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ABSTRACT:
The abnormal BCR-ABL oncoprotein is a constitutively active tyrosine kinase driving 
aberrant proliferation of transformed hematopoietic cells. BCR-ABL regulates 
activation of many mitogenic and pro-survival pathways, including the PI 3’K/AKT/
mTOR pathway that controls various effectors and regulates initiation of mRNA 
translation in mammalian cells. Although tyrosine kinase inhibitors (TKIs) that 
target the ABL kinase domain have remarkable clinical activity and have dramatically 
changed the natural history of Ph+ leukemias, resistance to these agents also 
develops via a wide range of mechanisms. Efforts to target the PI3’K/AKT/mTOR 
signaling pathway using kinase inhibitors have been the focus of extensive ongoing 
investigations by several research groups. Here we review the effects of activation 
of the AMPK kinase, which regulates downstream targeting and inhibition of mTOR. 
The potential for future clinical-translational applications of AMPK activators such 
as AICAR, metformin and resveratrol for the treatment of chronic myelogenous 
leukemia (CML) and Ph+ acute lymphoblastic leukemia (ALL) are discussed. 

BCR-ABL IN CHRONIC MYELOID 
LEUKEMIA AND ITS TARGETING BY TKIs 

Chronic Myeloid leukemia (CML) is defined 
by the formation and presence of the Philadelphia 
(Ph) chromosome, which results from the reciprocal 
chromosomal translocation t(9;22) (q34;q11) [1, 2]. The 
protein product of the abnormal Bcr-Abl fusion gene is 
the oncoprotein BCR-ABL, which is expressed in CML 
and Ph+ ALL [2, 3]. BCR-ABL retains the tyrosine 
kinase ability of c-ABL but, contrary to c-ABL it is 
constitutively localized in the cytoplasm, resulting in the 
engagement and activation of multiple pro-proliferative 
and anti-apoptotic cascades in transformed cells [2, 3]. 
Among the cellular cascades activated by BCR-ABL 
there are mitogen activated protein kinase (MAPK) and 
phosphatidyl inositol 3’ kinase/AKT/mammalian target of 
rapamycin (PI3’K/AKT/ mTOR) pathways [4-7]. 

The identification of imatinib mesylate (STI-571; 
Gleevec) as a small molecule ATP-pocket inhibitor of 
BCR-ABL dramatically re-defined the treatment of CML 
and had a major impact in the survival of patients with 

CML and Ph+ ALL [8-13]. As this agent targets directly 
the ABL kinase domain, its introduction in clinical 
oncology provided a model for potential selective and 
specific therapeutic interventions in other malignancies 
with well-defined targets [11, 12]. Imatinib mesylate, 
along with second-generation tyrosine kinase inhibitors 
(TKI) such as nilotinib and dasatinib [14-22], have 
changed the natural history of CML and have provided 
important treatment options for this leukemia that in the 
past was uniformly fatal. 

Despite such advances in the field, mutations 
rendering CML and Ph+ ALL patients non-responsive to 
TKI’s have been identified, including the threonine 315 
to isoleucine (T315I) mutation and several others, which 
differentially prevent binding of different TKIs to the 
active site of the ABL kinase domain, thereby evading 
inhibition [23]. Beyond mutations in the kinase domain 
of BCR-ABL, additional mechanisms of resistance 
exist [23, 24], further complicating the management of 
such patients. Although identification of new molecular 
markers may facilitate response prediction to TKIs 
and allow optimization of their clinical use [25], there 
is a need for the development of agents that overcome 
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BCR-ABL TKI resistance. This has led to the ongoing 
clinical development of new TKIs such as bosutinib that 
has activity against several imatinib-resistant BCR-ABL 
mutants with the exception of T315I-BCR-ABL [26] and 
ponatinib that has activity against T315I-BCR-ABL [28]. 
Beyond efforts to develop inhibitors that can overcome 
resistance to first and second generation TKIs, another 
approach of high potential value is the selective targeting 
and inhibition of cellular effectors downstream of BCR-
ABL. As discussed below, the PI 3’K/mTOR cascade is 
a prime target for such purpose and has been the focus of 
extensive investigations. 

