previously only been reported in
eukaryotes, but in fact it contains a diverged sub-group
that occurs in eubacteria as well. An alignment of the eu-

karyotic and prokaryotic versions show that the principle
difference is the absence in bacteria of the conserved
cysteine residues, which form disulphide bridges, whereas
the proposed active site [45] (see Figure 12) is mostly con-
served. In order to try and determine its function in
bacteria a review of the information available for the eu-
karyotic domains was carried out.

So far all SCP-containing proteins appear to be secreted,
and this is backed up by the consistent prediction of signal
peptides at the N-terminus. There is very little direct evi-
dence of their general function currently, however many
examples have been found to be involved in signaling. For
instance they are involved in several mammalian develop-
mental processes, most notably sperm maturation [46]
and sperm-egg fusion [47], and are up-regulated in several
tumors ([48,49]). Clear evidence has been found, in Xeno-
pus, of sperm following the concentration of 'Allurin' - an
SCP-containing protein [50]. They are also commonly
used by insects and reptiles as mammalian toxins.

However these proteins are very big for direct signaling
molecules, typically being 200 or 400 residues (1 or 2 SCP
domains). It has been suggested that there is an active site,
based on analysis of the 3D NMR image of plant PR14a
and comparison with human GIiPR [45], and three of the
four residues predicted to make up the site are conserved
between the eukaryotic and prokaryotic subfamilies (See
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site residues, based on analysis of the eukaryotic domain [45], are marked by green or purple arrows. These residues are also
almost fully conserved in the prokaryotic sequences except one which falls into an insert region not in the prokaryotic

Figure 12

domains, which is marked by the green arrow. The secondary structure of the eukaryotic domain is shown on the line

VA5_VESVU_SS.

plants (PR1-like proteins), mammals, lizards, insects

Figure 12). This would imply that the domain generates a

(venom allergens) and nematodes. It appears likely that

they are similarly important and similarly multi-function
in bacteria, and hence are an important target for further

analysis.

smaller signaling molecule. However no evidence has

been found of such a molecule and several pieces of evi-

dence conflict with this hypothesis. Firstly the nematode

SCP-containing Neutrophil Inhibitory Factor (NIH) binds
directly to integrins CD11b/CD18 on the neutrophil cell

FG-GAP (PFO1839)

surface [51]. Secondly pseudochetoxin (from King brown
snake) appears to bind the extracellular portion of cyclic-
nucleotide gated ion channels (CNG channels) blocking
their function [52]. In the second case there does appear
to be time-lag between association or disassociation and
blocking or release of the gate. This does seem to suggest
that its mode of action is not simply as a steric block.

Several S. coelicolor proteins were identified that were
found to be related to FG-GAP repeats. The Pfam family
from version 7.4 contained only 5 bacterial members; the

updated family in Pfam 7.5 is found in thirty nine

bacterial proteins - including fourteen in S. coelicolor
(see Figure 13 for distribution of FG-GAP repeats in bacte-
ria). An extra thirty-four eukaryotic family members are

also

protein

an archaeal

well as

as

identified,

SCP-containing proteins are involved in a tremendously

(Swiss:028333). The FG-GAP repeats have been predicted

wide range of processes, and found to be essential in
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Streptomycetaceae )—[s lividans

S. coelicolor

—Thermoanaerobacter —Caldicellulosiruptor

—Bacillus/Clostridium |H

—C. acetobutylicum
—C. cellulolyticum
——C. beijerinckii

»
B. subtilis

B. holodurans

—1Delta subdivision

P. cellulosum

ibrionaceag————V. cholerae

ﬁGamma subdivision
Proteobacteria

P. cellulosa
Pseudomonadacead—[P. eruginoss

Enterobacteriaceae }—[P- luminescens

S. entomophila

"—Alpha subdivision F——Phyllobacteriaceae——M. loti

4@anobacteri a

Figure 13

iChroococcales -————Synechostis sp.

Species tree showing the distribution of FG-GAP proteins in bacteria according to Pfam 7.5. The broad distribution indicates

that more thorough searching may find them to be ubiquitous.

to assume a B-propeller conformation. The occurrence of
this repeat as sets of four or five tandem copies casts doubt
on this (e.g. Swiss:ITA2_DROME), as they are normally
six or seven bladed [3]. However the hemopexin repeat
(PFO0045) has been seen as a four-bladed propeller e.g. as
in mammalian blood serum haemopexin glycosylated-
native protein (PDB:1qjs), so perhaps FG-GAP repeats
might be more structurally similar to these repeats.

