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Abstract

The Eastern Afromontane biodiversity hotspot composed of highly fragmented for-

ested highlands (sky islands) harbours exceptional diversity and endemicity, particu-

larly within birds. To explain their elevated diversity within this region, models

founded on niche conservatism have been offered, although detailed phylogeographic

studies are limited to a few avian lineages. Here, we focus on the recent songbird

genus Zosterops, represented by montane and lowland members, to test the roles of

niche conservatism versus niche divergence in the diversification and colonization of

East Africa’s sky islands. The species-rich white-eyes are a typically homogeneous

family with an exceptional colonizing ability, but in contrast to their diversity on oce-

anic islands, continental diversity is considered depauperate and has been largely

neglected. Molecular phylogenetic analysis of ~140 taxa reveals extensive polyphyly

among different montane populations of Z. poliogastrus. These larger endemic birds

are shown to be more closely related to taxa with divergent habitat types, altitudinal

distributions and dispersal abilities than they are to populations of restricted endemics

that occur in neighbouring montane forest fragments. This repeated transition between

lowland and highland habitats over time demonstrate that diversification of the focal

group is explained by niche divergence. Our results also highlight an underestimation

of diversity compared to morphological studies that has implications for their taxon-

omy and conservation. Molecular dating suggests that the spatially extensive African

radiation arose exceptionally rapidly (1–2.5 Ma) during the fluctuating Plio-Pleistocene

climate, which may have provided the primary driver for lineage diversification.
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Introduction

Fragmented landscapes such as archipelagos are excel-

lent natural laboratories to assess the influence of geog-

raphy on genetic and phenotypic divergence (e.g. Roy

1997; Knowles 2000; McCormack et al. 2008; Price 2008;

Shepard & Burbrink 2009; Clegg & Phillimore 2010;

Lawson 2013). In particular, montane archipelagos har-

bour some of the highest biological diversity on the pla-

net, making them important regions of interest for

understanding the patterns and processes leading to the

accumulation of diversity. The hyperdiverse Eastern Afr-

omontane biodiversity hotspot (EABH) (Myers et al. 2000)

has received considerable attention from evolutionary

biologists investigating how this highly heterogeneous

landscape has influenced population differentiation and

speciation both temporally and spatially. This region is
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currently experiencing severe habitat loss (Myers et al.

2000) and has alarming rates of forecasted urban

growth (Seto et al. 2012), which places a premium on

quantifying the diversity that this key hotspot harbours,

as well as understanding the evolutionary processes

responsible. Evolutionary insights will furthermore

allow a better understanding of organisms’ responses to

on-going and future habitat fragmentation.

Unlike the continuous mountain ranges of the Himala-

yas or Andes, the EABH is composed of a chain of

ancient isolated massifs (Griffiths 1993) and young volca-

noes (<5 Ma e.g. Baker et al. 1971) forming sky islands

(Fig. 1A). Montane forests typically occur above 800 m

on these isolated peaks, so that the climatic conditions

and ecosystem are highly differentiated from the sur-

rounding low altitude savannah habitats and thus form

‘ecological islands’. Previously, the montane forests

formed a pan-African forest that fragmented in the Early

Oligocene due to the onset of aridification (Lovett 1993;

Sepulchre et al. 2006) and have therefore had a long per-

iod of isolation. The isolation of these habitats potentially

allows in situ speciation events to be differentiated from

colonization events, which would otherwise be much

harder to identify in montane systems exhibiting higher

degrees of connectivity (Voelker et al. 2010).

Several competing models have been put forward in

an attempt to explain the high levels of endemism

observed in tropical montane faunas. Within the EABH,

there has been considerable support for the montane spe-

ciation model (e.g. Fjelds�a & Lovett 1997; Roy 1997;

Fjelds�a & Bowie 2008). Under this scenario, montane for-

est habitats (sky islands) separated by intervening low-

land areas may have served as historical refugia, where

previously widespread populations became geographi-

cally isolated as they tracked suitable habitat to higher

altitudes in response to climate change during the cool

and arid episodes of the Plio-Pleistocene.

An alternative mechanism of climatic zonation, the gra-

dient speciation model (Moritz et al. 2000 and references

therein), posits that new species originate as populations

adapt to different climatic regimes along an altitudinal

gradient, predicting that sister taxa should occupy dis-

tinct but adjacent habitats (e.g. Moritz et al. 2000; Ogden

& Thorpe 2002; Hall 2005; Kozak & Wiens 2007). In the

tropics, the narrowing of climatic profiles between differ-

ent altitudes produces strong ecological gradients, which

in turn selects organisms with narrow ecological toler-

ances (Moritz et al. 2000; Kozak &Wiens 2007).

The montane and gradient speciation models predict

contrasting roles for natural selection, with refuge (i.e.

montane speciation) models founded on niche conserva-

tism, in which the inability of populations to adapt to

new or changing environmental conditions plays the

primary role in geographical isolation, with ecologically

similar populations diverging in allopatry (Moritz et al.

2000; Wiens & Donoghue 2004; Kozak & Wiens 2007;

Wiens et al. 2010). In contrast, under the gradient

model, the ability to adapt to new or changing environ-

mental conditions drives climatic niche divergence (thus

population divergence), with differing climatic distribu-

tions and/or climatic tolerances limiting gene flow

between populations in either allopatry or parapatry

(Moritz et al. 2000; Ogden & Thorpe 2002; Hall 2005;

Kozak & Wiens 2007). A variation of these two models,

the vanishing refuge model (Vanzolini & Williams

1981), proposes that some populations speciate through

directional selection towards a tolerance of less favour-

able habitats as refuges become too small to retain via-

ble populations. Like the gradient model, the vanishing

refuge model is based on niche divergence and predicts

that sister species occupy distinct habitats; however, the

latter model also requires severe population bottlenecks

with subsequent range expansion (Moritz et al. 2000).

