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Focussing Protons from a Kilojoule 
Laser for Intense Beam Heating 
using Proximal Target Structures
C. McGuffey1 ✉, J. Kim1, M. S. Wei2, P. M. Nilson3, S. N. Chen4,6, J. Fuchs4, P. Fitzsimmons2, 
M. E. Foord5, D. Mariscal1,5, H. S. McLean5, P. K. Patel5, R. B. Stephens2 & F. N. Beg1

Proton beams driven by chirped pulse amplified lasers have multi-picosecond duration and can 
isochorically and volumetrically heat material samples, potentially providing an approach for creating 
samples of warm dense matter with conditions not present on Earth. Envisioned on a larger scale, they 
could heat fusion fuel to achieve ignition. We have shown in an experiment that a kilojoule-class, multi-
picosecond short pulse laser is particularly effective for heating materials. The proton beam can be 
focussed via target design to achieve exceptionally high flux, important for the applications mentioned. 
The laser irradiated spherically curved diamond-like-carbon targets with intensity 4 × 1018 W/cm2, 
producing proton beams with 3 MeV slope temperature. A Cu witness foil was positioned behind the 
curved target, and the gap between was either empty or spanned with a structure. With a structured 
target, the total emission of Cu Kα fluorescence was increased 18 fold and the emission profile was 
consistent with a tightly focussed beam. Transverse proton radiography probed the target with ps order 
temporal and 10 μm spatial resolution, revealing the fast-acting focussing electric field. Complementary 
particle-in-cell simulations show how the structures funnel protons to the tight focus. The beam of 
protons and neutralizing electrons induce the bright Kα emission observed and heat the Cu to 100 eV.

High-intensity proton beams generated by ultrashort pulse laser-matter interactions1–3 were immediately rec-
ognized as a powerful tool for the creation of Warm Dense Matter (WDM)4,5. These beams have since found 
widespread use in High Energy-Density physics studies as isochoric heaters that allow study of conditions similar 
to those in the interior of planets6, as probes of complex objects7 and of transient electric and magnetic fields8–11 
with micron scale resolution12, or for inducing nuclear reactions to create directional neutron beams13,14. These 
intense proton beams also hold promise as the ignitor in Fast Ignition (FI) fusion15–17 if the total beam energy can 
be scaled up.

The utility of these beams comes from their high particle energy (10’s of MeV) and energy bandwidth, low 
source emittance18, and short (multi-ps) initial pulse duration produced by the target normal sheath acceleration 
(TNSA) mechanism3. The beams initially have a pulse duration similar to the laser duration down to a few pico-
seconds. A bunch length can then be estimated for different source-to-sample distances by considering the veloc-
ity dispersion of the broadband beam. While advanced acceleration mechanisms are predicted to produce very 
high energy protons and ions19–22, the well-established TNSA scheme has a distinct advantage in that the beams 
are very easy to produce and simply curving the target can focus the beam. TNSA-hybrid mechanisms hold the 
current record for highest energy, up to 100 MeV23,24.

Focussing the ion beam increases the flux and widens the possibilities for all the above-listed applications. The 
extremely low beam transverse emittance of TNSA allows a curved hemisphere target to focus the proton beam 
to small spot size (50–100 μm), as demonstrated on small (10 J, 100 fs4, 75 J, 700 fs25) and medium scale facilities 
(400 J, 400 fs26, 170 J, 700 fs5). However, the ultimate achievable focussing is limited by hot electron pressure in the 
radially shrinking proton beam itself27. The consequence of this is that for high charge, tightly focussed beams, 
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the protons do not move ballistically through a focus, and a spherically curved target is not enough, by itself, 
to achieve optimal focussing28. Early experimental data on the kiloJoule OMEGA EP laser showed that proton 
beam focussing from free-standing curved targets was indeed limited by this non-ballistic behavior at this higher 
energy laser drive29.