Conclusions

The primary purpose of this research was to identify novel
protein domains for which information could be easily
derived, and that were of biological significance to Strep-
tomyces coelicolor. To manually investigate every single pro-
tein is an immensely time-consuming enterprise, and it
would not be possible to add significant annotation to
many of the families built. However fully automatic

methods of family building lack precision, and the auto-
mated production of detailed annotation is currently not
feasible. Hence we employed a combination in an LHF
("low-hanging fruit") process in order to concentrate on
potentially the most interesting observations.

To underline the speed of this approach there are 204 cop-
ies of the novel domains listed in Table 1 in S. coelicolor,
not including the SCP and FG-GAP families. In order to
discover this many domains in S. coelicolor it was only nec-
essary to investigate 145 potential families, most of which
could be discarded quickly. The primary reason for this
was that no matches were found to other proteins. This
suggests that once a sufficient number of genomes have
been sequenced comparative scans like this one will be
very useful. The BTAD domain is the only domain not de-
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rived directly from a target, but rather the region was high-
lighted by the investigation.

Examples, such as the PASTA domain, also demonstrate
that reasonably large gains in biological knowledge could
be made through the delineation of the domain structures
of these proteins and the taxonomical distribution of the
domains. Similarly with SCO0002 and SCO0003 a strong
functional link can be made between them due to the oc-
currence of HA domains in the C-termini of both of them.
We hypothesise that the HA domains bind DNA, most
likely telomere-specific structures, based on secondary
structural similarities to the Myb-like DNA-binding
(PF00249) domain. Previously such a hypothesis could
only be made based solely on their close proximity within
the telomeres of the chromosome.

Not all the predictions made lead to the identification of
novel domains but rather to the expansion of known
domain families. Most of these are not reported as they do
not particularly enhance our understanding of the do-
mains or S. coelicolor; however the extension of the SCP
domain into prokaryotes does appear to be significant.
The substantial differences in sequence conservation sug-
gest that the prokaryotic versions are not simply the
product of lateral transfers, but are of ancient origin. The
lack of conservation of the cysteines, after which the
domain was originally named, suggests that they are not
functionally important but are involved in stabilizing the
protein over the greater distances involved in eukaryotic
signaling. In contrast the conservation of three of the four
proposed active site residues confirms that these are the
functionally significant residues. The apparent impor-
tance of SCPs in eukaryotes suggests that these domains
will prove to be similarly important in bacteria.

It is important to recognize when basing future work on
bioinformatic studies such as this one, that the results are
sets of hypotheses rather than true descriptions. This does
not detract from the success of such approaches. Previous-
ly a researcher investigating an HHE-containing protein
would have known little about it apart from the sequence;
now three strong candidates for the functional or active
site residues are clear and a putative function (cation-
binding) assigned that can be tested. Also once one mem-
ber of a family is described information can be transferred
to its relations. This is enhanced by the deposition of the
families into Pfam; any further investigations into the
streptomycetes using Pfam will automatically annotate
these domains, increasing the knowledge and under-
standing of these remarkable organisms.

Supplementary Information
S1: Architecture diagrams for all HA, BTAD, SPDY, PASTA
and HHE domain-containing proteins in S. coelicolor, as

http://www.biomedcentral.com/1471-2180/3/3

well as other proteins referred to in the text. Architectures
are based on data from Pfam and SMART. Domain names
are as given in Pfam and SMART. Small orange boxes at
the N-termini indicate signal peptide sequences. TM indi-
cates transmembrane regions.

S2: Architecture diagrams for all PPC, FMN_bind and
MbtH domain-containing proteins in S. coelicolor, as well
as other proteins referred to in the text. Architectures are
based on data from Pfam and SMART. Small orange boxes
at the N-termini indicate signal peptide sequences. TM in-
dicates transmembrane regions.
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Correction

Subsequent to submission of this manuscript it came to
the authors' attention that SCP domains have previously
been described in prokaryotes [53]; so this section should
be considered as a formal report of the prokaryotic version
rather than an initial observation.
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