HYPERACTIVATION OF THE PI3’K/AKT/
mTOR SIGNALING PATHWAY BY BCR-ABL 

Among the multiple cellular cascades that are 
activated by BCR-ABL, the PI3’K/AKT/mTOR pathway 
[5, 28-30] is of particular interest and has been the subject 
of extensive efforts by many groups in the CML and 
Ph+ ALL research fields. One mechanism by which the 
PI 3’K/mTOR pathway is engaged involves increased 
production of reactive oxygen species (ROS) by BCR-
ABL, leading to inhibition of the serine/threonine 
phosphatase PP1α, a negative regulator of PI3’K/AKT, 
ultimately resulting in hyper-activation of the pathway 
[31, 32]. Blocking the PI3’K/AKT signaling in BCR-ABL 
cells with the pharmacological inhibitor LY294002 results 
in increased expression of the cell cycle regulator p27Kip1 
[33] and decreased expression of VEGF and HIF1α [34]. 
Furthermore, combining pharmacological inhibition of 
the PI3’ kinase with BCR-ABL kinase inhibitors such 
imatinib mesylate results in enhanced anti-leukemic 
effects in Ph+ cells in vitro [35].  

Downstream of the PI3’K/AKT pathway, the 
mTOR signaling cascade is also hyperactive in CML [5, 
7, 36-38]. mTOR is a central regulatory element in the 
control of mRNA translation in mammalian cells and 
functions as the catalytic subunit/kinase for two distinct 
protein complexes, TORC1 and TORC2 [39-45]. These 
complexes differ by in the mTOR-binding partners that 
they include, with TORC1 containing Raptor and TORC2 
containing Rictor and mSin1 [39-45]. These complexes 
regulate distinct cellular processes, with TORC1 being the 
mediator of signals for initiation of mRNA translation and 
protein synthesis and TORC2 promoting survival pathways 
and cytoskeletal reorganization [39-45]. Previous studies 
have established that TORC1 and TORC2 play critical 
roles in growth and survival of BCR-ABL transformed 
cells, including myeloid (CML) and lymphoid (Ph+ 
ALL) cells [36-38, 46-49], underscoring the importance 
and relevance of the mTOR pathway in the pathogenesis 
and pathophysiology of Ph+ malignancies. Notably, the 
ATP-competitive dual mTORC1/2 inhibitors PP242 and 
OSI-027 have shown potent growth inhibitory and pro-
apoptotic effects in a number of BCR-ABL cell lines and 

primary patient samples [47, 48] and in a mouse Ph+ ALL 
mouse model [48], suggesting that these or other similar 
agents with dual targeting capacities against TORC1 and 
TORC2 may provide a new alternative approach for the 
treatment of CML resistant to TKIs. 

Effects of AMPK activation on BCR-ABL-
transformed cells 

Beyond agents that directly target and inhibit TORCs, 
indirect suppression of mTOR function by modulation of 
the AMP-activated Protein Kinase (AMPK) pathway may 
provide an important alternative therapeutic approach 
[50]. AMPK regulates mTOR signaling both directly and 
indirectly. This heterotrimeric protein kinase is activated 
by means of phosphorylation on the Thr172 site of the 
α-subunit due to an increased AMP:ATP ratio [51]. Once 
active, AMPK phosphorylates and activates the TSC2 
subunit of the TSC1/2 complex, which in turn suppresses 
Rheb activity, a small G-protein with regulatory functions 
on mTOR activation [52-54]. In addition, AMPK has been 
found to directly phosphorylate the Raptor subunit on 
Ser792, resulting in inactivation of the TORC1 complex 
[55]. 

In one of the initial studies in which the effects of 
modulation of AMPK in ALL cells were assessed, the AMP-
analog AMPK-activator compound 5-aminoimidazole-
4-carboxamide-1-beta-4-ribofuranoside (AICAR) was 
shown to exert antiproliferative effects on childhood ALL 
cells, including the SupB15 cell line which expresses the 
p185 BCR-ABL fusion protein [56]. In that study AICAR 
was found to induce phosphorylation of AMPKα on 
Thr172, resulting in inhibition of proliferation and cell-
cycle arrest at the G1 phase, by increasing the levels of the 
cell cycle regulators p53, p27 and p21 [56]. The effects of 
AICAR were enhanced by combination with the mTOR 
inhibitor rapamycin in all different ALL cell lines tested 
in that study [56], while the growth inhibitory responses 
were mediated in part by engagement of the p38 MAP 
kinase pathway. Another study from the same group [57] 
established that phosphorylation of AKT on Thr308 and 
Ser473 increases following treatment of ALL cells with 
AICAR and demonstrated that AKT phosphorylation on 
Thr 308 is mediated by AMPK-induced IGF-1R activation 
and phosphorylation of IRS-1. In follow-up experiments, 
the authors of that work were able to demonstrate that 
concomitant inhibition of IGF-1R activity using a tyrosine 
kinase inhibitor and AMPK activation using AICAR 
resulted in substantially enhanced antileukemic effects 
[57]. 