However, the paper by Bartal et al. also discovered that by attaching a cylindrical or conical structure to the 
target, the beam could again be tightly focussed. Simulations showed that this was caused by a focussing electro-
static field that rapidly-grew on the inside of the structure as hot electrons from the interaction escaped the target 
and populated a sheath along the structure walls30,31. Related field effects have been studied in detail for periodic 
target structures with a τ = fs30  laser32. The finding that the cone focussed the beam was particularly appealing 
for FI, which is often envisioned with a cone embedded in a spherical target. It is also broadly appealing for high 
beam current applications to overcome the beam pressure limitation because focussing caused by the cone can be 
expected to be more significant as the laser energy and pulse duration are increased, motivating the experiment 
presented here.

In this work, we show a highly effective method for focussing protons and heating a secondary target using 
conical-shaped target structures with fundamentally different laser conditions than previous proton heating 
experiments. The high energy and pulse duration of the OMEGA EP drive laser produced a proton beam that, 
when focussed, achieved exceptionally high peak beam density. This dramatically increases the prospects for 
using protons for isochoric heating and the intensity-hungry applications mentioned above. This is an important 
demonstration that a structure behind the target is still effective for focussing a proton beam from a much higher 
energy and longer duration laser than the Bartal result. Furthermore, the OMEGA EP orthogonal short pulse 
beam was used to drive a second beam of protons which radiographed the fields responsible for focussing. In the 
second half of the paper, we present particle in cell simulations that confirm the focussing and show the mecha-
nism in detail. In two-step simulations, the heating of a secondary target is evaluated, with an expected tempera-
ture of eV100 . To conclude, we show how a steeper cone geometry may increase heating and constrict the proton 
beam to the size required for proton FI.

Findings
Proton focussing measurements were taken for the first time in the kiloJoule regime at the OMEGA EP facility 
using a . kJ ps1 25 , 10  short pulse laser along with proton spectrum measurements using a Thomson parabola 
diagnostic named Thomson Parabola Ion Energy Analyzer (TPIE). The laser was incident on a diamond-like 
carbon spherical cap (“hemi”). Protons were focussed into metallic foils and their transmitted spectrum was 
recorded. The flux was sufficient to induce bright Kα x-rays from the rear Cu layer as measured by a single-hit 
spectrometer and a Spherical Crystal Imager (SCI). A second, orthogonal OMEGA EP beam irradiated flat foils 
with 850 J in 10 ps in order to probe the interaction with broad-energy protons of order MeV. Due to the protons’ 
velocity dispersion, different energy protons probed the interaction plane at different delays. They were then 
discriminated by energy using a stack of RadioChromic Film (RCF) detectors. The different layers of film, or 
‘frames’, resolve the target dynamics as the laser arrives with resolution of a few ps. Further details about the laser, 
target, and diagnostics are given in the Methods Section while the experimental configuration is illustrated in 
Fig. 1.

Figure 1.  Experimental configuration drawn with VISRAD software. OMEGA EP short pulse main beam 
irradiated a curved diamond-like carbon target attached to an Al cone to produce an ultrahigh intensity proton 
beam, directed into various transport media. The cone is shown cutaway. A Cu diagnostic layer was glued to 
the back of the target. The other short pulse beam produced a transverse proton probing beam shown as a 
transparent cone pointing toward the RCF stack. Lines of sight toward TPIE and the SCI x-ray imager as shown 
as thin lines. Stalks supporting each target are shown as brown, tapered lines. For the freestanding case, a third 
stalk supported the Cu foil.
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The SCI data are shown in Fig. 2 for the three target types. For the case of freestanding, separated foils, illus-
trated in Fig. 2(a), the Cu Kα signal was weak and diffuse over the entire Cu foil, Fig. 2(d). This confirmed that 
the inherently diverging electron beam from the interaction contributed minimally to the Cu Kα signal at this 