However, the possible contribution of models founded

on niche divergence to explain the diversification of lin-

eages from the EABH has been largely ignored.

Birds have long been the subjects of speciation studies

on archipelagos due to their success as colonizers (e.g.

Mayr 1942; Diamond 1970; Price 2008; Clegg & Philli-

more 2010), with studies principally focusing on oceanic

islands and to a lesser extent on montane archipelagos

(but see e.g. McCormack et al. 2008). Within the EABH,

there are approximately 1300 described bird species, of

which 110 are endemic, providing substantial compara-

tive systems in which to investigate processes facilitating

diversification across the region’s sky islands.

To better understand the build-up of biodiversity

within the Eastern Afromontane region, we investigated

diversification in the songbird genus Zosterops (Passeri-

formes: Zosteropidae). This species-rich group is com-

posed of small, gregarious, arboreal birds that, aside

from some aberrant African taxa traditionally separated

in the genus Speirops (e.g. Melo et al. 2011), exhibit

remarkable uniformity in their morphological structure,

plumage and behaviour (van Balen 2008). As such, the

systematics of the Zosteropidae is notoriously problematic,

Fig. 1 Distribution of Zosteropidae samples used in this study. (A) The Eastern Afromontane region (highlighted in black), scale =

500 Km; (B) Zosterops samples from outside the focal region; (C) Zosterops samples from the East Afromontane region: Z. poligastrus

(red); Z. abyssinicus (green); Z. senegalensis (yellow); Z. pallidus (blue); Zosterops sp. (black); mainland taxa (circles); insular taxa

(triangles); altitude in metres; scale=3.2 decimal degrees. Photographs (top to bottom, Cox): Z. poliogastrus kulalensis (K39, Mt Kulal);

Z. abyssinicus flavilateralis (T15, foothill of Chyulu Hills); Z. senegalensis jacksoni (T51, Kakamega Forest).
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and the affinities of numerous taxa remain enig-

matic (Fry et al. 2000). Here, we follow the currently

standard taxonomy of Dickinson (2003) and van Balen

(2008).

Zosterops are renowned ‘speciators’, displaying spec-

tacular colonizing abilities (Lack 1971), and are sug-

gested to have diversified exceptionally rapidly

(~2 Ma, Moyle et al. 2009). Despite their occurrence

across the Old World tropics (including Africa and

Asia), research into factors facilitating their diversifica-

tion has predominately centred on insular taxa (e.g.

Warren et al. 2006; Moyle et al. 2009; Clegg & Philli-

more 2010). Conversely, continental members have

been largely neglected, possibly because less than 10%

of their known diversity is attributed to continental

landmasses (Moreau 1957).

Where present on East African sky islands (Fig. 1),

Zosterops (referred to as white-eyes due to their white-

eye ring) are often represented by a single endemic

subspecies, which is analogous to their distribution on

oceanic islands (e.g. Indian Ocean, Gulf of Guinea and

Vanuatu archipelagos). Oceanic islands commonly sup-

port a single endemic taxon (Dickinson 2003), although

two nonsister taxa are present on some islands (e.g.

Warren et al. 2006). Just four currently recognized

species of Zosterops occur across much of mainland sub-

Saharan Africa, of which three are found within the

mountain archipelago of East Africa’s Rift Valley (Ken-

yan Highlands and East African Arc); however, subspe-

cies diversity is considerably higher (Dickinson 2003;

van Balen 2008). The African montane white-eyes

(Z. poliogastrus) of East Africa’s sky islands are compar-

atively larger birds than other mainland species, with

rich green backs, yellow or grey bellies and generally

broad white-eye rings and bright golden feathers

(Fig. 1). While some authors have argued that Z. polio-

gastrus should be split into several species based on

vocal differences and ecology (e.g. Collar et al. 1994;

Borghesio & Laiolo 2004), plumage variation within this

group is subtle. Notably, a recent study based on 15

microsatellite markers indicates that genetic differentia-

tion within Z. poliogaster populations is very high

(Habel et al. 2013). All Z. poliogastrus subspecies are

endemic to montane forest habitats and are ecologically

segregated from parapatric Z. senegalensis or Z. abyssini-

cus subspecies (Hall & Moreau 1970).

The recent divergence of the Zosteropidae (Moyle et al.