Resveratrol, a naturally occurring substance found 
in grapes, has been shown to modulate AMPK in BCR-
ABL transformed cells and to exhibit antileukemic effects 
[57-58]. Treatment of either imatinib mesylate-sensitive 
or imatinib mesylate-resistant CML cells with resveratrol 



Oncotarget 2011; 2:   1322 - 13281324www.impactjournals.com/oncotarget

resulted in cell cycle arrest and apoptotic cell death [57]. 
Notably, among the resistant cells that were sensitive to 
resveratrol, there were also cells expressing the T315I 
BCR-ABL mutant [57]. Subsequent studies demonstrated 
that resveratrol induces autophagic cell death in CML 
cells by a dual mechanism involving both engagement 
of AMPK and JNK-mediated overexpression of p62/
SQSTM1 [58].  

In a recent study [59], we assessed whether 
modulation of AMPK by AICAR and the FDA-approved 
anti-diabetic drug metformin [60-62], exert suppressive 
effects on BCR-ABL transformed cells. In that study 
[59] we found that both AICAR and metformin induce 
AMPK kinase activity, as reflected by phosphorylation of 
ACC and TSC2. The phosphorylation of various effectors 
downstream of mTOR was compromised upon treatment 
in all cell lines tested, including cells harboring the T315I 
mutation. These studies have indicated that the effects 
of mTOR inhibition by AICAR and metformin occur 
irrespectively of TKI-sensitivity [59] and further raised 
the prospect of using AMPK activators in the treatment 
of Ph+ leukemias refractory to TKIs, including CML and 
Ph+ ALL. 

CONCLUSIONS AND FUTURE DIRECTIONS 

There have been remarkable advances in the treatment 
of CML over the last decade. With the introduction of first 
and second generation TKIs in the treatment of CML, 
the majority of patients achieve complete hematological, 
cytogenetic and molecular responses [4, 12]. Also, the 

introduction of imatinib mesylate, nilotinib and dasatinib 
in the treatment of patients with Ph+ ALL has dramatically 
improved their outcome. Nevertheless, large numbers of 
patients eventually become unresponsive to treatment due 
to mutations that occur either in the TKI-binding kinase 
domain of BCR-ABL or due to the emergence of other 
resistance mechanisms downstream of the kinase [24]. 
Approaches to target cellular effectors of BCR-ABL may 
provide a complementary/enhancing approach to the 
use of TKIs and/or help overcome resistance in cases of 
resistant CML or Ph+ ALL. Importantly, modulation of 
the AMPK pathway may allow targeting of mTOR in a 
distinct, non-overlapping way, from mTOR inhibitors 
and other suppressors of the PI3’K/AKT/mTOR cascade 
and AMPK activators could be potentially combined with 
PI 3’K/mTOR inhibitors in the treatment of refractory 
myeloid leukemias. Notably, the anti-tumor effects of 
metformin, a commonly used anti-diabetic drug, have been 
observed in a number of other hematologic malignancies, 
including acute myeloid leukemia (AML) [63, 64] and 
various solid tumors, including breast cancer, lung 
cancer and others [50, 65-77], suggesting that the clinical 
development of this drug in clinical oncology may offer 
advantages for a variety of malignancies. In fact, efforts 
to combine metformin with mTOR inhibitors for the 
treatment of solid tumors are already underway [78] and 
similar studies in Ph+ leukemias and other hematological 
malignancies are probably warranted from the emerging 
experimental evidence.

Figure 1: Different target points of AMPK and mTOR pathways in BCR-ABL transformed cells and known 
pharmacological agents that can be used to target them.
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