Figure 2.  Three target types (insets (a–c) drawn with VISRAD software) used in the OMEGA EP experiment, 
and their corresponding emission profiles of 8.048 KeV Cu Kα (d–f). (g) Plot of the emission brightness from 
the foil center (peak pixel) and integrated over the full foil dimension. The unit PSL stands for Photo-Stimulated 
Luminescence, the standard measure of the deposited energy in the imaging plate detector. The SCI viewing 
position for all cases is illustrated in (b). For orientation, note the dim signal in (d) (above inset (a)) which is 
due to hemi self-emission and indicates the laser interaction point.
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standoff distance. Signal was darker in the top-right corner, corresponding to the stalk connection point, visible 
in Fig. 2(a). In contrast to this diffuse signal, for the case in which the gap was bridged by a wedged structure, 
Fig. 2(b), signal was increased on the wedge center plane by 5× as seen in Fig. 2(e). The emission is greatest in the 
center, not at the edges of the wedge connection vertices, and no signal enhancement is observed in the region 
directly in contact with the wedges. This suggests that the signal is due to freestreaming particles within the vac-
uum gap rather than particles transporting through the wedge. For the case with a cone spanning the gap (c), the 
effect was further enhanced, Fig. 2(f), with 10× higher peak signal and 18× higher integrated signal compared 
to the freestanding case, Fig. 2(g). These data indicate confinement of the proton beam in one dimension by the 
wedge and in two dimensions by the cone.

The proton beam spectrum from all targets was collected with the TPIE which was apertured with a pinhole 
in the forward direction with solid angle ~10−7 sr. Extrapolation of the full proton beam was made by multiplying 
the measured solid angle on layers of RCF in a separate shot day. The beam angular distribution was similar 
shot-to-shot. For a shot with a free hemi with no structure and no foil, the spectrum had a characteristic slope 
temperature of = .T MeV2 7p , maximum energy =E MeV19max  and inferred beam energy ε = J45 , or 3.7% of 
the laser energy for protons with >E MeV3 . The maximum energy and inferred beam energy drop somewhat 
for the free hemi case with a metal foil ( =E MeV16max , ε = J39 ) and moreso when the wedge and cone struc-
tures are attached (with the lowest case being =E MeV12max , ε = J32 ). Example spectra are shown in the 
Supplementary Information Supp. Fig. 1. The TPIE data also showed a beam of C6+ with nominally 15x lower 
signal (PSL) peaking at 15 MeV energy. Such carbon ions would couple effectively to the Cu foil. However, their 
contribution to heating would be less than from protons due to reduced numbers. Further, the heating would 
occur after the most intense proton isochoric heating (the fastest C ion arrives after 25 ps). Their contribution to 
Cu Kα through C particle-induced X-ray emission (PIXE) is expected to be significantly less than from proton 
PIXE because the carbons have fewer particles and lower PIXE cross-section based on limited measurements in 
the literature at lower projectile energy in Cu33 and comparable projectile energy in Zn34.

We can estimate proton beam parameters at the Cu foil as follows. 32 J of protons passing through the full 
aperture of the cone, 200 μm, during a 20 ps window (i.e. within the time-of-flight from hemi to cone tip for all 
protons with >1.5 MeV) corresponds to 2 × 1028 p/(cm2 s) luminosity, 1.6 TW power, and 5 × 1015 W/cm2 inten-
sity. These instantaneous values are comparable to or exceed typical peak values in conventional proton beam 
sources. For example, a single bunch from the Linac2 injector used at the Large Hadron Collider has peak power 
1 GW. The average power of the laser-driven source is much lower than conventional ion beamlines.

Proton radiography of the wedge case supports the focussing explanation. Five frames are shown in Fig. 3 
including three consecutive, zoomed frames. The most interesting feature of the frames is a dark band that origi-
nates near the rear of the wedge on the center plane. It develops from the rear and then zips toward the curved 
target as seen in the sequence. This is explained by a transverse field along the wedge inner walls, directed toward 
the center plane. The field causes the probe protons above and below the plane to overlap on the detector forming 

Figure 3.  Proton radiographs showing picosecond-timescale dynamics as the main target is irradiated. (f) 
shows a photograph of a folded wedge target. A sequence of five images from the same shot are shown with 
relative times as indicated (a–e). Three consecutive frames (b–d) are zoomed to show excess dose (darkening) 
around the rear inner walls (arrows) and a band on the center plane (bracket) indicating a focussing field 
between the top and bottom wedge segments. By 4.5 ps into the interaction (e), the probe protons accumulate 
into a dark patch (circle). Meanwhile, the target becomes rapidly charged, driving a current in the stalk and 
launching expanding sheaths.
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the dark band (higher exposure) and they zip together from the back to front because the top and bottom fields 
are close together at the rear. This is the same field that focusses the protons from the hemi in the wedge and cone 
cases. Additionally, a dark patch was observed in the space behind the hemi and between the wedges. These fea-
tures persist in the subsequent 21 frames (til +t ps640 ) after which the films are saturated. Deflection of probe 
protons was evaluated using a particle in cell pusher with prescribed fields described in the Supplementary 
Information.