2009) and their montane and lowland distribution within

the focal region are attributes that make East African

Zosterops a useful system to test current hypotheses of

montane diversification and diversity using a phyloge-

netic approach. An advantage of focusing on recently

evolved taxa is that they avoid complicating causal

events; thus, their diversity is likely shaped by similar

forces happening in a short amount of time, rather than

multiple disparate events over a long time. To recon-

struct the evolutionary relationships of Zosterops, we gen-

erated novel mtDNA (cytochrome b (Cyt b) and NADH

dehydrogenase subunit 3 (ND3) genes), and AFLP data

based on dense sampling across the Eastern Afromon-

tane region and included additional sampling from out-

side of the region. Divergence times were estimated

using a calibration based on the age of a volcanic island

(Grand Comore) and were compared to those generated

using the avian molecular clock. Using these data, we

address the following questions: First, Have montane for-

est taxa diversified in situ? Under this scenario, diversifi-

cation of montane endemics is suggested to be the result

of niche conservatism (montane speciation model), in

which we would except to find recently evolved montane

forms (Plio-Pleistocene time frame) comprising a clade

relative to lowland forms (e.g. Roy 1997). In contrast,

alternative hypotheses in which diversification is the

result of niche divergence (gradient speciation and van-

ishing refuge models), we would expect sister species to

occupy distinct habitats. However, as the latter model

requires demographic changes to explain such shifts, we

are unable to test this hypothesis here. Second, Did diver-

sification of montane taxa occur within a Plio-Pleistocene

time frame, in which montane habitats have been largely

buffered from climatic instability? Third, Is montane

white-eye diversity underestimated? That a species-rich

genus contains so few species in a key hotspot of biologi-

cal diversity is surprising. Extensive sampling of the

region here allows assessment of their diversity within a

systematic framework.

Methods

Taxonomic sampling

A total of 148 individuals representing 15 described

ingroup taxa (Dickinson 2003) are included in this

study based on blood samples (Table S1, Supporting

information; Fig. 1). To test species monophyly and col-

onization scenarios, 33 Zosterops samples were obtained

from outside East Africa (Fig. 1B). Blood sample num-

bers, collection localities and GenBank Accession nos

are listed in Table S1 (accompanying specimen photo-

graphs are available from Dryad). Blood samples were

taken from mist-netted specimens and stored in ETOH

(99%) or Queen’s lysis buffer (Seutin et al. 1991).

Molecular sequence data

Total DNA was extracted from blood samples using a

DNeasy Blood and tissue kit (Qiagen, UK). Mitochon-

drial genes (Cyt b, ND3) and a nuclear gene (TGFß2)

© 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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were selected based on their performance from previ-

ous Zosterops studies (Warren et al. 2006; Moyle et al.

2009; Melo et al. 2011). Amplification of ND3 and

TGFß2 was performed using published primers (Table

S2, Supporting information). To obtain the entire Cyt b

gene, the published primer H16065 was used alongside

three newly designed primers (Table S2, Supporting

information). PCR amplifications and thermal cycling

conditions for all three genes are reported in Table S2.

Cleaned products were sequenced on an ABI 3730xl

DNA analyser (Applied Biosystems, UK).

Amplified Fragment Length Polymorphisms (AFLPs)

Amplified fragment length polymorphism profiles were

generated following Vos et al. (1995), with modifications

for fluorescent primers implemented in Huang & Sun

(1999). Selective PCR was carried out in two stages: a

subsample of all restriction fragments was obtained

through a preselective amplification, and these were

subsequently selectively amplified with more specific

dye labelled primers. Thermal cycling conditions and

primers for both amplification stages are reported

in Appendix S1, Supporting information. This study

screened a total of 21 unique primer combinations gen-

erated from three selective amplification EcoRI+NNN

primers (labelled with different fluorescent dyes) and

seven Msel+NNN primers. A subset of eight DNA

extracts was chosen to test all 21 AFLP primers combi-

nations, and resulting selective amplification products

were electrophoresed on a 3.5% agarose gel against a

Hyperladder V (Bioline) size standard to choose the

most appropriate primer combinations. Fragment analy-

sis was conducted on a 3730 Applied Biosystems Sanger

Sequencer using recommended fluorophores (FAM,

NED HEX and LIZ).

AFLP scoring

Peaks were visualized using GENEMAPPER version 3.7,

and all primer combinations were analysed separately.

An initial scoring panel was generated using the

automatic panel generation feature of GENEMAPPER

under default settings. This feature algorithmically

generates panels and bins based on the collective

peaks present from all samples. The resulting AFLP

panels were then checked by eye. As replicates are

the only objective measure of quality in AFLP studies

(Pompanon et al. 2005), five individuals were repeated

from the restriction ligation stage onwards to obtain a

relative assessment of the repeatability of AFLP pro-

files. Additional information is reported in Appendix

S1.

Phylogenetic inference

Phylogenetic analyses were performed on a data set of

139 samples comprising 1471 bp of mtDNA sequence

data (ND3 348 bp, Cyt b 1123 bp). Sequences were

aligned in CLUSTAL X 2.0 (Larkin et al. 2007) using default

settings, with the resulting alignment checked manually

in SE-AL 2.0 (Rambaut 2002) and translated into amino

acids to ensure there were no stop codons. Nuclear

DNA (TGFß2) (600 bp) was generated for a subset of

the taxa to assess phylogenetic signal, but provided no

informative sites and was therefore discounted from

subsequent analyses.

PARTITIONFINDER 1.01 (Lanfear et al. 2012) was used to

select the best-fit partitioning scheme and model of

molecular evolution for the mtDNA data using the

Bayesian information criterion (BIC) and implementing a

heuristic search algorithm (greedy). The resulting parti-

tions and models were implemented in MRBAYES 3.1.2

(Huelsenbeck & Ronquist 2001). Starting from a random

tree, four metropolis-coupled Markov chain Monte Carlo

(MCMC) chains (temp = 0.2) were run simultaneously for

5 000 000 generations three times, sampling every 100

generations with a burn-in of 7500. Convergence of the

MCMC runs was assessed graphically using TRACER 1.5

(Rambaut & Drummond 2009). Support is assessed by

Bayesian posterior probabilities (BPP). Maximum-likeli-

hood (ML) analyses were also performed on the mtDNA

data and implemented in GARLI (Genetic Algorithm for

Rapid Likelihood Inference 2.0) (Zwickl 2006). Six search

replicates were run to find the best tree, estimating sub-

stitution rates, with branch support ascertained by 1000

nonparametric bootstrap (BS) replicates.