A two step process was applied to simulate the experiment using the particle in cell code LSP in two dimen-
sions (2D)35. The first step studied the accelerating and focussing dynamics. Three cases are presented: the cone 
freestanding target case simulated and the conical target case using 2D cylindrical coordinate systems, and the 
wedge case in a 2D cartesian system. The configuration details are given in the Methods Section. In the freestand-
ing case, protons are initially focussed due to the curvature of the target. However, a significant fraction of them 
diverge away Fig. 4(d). In the wedge and cone cases, a strong focussing field is observed to persist along the inner 
cone surface. For the cone case the radial focussing field strength (seen during and after the laser in Fig. 4(b,c) is 
comparable to the initial field from the curved target, confining protons Fig. 4(b), near the hemi/cone conjunc-
tion). Figure 4(d–f) show macroparticle velocities 16 ps into the simulations for the three cases. For the free hemi 
case, it is clear that the beam is already diverging at μ=Z m200 , even before the nominal focal position for the 
curved target, and many particles are more lateral than the radius of the hemi. For the wedge case, the walls of the 
wedge are a physical barrier to protons. For the cone case, particles can be seen to reflect toward the central axis, 
corralling and collimating the proton beam.

We can again estimate beam parameters by checking the numbers in the simulations. By integrating the profile 
of the beam at the back of the cone, we find that 5 × 1013 protons passed through a disk-shaped plane of 100 μm 
diameter in 41 ps with an average energy of 1.2 MeV. Thus, the beam density averaged across the cone hole and 
averaged during this time is × p cm s5 10 /( )

27 2  and the intensity is × W cm7 10 /14 2. During a ps20  window (96% 
of the protons reaching the extraction plane arrived during 21–41 ps) and looking inside 30 μm radius, the beam 
density is × p cm s3 10 /( )

28 2 . The highest intensity is × W cm1 10 /16 2. These values are in near agreement to the 
estimates based on the TPIE detailed above. We note that at the end of the 41 ps simulation many slow particles 
that carry significant energy but that do not contribute to the most intense phase of the interaction have not 
reached the extraction plane.

In the second modeling step, deposition and induced Kα photons in the rear Cu layer are studied. In each of 
the three cases above, the electrons and protons that made it to the rear foil were recorded and injected into a 

Figure 4.  LSP simulations of proton expansion from a hemi and focussing with a rear cone structure using a 
source of fast electrons to represent the interaction of the OMEGA EP laser. For a hemi + cone case, (a) shows 
the proton density at time 12 ps; (b,c) show the transverse electric field Er at 6 ps and 12 ps, respectively. (d–f) 
Show the macroparticle transverse velocities for the free hemi, hemi + wedge, and hemi + cone cases, 
respectively.
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Cu slab (see Methods for details). The time-integrated Cu Kα binned by lateral position and depth into the foil 
is shown in Fig. 5(a). The photons can be traced back to three distinct populations of particles. Hot electrons, 
protons, and quasi-neutralizing electrons that co-move with the protons. Hot electrons moving through the cone 
contribute a non-negligible but uniform Kα signal while the latter two produce a centrally peaked Cu Kα signal. 
Figure 5(b) shows that the hemi with cone results in 10× higher peak Cu Kα signal than the free hemi case, in 
accordance with the experimental measurement.