A phylogenetic analysis of the 255 character AFLP

data based on 92 samples was also performed using

MRBAYES 3.1.2. Four independent MCMC chains (temp =
0.2) were run for 5 000 000 generations, with a sam-

pling frequency of 1000 and a relative burn-in of 25%.

The binary matrix was coded as data-type=restriction
and coding=no absence sites, with all other parameters

set as default, with support estimated by BPP.

Estimation of divergence times

As there are no suitable fossil calibrations for the Zostero-

pidae, we employed alternative methods of molecular

dating. This included using a geological calibration based

on the date of origin of a volcanic island, an approach

that has been employed in various other avian studies

(e.g. Fleischer et al. 1998; Warren et al. 2006; Moyle et al.

2009; Lerner et al. 2011; Melo et al. 2011). Under this

approach, the maximum age of divergence between clo-

sely related taxa occupying neighbouring islands is con-

strained to be the age of the youngest island,

© 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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representing the earliest possible date for colonization.

Following assumptions discussed in previous studies

(e.g. Fleischer et al. 1998; Warren et al. 2003), the maxi-

mum age estimate for the volcanic origin of Grande

Comore at 0.5 Ma (R. Duncan personal communication

in Warren et al. 2003) is used to calibrate the node sepa-

rating the lowland Grande Comore white-eye (Z. madera-

spatanus kirki) from other taxa in the ‘maderaspatanus’

clade (Warren et al. 2006). As an avian molecular clock

has been used to date many avian studies (e.g. Voelker

et al. 2010; Fritz et al. 2011), we also employed the aver-

age pairwise substitution rate of 2.1% for Cyt b (Weir &

Schluter 2008) used in these studies to investigate

whether resulting divergence times are concurrent with

those generated from an island calibration.

Cytochrome b and ND3 data were pruned to include

one representative from each taxon in order to use a

model of speciation with no coalescence and were found

to be evolving under a strict molecular clock in BEAST 1.7.5

(Drummond et al. 2012). In the calibrated approach,

divergence time estimates were generated from the con-

catenated Cyt b and ND3 data, while divergence esti-

mates obtained based on the molecular clock rate (2.1%)

were generated from the Cyt b data only. Both

approaches used the same starting tree that was gener-

ated from the Bayesian analyses of the concatenated data,

but retaining only a single sample per taxon. For both

analyses, two independent MCMC analyses were run

starting from a user specified tree. Chains were run for

10 000 000 generations using a constant rate Yule specia-

tion prior (assumes a constant speciation rate per lineage)

implementing the models and partitions generated by

PARTITIONFINDER, sampling every 1000 generations with a

burn-in of 10%. Convergence of the two independent

MCMC runs was assessed in TRACER 1.5 (Rambaut &

Drummond 2009), as were convergence of model param-

eter values (effective sample size [ESS]) to ensure ESS

values >200. The posterior distribution was summarized

in the program TREE ANNOTATOR 1.7.5 (Drummond et al.

2012). An empty alignment was also run to investigate

the effects of priors on posterior divergence and resulted

in no priors needing to be updated.

Biogeographic analysis

To reconstruct whether ancestral areas at nodes for

selected clades (A1, A2, B1) in the phylogeny are low-

land or highland in origin, we use the event-based

method statistical dispersal–vicariance analysis (S-DIVA,

Yu et al. 2010) in the program Reconstruct Ancestral

States in PHYLOGENIES v1.1 (RASP; Yu et al. 2013) using

the pruned tree containing one representative from each

taxon.

Results

Phylogenetic inference (mtDNA)

Three partitions were identified using PartitionFinder

for the concatenated mtDNA with the following models

implemented in MRBAYES: K80 + I+G (ND3 position 2,

Cyt b position 3); HYK+I+G (ND3 position 3, Cyt b posi-

tion 1); GTR+G (ND3 position 1, Cyt b position 2).

Phylogenetic inference based on Bayesian and ML

analyses resulted in well-resolved congruent hypotheses

in which support for relationships is generally good

(Fig. 2). Our results identify an African radiation com-

posed of two major clades (Fig. 2A, B) that each con-

tains independent oceanic island clades, with the

notable exception of the Ancient Indian Ocean white-

eyes (AIO) clade that is not a member of this radiation.

A significant and striking finding of this study is the

extensive nonmonophyly of mainland African Zosterops

taxa, with all continental species (Z. poliogastrus, Z. sen-

egalensis, Z. abyssinicus, Z. pallidus) recovered as non-

monophyletic. In contrast to the nonmonophyly of

described species, there is strong support for the mono-

phyly of subspecies, specifically within the regional

endemic Z. poliogastrus and the more widely distributed

Z. senegalensis.

Each Z. poliogastrus and Z. senegalensis subspecies

sampled in this study comprises a well-supported

clade, forming independent lineages throughout both

major mainland clades (Fig. 2, clades A and B). By con-

trast, two of the three Z. pallidus subspecies (Z. p. capen-

sis and Z. p. virens) comprise a clade (BPP 0.89, BS 70%)

with no internal resolution. The position of the single

sample of Z. p. pallidus (AP50340) is unclear, although

there is no support for its placement as sister to the

other Z. pallidus subspecies, supporting the findings of

a recent phylogeographic study (Oatley et al. 2012).