As an additional test of the focussing possibilities, a radial simulation was carried out with a steeper cone angle 
of 20° as portrayed in Fig. 6(a). Comparing Fig. 6(b,c), it can be seen that the proton beam is significantly stronger 
on axis for the steep cone case than the free hemi. Figure 6(d) shows that the majority of proton macroparticles 
are reflected toward the axis near the cone tip as compared to the other cases in Fig. 4(d–f). Figure 6(e) shows that 
the standard cone focusses 5× the number of particles to the axis as the free hemi, while the steep cone would 
produce even tighter focussing. In the Cu transport simulations it can be seen how the proximal target structures 
enhance heating of a sample. Figure 6(f) shows the radial temperature profile in the Cu mid-plane for the three 
cases. The hemi with standard cone heats to a 15–20% higher temperature than the free hemi would for radii out 
to 100 μm, while the 20° cone heats to at least twice the nominal temperature for radii out to 40 μm. The tem-
perature difference between the free hemi and standard cone case at this position is not as striking as the particle 
distribution 6(e) nor the Cu Kα data because the latter two are weighted to the numerous protons entering the Cu 
with 10–1000 keV that do not penetrate to the Cu mid-plane.

Conclusion
We have shown that the proton beam from a . kJ1 25 , τ = ps10  laser could be focussed effectively using a conical 
structure. Direct evidence of focussing is seen in imaged Kα emission from a Cu foil placed at the end of the cone. 
For the case with a structured target the total emission of Cu Kα fluorescence was increased by a factor of 18 in 
experiment. Simulations show that electrostatic, persistent fields on the cone inner wall funnel protons to the 
cone tip and that the Kα signal increase is a combination of extra signal due to electrons directly moving through 
the target but also a significant constriction of protons into a collimated spot of roughly the cone tip size. We note 
that the simulation provided valuable identification of the beam behaviors, but there may be quantitative disa-
greements due to the 2D description especially for the hemi-wedge case. The 10 ps pulse duration is critical to the 
focussing effect since the beam of protons takes 10 s of ps to transit the focussing structure. We presented impor-
tant proton acceleration data in a laser parameter range that has barely been explored and is much more relevant 
to proton FI than the majority of laser-driven proton studies using freestanding foil targets and sub-picosecond 
lasers. Based on the measurements the proton intensity is >1% of the focussed laser intensity, an important figure 
of merit for proton FI, and the beam current density at focus is likely high enough to induce modified stopping 
behaviors predicted by modeling36. The simulated steeper cone produced further focussing and heated the Cu foil 
to >150 eV in the central 40 μm diameter. Further, we hypothesize that a thin-walled cone would be an even more 
effective lens and retain the benefits of a reduced mass target.

Figure 5.  Kα post-processing in the Cu transport simulation. (a) lateral profiles of proton-induced Cu Kα 
photons at 2 μm intervals in a hemi with wedge case. (b) composite lateral profile for a 10 μm foil for the free 
hemi case and hemi with cone case. An experimental lineout of the hemi-cone case is overlaid.
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Methods
Experimental configuration.  The experiment was conducted with orthogonal short pulse beams from 
OMEGA EP. The main beam ( μJ ps m r1250 , 10 , 35 80, where r80 is the radius containing 80% of the spot energy) 
was incident on the target apex in line with the axis of symmetry of the spherical cap and the cone. A 3-dimen-
sional representation of the target and important diagnostic lines of sight is shown in Fig. 2. The Spherical Crystal 
Imager (SCI37) fielded a spherical quartz crystal from 63 deg above the equatorial plane, directly above the cone 
axis. The foil stacks were μ× m600 300  and positioned either 300 or 450 μm behind the planar portion of the 
hemi target. When present, the cone or wedge structure was directly glued to the hemi and the foil stack. The rear 
layer was a 10 μm thick Cu foil; it was either uncoated or coated with a front layer of 13 μm Al or 6 μm Ag, the 
importance of which is beyond the scope of this paper. There were no measurable differences observed in the Kα 
from targets with Al vs Ag. Their thicknesses were chosen to have the same stopping range for protons. The beam 
used for proton radiography ( μJ ps m r850 , 10 , 20 80) was incident normally on a 1 mm square 10 μm thick Au 
foil. A custom arrangement of radiochromic films was used with 100 μm Al foil in front, 53 slices of film, and 
minimal filters between, to preserve a high degree of temporal discrimination.