Likewise, the two mainland parapatric Z. abyssinicus

subspecies form a clade (BPP 1, BS 75%) with no sup-

port for any division between them. However, our

Fig. 2 Phylogenetic tree of African Zosterops generated using Bayesian inference based on ND3 and Cyt b data. Bayesian posterior

probabilities (BPP) are indicated above branches, with ML bootstrap (BS) values below branches. Support values are represented by

the symbols: black star >95% BPP/BS, white star >90% BPP/BS, black square >80% BPP/BS, white square >50% BPP/BS. Nodes with

<50% support are unmarked. Key nodes are labelled AR (African Radiation), A-A2 and B-B1. Taxa are labelled using full trinomial

nomenclature following the taxonomy of Dickinson (2003).
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results clearly identify that these mainland Z. abyssini-

cus taxa are distinct from the insular race Z. a. socotr-

anus from the Island of Socotra. Both Bayesian and ML

analyses place Z. a. socotranus as sister to the African

radiation, although this finding does not receive high

support.

Divergence estimates

The application of different dating methods to the mito-

chondrial data (volcanic island calibration versus a 2.1%

clock rate) results in divergent time frames for the radi-

ation of African Zosterops. Implementation of the island

calibration (Fig. 3) estimates a Late Pleistocene diver-

gence of 1.55 Ma (95% highest posterior density (HPD):

0.97–2.5 Ma). This is considerably younger than the

time frame estimated by implementing the 2.1% clock

(5.79 Ma 95% HPD: 4.8–6.86 Ma, Fig. S1, Supporting

information) pushing the divergence of this clade back

to the beginning of the Early Pliocene/Late Miocene.

Previous estimates of the molecular rate of evolution in

Zosteropidae have used island calibrations (Warren

et al. 2006; Moyle et al. 2009; Melo et al. 2011) that have

resulted in significantly faster rates of evolution than

the 2.1% rate, suggesting that the avian clock may be a

severe underestimation of the true rate of evolution

within the Zosteropidae. Under the avian clock time-

scale, the divergence of the clade containing Grande

Comore taxa Z. maderaspatanus kirki and Z. maderaspat-

anus maderaspatanus is dated at 1.68 Ma (95% HPD:

0.61–2.85 Ma), with a lower confidence interval margin-

ally outside of the island age calibration of 0.5 Ma for

the volcanic origin of Grande Comore.

Despite divergence estimates based on median ages

for the calibrated tree of the African Zosterops radiation

falling within a drier climatic phase (Fig. 3), we cannot

place much confidence in this finding as 95% HPDs are

broad at nodes along the backbone of the tree.

However, more confidence can be given to the diversifi-

cation of montane white-eyes during the cooler and

drier East African climate (Fig. 3) as our timetree

indicates two pulses of diversification of these taxa

with Z. poliogastrus silvanus 0.89 Ma (95% HPD:

0.53–1.45 Ma), Z. p. kulalensis 0.75 Ma (95% HPD: 0.43–

1.23 Ma) and Z. p kikuyuensis 0.57 Ma (95% HPD: 0.32–

0.96 Ma) diverging earlier than the contemporaneous

divergence of Z. p. winifredae and Z. p mbuluensis at

0.32 Ma (0.15–0.58 Ma 95% HPD). Diversification of

these montane taxa appears to have occurred sometime

after the last major wet phase at 1.1–0.9 Ma (Trauth

et al. 2007), although 95% HPDs for Z. p. kulalensis and

Z. p. silvanus extend across this last wet phase and into

the earlier arid phase. Irrespective of dating method,

there appears to be little evidence that diversification

events correspond to volcanic formation, as these pulses

of diversification include members inhabiting both mas-

sif (old) and volcanic (young) mountains (Fig. 3).

Biogeographic history

While our phylogeny does not include complete sam-

pling, biogeographic analysis indicates at least one

instance in which montane forest habitats are ancestral to

lowland habitats (clade B1 100%; clade A1 50% + 50%

equal probability that highland+lowland are ancestral),

whereas ancestral reconstructions are ambiguous for

clade A1 (lowland+highland habitats equally probable).

However, at a broader scale, lowland habitats are recon-

structed as being ancestral for the African radiation.

AFLP profiles

In total, 116 samples were screened to determine tem-

plate DNA quality and quantity, with 27 dropping out

due to poor quality extracts and high levels of noise

affecting efficient scoring. The number of bins (alleles)

for each of the 15 primer combinations identified by

the initial scoring panel ranged from 211 to 563. In

general, NED-labelled primer combinations gave the

fewest number of fragments, while FAM-labelled pri-

mer combinations gave the highest. Average peak

amplitude was relatively uniform across primer combi-

nations (~800 RFU), although the range of peak ampli-

tude varied significantly between bins (100–5000).

Shoulder stuttering was present in 11 of the 15 primer

combinations used and was most frequently observed

for FAM-labelled primers. The signal-to-noise ratio

was lowest in FAM-labelled primers and was notably

higher in HEX- and NED-labelled primers respec-

tively.

Manual examination of concatenated AFLP profiles

identified a large variation in peak amplitude between

samples, which subsequently led to a large proportion

of the bin being discounted (~90%). Codominant alleles

Fig. 3 Divergence times of Zosterops estimated using BEAST based on the mitochondrial data and calibrated using a geologically deter-

mined island date fixing the node indicated by the blue 95% HPD bar at 0.5 Ma following Warren et al. (2006). Thickened branches

indicate Z. poliogastrus taxa, and red HPD bars highlight divergence estimates of the focal taxa. Pale blue bars indicate the warmer

and wetter periods of the Plio-Plistocene climate following dates from Trauth et al. (2005). AIO, Ancient Indian Ocean; AA, Australia

and Asia; GA, Gulf of Aden; GGM, Gulf of Guinea Mainland; GGO, Gulf of Guinea Oceanic; IOM, Indian Ocean ‘maderaspatanus’.
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were evident across all primer combinations examined.

However, peak amplitude variability between samples

hindered assessments of frequency. Average estimates

of genotyping error, measured following Bonin et al.

(2004), were 0.8%. The number of fragments scored per

sample ranged from 45 to 84, with the mean number of

fragment scored being 66.9. Of the 255 AFLP loci exam-

ined, 31% (79 alleles) corresponded to private alleles,

for which scoring was limited to individuals from the

same sampling locality.
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Fig. 4 Phylogenetic reconstruction of African Zosterops generated by Bayesian inference based on nuclear AFLP fragments. Bayesian

posterior probabilities support indicated by the symbols: black star >95%, white star >90%, black square >80% and white square >50%.
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AFLP phylogenetic inference

Bayesian inference of the AFLP data identified the two

Z. borbonicus subspecies (Ancient Indian Ocean, AIO) as

sister to all Africa taxa (BPP = 1.00, Fig. 4), which is

concordant with the mtDNA phylogeny. However,

there is no support for the broader clades (A and B)

recovered in the mtDNA phylogeny. Despite the lack of

power in the AFLP data to resolve interrelationships,

there is good support for the monophyly of range-

restricted taxa of continental montane forests (i.e.

Z. poliogastrus subspecies). Conversely, there is very lit-

tle support for the monophyly of subspecies and/or

populations of more widely distributed taxa such as

Z. abyssinicus and Z. senegalensis. Leaf stability (Thorley

& Wilkinson 1999), implemented in the program Phyu-

tility (Smith & Dunn 2008), was used to assess if the

lack of resolution in the initial data (92 taxa) was

caused by unstable or rogue taxa. On the basis of leaf

stability scores, 14 taxa were discarded, and while the

resulting analysis of the reduced matrix resulted in a

slightly more resolved hypothesis indicating the non-

monophyly of Z. poliogastrus, this result was only

weakly supported. Taxon reduction made little impact

in resolving deeper level relationships or subspecies

monophyly of wide ranging taxa.

Discussion

Evidence for niche divergence

We show for the first time using phylogenetic inference

that montane white-eyes from East African sky islands

are nonmonophyletic. In contrast to other regional stud-

ies that have focused on groups containing highland

and lowland members at a similar timescale (e.g. Roy

1997; Voje et al. 2009), white-eyes have independently

colonized but have not subsequently diversified within

montane forest habitats. The independent colonization

and lack of in situ diversification in an insular setting

are generally analogous to white-eyes’ history on oce-

anic islands. The repeated transition that has occurred

over evolutionary time between lowlands and high-

lands strongly indicates a lack of niche conservatism.

Additionally, irrespective of absolute dates, our timetree

(Fig. 3) indicates several instances in which endemic

forest taxa are not younger than lowland taxa, which is

in contrast to previous findings (e.g. Roy 1997; but see

Marks 2010), and that for at least one clade, coloniza-

tion of East African lowlands is suggested to have

occurred by montane species. Thus, although the diver-

sification of the focal group is suggested to have

occurred rapidly during the Plio-Pleistocene, the phylo-

genetic hypothesis does not fit a montane speciation

(refuge) model as proposed for other regional lineages

(e.g. Roy 1997; Voje et al. 2009). Conversely, our results

show that the larger and heavier endemic montane

Z. poliogaster populations are more closely related to

taxa with divergent habitat types, altitudinal distribu-

tions and dispersal abilities than they are to populations

of restricted endemics that occur in neighbouring mon-

tane forest fragments. This is exemplified by the ende-

mic montane Z. p. mubulensis (Chyulu Hills, Kenya) as

sister to a clade comprising Z. a. flavilateralis and Z. a.

jubaensis (Fig. 2, clade A1) that have a wide distribution

throughout the dry and arid lowlands of Kenya and

Ethiopia.

Divergent selection is potentially also further indi-

cated in the phylogeny (clades A2, B1, Fig. 2), although

relationships are more complex regarding the ecology

of sister species. Within each clade, two endemic

Z. poliogastrus subspecies occur in neighbouring mon-

tane forest fragments, with at least one of these subspe-

cies sister to a widely dispersed lowland taxon. Despite

the proximity of the forest fragments inhabited by the

Z. poliogastrus subspecies in clade A2 (<50 km between

Taita Hills and S. Pare Mts, and <100 km between Mt

Kulal and N. Aberdares), the divergence between these

taxa supports the idea that lowland savannah habitat

provides a barrier to gene flow causing divergence

between isolated forms in neighbouring montane forest

fragments (e.g. Fjelds�a & Lovett 1997; Roy 1997; Fjelds�a

& Bowie 2008). Additional highland taxa, Z. senegalensis

jacksoni and Z. senegalensis stierlingi, also occupy mon-

tane forest habitats throughout Kenya and Tanzania;

however, their presence in multiple nonconnected forest

fragments indicates that unlike Z. poliogaster, highland

Z. senegalensis populations were not restricted by low

dispersal abilities.