Particle-in-cell simulations of particle generation, transport, and induced Cu Kα.  Particle-in-cell 
code LSP was used to study kinetic aspects of the main target. The hemi + wedge target geometry was represented 
including a preplasma, C curved foil, Al trapezoidal sidewalls and rear foil. For simplicity, the rear foil was mod-
eled as Al for the first simulation. The geometry is shown in Fig. 7(a). By using LSP’s implicit push algorithm and 
the fluid description in the solid regions of the target and Al structures, the number of macroparticles/cell limits 
could be significantly relaxed comparing to typical PIC simulations. In these fluid regions, particles follow the 
same equation of motion of kinetic particles but a collision term using pressure and frictional forces is added. 
Meanwhile, the particles that are responsible for the TNSA effect (namely hot electrons and surface protons) are 
treated kinetically with high particle density, fully resolving the acceleration. In our simulations, 4 particles/cell 
for each species were laid out in the solid regions and 625 particles/cell filled the 1 μm thick hydrogen layer of the 
Hemi target. The minimum grid size was 0.4 μm for non-uniform grids. Simulations outputted the snap shots of 
fields and particle densities every 0.5 ps. Data was accumulated on extraction planes every time step, 0.4 fs.

Figure 6.  (a) simulated target geometry for the standard cone and 20 deg cone. (b) proton density for the free 
hemi at 22 ps. (c) proton density for the 20 deg cone at 20 ps. (d) radial velocity of proton macroparticles for the 
20 deg cone at 16 ps. (e) the radial distribution of protons reaching the purple box shown in (c) through 33 ps. (f) 
Cu ion temperature radial profile for the same three cases.
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To make the problem tractable with finite computational resources, the laser-target interaction process was 
bypassed- a population of electrons was injected to emulate the laser interaction. The electron source had total 
energy 30% of =J J1250 375  in 20 ps total duration with ps FW HM10  Gaussian history and μm FW HM35  
Gaussian spatial profile. The energy spectrum had slope temperature linearly increasing to 3 MeV until the laser 
peak and a 30% Gaussian energy spread in a transverse direction. The electron source method has been applied 
previously in similar problems30 and benchmarked against full simulation of the laser31. The choice of an electron 
source with increasing slope temperature that exceeds that predicted by ponderomotive scaling for the laser 
intensity is a proven method for more accurately simulating proton acceleration from multi-picosecond pulses38. 
Longitudinal and lateral electric field maps were recorded periodically as were all species’ densities, temperatures 
and velocities.

Electrons reached the rear foil primarily (in number) by traveling within the target structure and along the 
walls while protons drift through the gap. All particles, including protons, hot electrons, and co-moving electrons, 
that nearly reached the rear foil ( μ=Z m325 ) were recorded in the first simulation then input into a separate 
transport simulation at the recorded position in front of a Cu slab, preserving each particle’s momentum, lateral 
position, and relative timing.

In the Cu transport simulations, the injection plane was set before the entrance of the transport layer (Cu slab) 
to enable multiple transport simulations without having to re-simulate the long time of flight of particles from 
the hemispherical target. The domain is shown in Fig. 7(b). The particles collected in the longer simulation were 
re-injected in the Cu transport simulation with the same temporal and spatial profiles as collected and at the same 
plane along the cone. The collection/injection plane was chosen in front of the Cu slab to avoid field effects at the 
slab boundary. A vacuum gap was included in the domain so that fields could evolve in time without numerical 
disturbance.

A series of extraction planes recorded the particles’ momenta and positions every 2 μm into the slab. Particle 
stopping calculations in the slab applied Atzeni’s approach for relativistic electrons39 and a bound plus free elec-
tronic stopping model for protons40. The PIXE cross-sections for electron- and proton-induced Cu αK  emis-
sion41,42 are applied with the simplifying assumption that the particle energies are constant over each 2 μm slice. 
The shape of the Cu kα emission profile can be plotted using the particle positions, and the cumulative profile that 
would be observed from the rear of the foil is then calculated by adding the slices, accounting for x-ray opacity.
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