Our results provide strong support for mechanisms

founded on niche divergence. Both the gradient specia-

tion model and the vanishing refuge model have previ-

ously been used to explain the occurrence of sister taxa

in adjacent but distinct habitats (e.g. Vanzolini &

Williams 1981; Moritz et al. 2000; Ogden & Thorpe

2002; Hall 2005; Kozak & Wiens 2007), but in the

absence of data on the historical rate of gene flow, it is

difficult to distinguish between these two alternative

hypotheses (Moritz et al. 2000). While relationships

within clade A1 seemingly support a gradient specia-

tion model, those of clades A2 and B1 are more compli-

cated. For example, the broad lowland distributions of

Z. pallidus and Z. s. senegalensis are not parapatric with

respect to their range-restricted sister taxa, Z. poliogas-

trus winifredae and Z. p. kikuyensis, and thus, strong

directional selection between habitat types along an alti-

tudinal gradient is not supported (Moritz et al. 2000;

Kozak & Wiens 2007). Additionally, the presence of
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highland Z. senegalensis forms also conflicts with the

main predictions of the gradient speciation model, in

that taxa should occur in distinct habitats that have alti-

tudinal nonoverlapping geographical distributions

(Moritz et al. 2000). These sets of relationships, along

with several instances of montane forest taxa ancestral

to lowland taxa, instead lend some support to the van-

ishing refuge model (Vanzolini & Williams 1981; Moritz

et al. 2000). With their exceptional dispersal abilities

and rapid diversification, support for an ecological

model of speciation in white-eyes may be a conse-

quence of intrinsic factors as opposed to any common

biogeographic pattern. Certainly, it is increasingly

apparent from comparative regional studies that no sin-

gle model or geological period can realistically explain

the origin and diversification of the exceptional

Afromontane biota.

Recent colonization of Africa and rapid diversification

The phylogenetic hypothesis (supported by mtDNA

and AFLPs) identifies a single colonization event of the

African continent by the Zosteropidae that, based on an

island calibration, is suggested to have occurred as little

as 1.55 Ma (95% HPD: 0.97–2.5 Ma) during the latest

Pliocene to Early Pleistocene. The divergence into two

principal African clades occurred soon after the arrival

of Zosterops to the African continent, with subsequent

rapid diversification suggested to have occurred in the

Lower Pleistocene. Independent lineages diversified

into differing habitats across sub-Saharan Africa, as well

as colonizing the Gulf of Guinea Islands and making a

second colonization of Indian Ocean islands (see

Warren et al. 2006 and Melo et al. 2011).

If correct, this time frame, and also that estimated

using the conservative avian molecular clock, indicates

that Zosterops colonized Africa well after the fragmenta-

tion of montane forests during the Early Oligocene due

to the onset of aridification (Lovett 1993; Sepulchre et al.

2006). Despite the long-term drying trend of the Plio-

Pleistocene climate that reduced forest cover, there have

been short alternating periods of extreme humidity and

aridity (deMenocal 1995; Trauth et al. 2007). These war-

mer and wetter periods occurred from approximately

2.7–2.5, 1.9–1.7, 1.1–0.9 Ma (Trauth et al. 2005) and are

assumed to have enabled the relic montane forests to

expand to lower altitudes, possibly enabling isolated

forest patches to have become connected and presenting

opportunities for previously allopatric populations to

mix; by contrast, cooler and drier periods are postulated

to have led to ecological fragmentation with subsequent

genetic isolation of montane forest restricted species

(deMenocal 1995). Climatic stability of the highland

refugia, in conjunction with repeated climate fluctua-

tions affecting lowland areas, may have played an inte-

gral role in the diversification of Montane white-eyes,

as suggested for other Eastern Afromontane biota (e.g.

Roy 1997; deMenocal 2004; Lawson 2010; Measey &

Tolley 2011).

Divergence time estimates for our data based on the

use of a volcanic island calibration are approximately 4

times younger than those obtained when applying the

2.1% clock rate highlighting the disparity between these

two approaches. Our time frame based on an island cali-

bration supports previous estimates of the molecular rate

of evolution in Zosteropidae that have documented sig-

nificantly faster rates of evolution than the avian molecu-

lar clock rate (Warren et al. 2006; Moyle et al. 2009; Melo

et al. 2011). Support for use of the age of Grande Comore

to date divergences within African Zosterops comes from

previous studies using geological calibrations that dem-

onstrate consistency in divergence estimates when using

different taxon sets, genetic markers and independent

calibration points (e.g. New Georgia Group, Soloman

Island), as well as different analytical methods (Moyle

et al. 2009; Melo et al. 2011). For example, Moyle et al.

(2009) dated the divergence of the Gulf of Guinea

‘mainland’ (GGM) clade between 0.89 and 1.35 Ma,

which is extremely similar to the estimate produced by

the island-calibrated approach used in this study (0.51–

1.49 Ma).

Previous phylogenetic avian studies of this region have

relied on the avian molecular clock (~2%) to estimate

sequence divergence times (e.g. Roy 1997; Roy et al. 2001;

Fjelds�a & Bowie 2008), although only Voelker et al.’s

(2010) study has applied this rate using quantitative

methods (e.g. nonparametric rate smoothing) making

comparisons of divergence estimates between studies

problematic. Unsurprisingly, by applying the conserva-

tive 2.1% clock rate to our data (Fig. S1), we estimate a

similar time frame to Voelker et al.’s (2010) study on

African forest robins who suggest Pliocene forest retrac-

tion c. 5–3 Ma as facilitating diversification in Africa’s

avifauna. The reliance on a molecular clock for the

majority of avian studies is unfortunately due to the

paucity of suitable fossil or geological calibrations.

However, with broader taxonomic mitogenomic studies

(e.g. Pacheco et al. 2011) identifying great variation of

mutation rates within different bird groups, there is

increasing support questioning a universal mitochon-

drial avian molecular clock (e.g. Garc�ıa-Moreno 2004;

Lovette 2004). Nevertheless, time frames based on

island ages are not without uncertainty (see Heads

2011) as these studies assume that the island endemic

evolved in situ. This scenario does not account for

endemic taxa being older than the island they inhabit

having survived on nearby islands or mainland and

later going extinct there (Heads 2011), and thus, our
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results based on a single island calibration should be

viewed cautiously.

Underestimation of sky island diversity

Moreau’s (1957) assessment that 10% of Zosterops species-

level diversity occurs on continental landmasses would

appear an underestimation, as our results reveal signifi-

cant nonmonophyly of mainland Africa taxa, specifically

endemic montane Z. poliogastrus and the widespread

Z. senegalensis. Based on external morphological data,

notably plumage, the montane populations of Z. poliogas-

trus have been classified as subspecies of a wider species

complex (Dickinson 2003; van Balen 2008). However,

the extensive sampling in this study of five of the eight

Z. poliogastrus subspecies demonstrates this species to be

polyphyletic. Strong support based on mitochondrial and

AFLP data of the subspecific montane populations in

these polyphyletic species indicates that populations

should be elevated to species rank as independent taxo-

nomic units rather than remain intraspecific taxa. As

well as being scientifically interesting, this finding is

important to considerations of species vulnerability, as

conservation organizations (e.g. Birdlife International

2014) follow classifications of these polytypic species

simply as ‘Z. poligastrus’ (currently considered to be a

species of least concern) and thus incorrectly assume

range size. The conservation status of these species should

therefore be reassessed, particularly as the EABH is cur-

rently experiencing severe habitat loss (Myers et al. 2000).

Mitochondrial data also identify the polyphyly of the

widespread African species Z. senegalensis and the

northern East Africa species Z. abyssinicus, although

denser sampling of subspecies is needed to determine a

more complete picture of intraspecific relationships.

Overall, our results question the utility in Zosterops of

the traditional phenotypical characters used to delineate

bird species. This highlights the need for a complete

molecular systematic review of African Zosterops, apply-

ing species delimitation methods to quantitatively infer

taxonomic boundaries (cf Fujita et al. 2013).

The use of AFLPs for avian phylogenetic studies

Given the lack of phylogenetic resolution of the ncDNA

marker TGFß2, AFLPs were selected here as potentially

suitable nuclear markers due to their utility in resolving

rapidly evolving vertebrate clades (e.g. Sullivan et al.

2004; Joyce et al. 2011) as previous studies estimated

very recent divergence dates for Zosterops (e.g. Moyle

et al. 2009). However, the AFLP data proved largely dis-

appointing for resolving internal relationships within

the African radiation compared to the mtDNA data.

While AFLPs have been increasingly used to resolve

recently diverged fish radiations (e.g. Sullivan et al.

2004; Joyce et al. 2011), the use of AFLPs in avian phy-

logenetic studies is scarce (but see Humphries & Win-

ker 2010), albeit they have been used successfully at the

population level (e.g. Parchman et al. 2006; Mila et al.

2010). Although our AFLP matrix may have contained

limited signal with only 255 AFLP loci, another study

(Dasmahapatra et al. 2009) using a similar sized data

matrix (310 AFLP loci) generated a well-resolved tree.

Inspection of our data reveals that a large proportion of

characters corresponded to alleles that were specific to

a single population (private alleles). The larger number

of private alleles in the data is likely to have resulted in

the strong support for the monophyly of independent

populations, specifically range-restricted taxa, with lim-

ited phylogenetic resolution between populations. As

such, our data compared to those of a similar size (e.g.

Dasmahapatra et al. 2009) are likely to have underper-

formed due to a much lower information content as

opposed to insufficient data. However, a recent study

focusing on auklet relationships (Humphries & Winker

2010) using AFLPs was also unable to generate a well-

supported tree despite their data containing a greater

number of polymorphic sites than did ours. It is possi-

ble that both of these avian studies selected taxa that

are too divergent or that the stochastic process of

incomplete lineage sorting has masked any phyloge-

netic signal (Humphries & Winker 2010). More avian

studies using AFLPs are needed to determine the utility

of these markers for phylogenetic inference.

Conclusion

Understanding how highly fragmented landscapes have

influenced population differentiation and speciation is

important not only regarding evolutionary processes

responsible for generating elevated diversity, but in

quantifying the biodiversity present for future conserva-

tion planning. This is particularly important in the East-

ern Afromontane region that contains several thousand

endemic species, but which is threatened by habitat loss

and climate change. Our genetic study focusing on

endemic Eastern Afromontane white-eyes indicates that

contrary to other studies on unrelated taxonomic

groups, niche divergence was likely as a major driver

of speciation in this very recent clade. However,

although our data support a speciation model in which

reproductive isolation accumulates in allopatry with a

significant contribution from ecologically mediated

divergent natural selection, we are unable to test

between different ecological models of speciation (i.e.

gradient and vanishing speciation hypotheses). In addi-

tion to our findings highlighting how a highly frag-

mented landscape impacts speciation processes, we
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suggest that under a revised taxonomy, a number of

East African sky islands would gain a new endemic

Zosterops species. Based on our findings, montane Zoster-

ops should be re-evaluated regarding their conservation

status, particularly given the vulnerability of this biodi-

versity hotspot. These results further highlight the need

for additional phylogeographic studies of taxa from this

region to assess its unique diversity.
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