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Abstract: We investigated the interfacial properties of symmetric ternary An/AmBm/Bn and
An/Am/2BmAm/2/Bn polymeric blends by means of dissipative particle dynamics (DPD) simu-
lations. We systematically analyzed the effects of composition, chain length, and concentration of
the copolymers on the interfacial tensions, interfacial widths, and the structures of each polymer
component in the blends. Our simulations show that: (i) the efficiency of the copolymers in reducing
the interfacial tension is highly dependent on their compositions. The triblock copolymers are more
effective in reducing the interfacial tension compared to that of the diblock copolymers at the same
chain length and concentration; (ii) the interfacial tension of the blends increases with increases in the
triblock copolymer chain length, which indicates that the triblock copolymers with a shorter chain
length exhibit a better performance as the compatibilizers compared to that of their counterparts with
longer chain lengths; and (iii) elevating the triblock copolymer concentration can promote copolymer
enrichment at the center of the interface, which enlarges the width of the phase interfaces and reduces
the interfacial tension. These findings illustrate the correlations between the efficiency of copolymer
compatibilizers and their detailed molecular parameters.

Keywords: dissipative particle dynamics; interfacial property; interfacial tension; compatibilizer

1. Introduction

Polymeric blends and mixtures have broad applications in many areas of science
and technology. [1] In a polymer blend, the chemically different polymers often exhibit
immiscibility; and consequently, the mixture tends to phase-separate into macroscopic
domains, resulting in the relatively poor mechanical properties of the materials [2]. In
these immiscible polymer blends, the added amphiphilic compatible agents can selectively
segregate at the interface [3] between the immiscible homopolymers, which improves
the miscibility [4] between different types of polymers by reducing interfacial tension
and promoting interfacial adhesion [5]. With this modification, the stabilized blends
usually exhibit desired properties and performance [6,7]. Typically, the compatibilizers or
emulsifying agents are block copolymers, such as diblock, triblock, random, and gradient
copolymers containing segments that can be miscible with the homopolymers [7]. Among
others, the simplest symmetric AnBn diblock copolymer was widely used to optimize the
interfacial properties. Moreover, the triblock copolymers were demonstrated to be more
effective as compatibilizers in reducing the interfacial tension than diblock copolymers, as
shown by the pioneering work of Russell et al. [8]

Experimental studies of triblock copolymers at the immiscible homopolymer inter-
face were extensively performed [9–17]. For example, Wolf et al. [9] initially reported
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that interfacial tension rapidly decreases with the addition of poly(dimethyl siloxane)-
poly(ethylene oxide)-poly(dimethyl siloxane) (PDMS-PEO-PDMS) triblock copolymers
into the PDMS/PEO blends. Subsequently, they investigated the dependence of inter-
facial tension reduction on the copolymer architecture (PDMS-PEO diblock copolymers
and PDMS-PEO-PDMS triblock copolymers) for the PDMS/PEO blend, which showed
that the compatibilization efficiency of the copolymer was mainly dependent on the total
number of PDMS segments for the range of molecular weights examined, and has little
correlation with the copolymer architecture and the length of the PEO block [10]. Xu et al.
reported that poly(methyl methacrylate)-polyethylene -poly(methyl methacrylate) (PMMA-
PE-PPMA) can not only significantly improve the morphology of poly(methyl methacry-
late)/polyethylene (PE/PMMA) (80/20) blends, but also enhance their elastic modulus
and hardness [16]. Sun et al. studied the effects of polylactic acid Poly (butyleneadipate-
co-terephthalate)-polylactic acid compatibilizers with two different molecular weights
on immiscible polylactic acid/Poly (butyleneadipate-co- terephthalate) blends [17]. The
thermal, morphological, and rheological analysis showed that the addition of triblock
copolymers enhanced the miscibility and interfacial bonding strength between polylac-
tic acid and Poly (butyleneadipate -co-terephthalate). Recently, Zhao et al. investigated
the effects of styrene-ethylene/butylene-styrene on the interfacial tension of immiscible
polypropylene/polystyrene mixture [18]. They found that the triblock copolymer compat-
ibilizers with a shorter chain length perform at a higher efficiency than their long-chain
length counterparts.

With computational technology’s rapid development, computer simulations serve as
an important strategy to fundamentally analyze the structural and thermodynamic proper-
ties of the polymer blends [19,20]. For example, the Monte Carlo simulation was widely
used to study the aggregation behavior of the An/AmBm/Bn polymeric blends [21–25].
Balazs et al. [21], Wang et al. [22], and Muller et al. [23–25] reported a series of lattice Monte
Carlo simulations on the interfacial properties between two immiscible polymer blends
with and without compatibilizers, which showed the detailed conformational properties
of polymers at the immiscible homopolymer interface. In the previous study, we utilized
Monte Carlo simulation to examine the effects of diblock copolymer on the interfacial
properties of An/AmBm/Bn polymeric blends [26,27], and illustrated that the interfacial
width, density distribution, and orientation of the diblock copolymer strongly depended
on the diblock copolymers’ chain properties. In recent years, dissipative particle dynamics
(DPD) simulations became a vital tool for studying the physicochemical properties of
polymeric blends, including phase behavior, dynamics, and morphology evolution [28–40].
Specifically, Groot et al. [41] employed DPD simulation to calculate the interfacial tension
of immiscible polymer blends. Qian et al. studied the effect of the diblock copolymer AB on
the interfacial properties of immiscible A/B homopolymer blends by DPD simulation [5].
Ginzburg et al. studied the interfacial tension of oil/water/surfactant blends via DPD simu-
lation and self-consistent field theory, and the results showed a semiquantitative agreement
between the two methods [42]. Hong et al. systematically investigated the interfacial and
structural properties of oil/water interface with the presence of octenyl succinic anhydride
(OSA) through DPD simulations and experimental analysis [43]. They found that the
interfacial tension can be quickly reduced by adding OSA. Zhang et al. employed DPD
simulation to study the properties of the glycerol trioleate/n-butanol/TX-100/[Bmim][BF4]
blends system [44]. They proved that the means of DPD simulation can accurately and
efficiently predict the properties and compositions of complex multicomponent blends,
which play a vital role in the development of new multifunctional complex materials.

Previous simulation works mainly reported the structural properties of the An/AmBm/Bn
polymeric blend systems, whereas investigation of An/Am/2BmAm/2/Bn polymeric blends
systems remains limited. However, such investigations are necessary for understanding
the microscopic mechanism for interfacial properties optimization, such as why triblock
copolymer has a higher efficiency than diblock copolymer, and how triblock copolymers
work as compatibilizers.
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Here, we explore the interfacial properties of symmetric ternary An/AmBm/Bn and
An/Am/2BmAm/2/Bn polymeric blends by means of DPD simulations. We first introduce
the model and simulation details used in our work, and then systematically analyze
the effects of composition (diblock and triblock), copolymer chain length, and copolymer
concentration on the interfacial tension, density distribution of different beads, and detailed
chain conformations of the copolymers. Our work elucidates the fundamental mechanism
for the superiority of short triblock copolymers as the compatibilizer, in comparison with
that of the longer chains or diblock counterparts. Further, we highlight the significance of
copolymer concentration in maintaining the stability of the polymer blends. Finally, we
summarize our results and offer some concluding remarks.

2. Methods
2.1. Model

The DPD method is a mesoscopic simulation technique [45,46]. In our coarse-grained
simulation, each DPD “bead” (or particle) represents a polymer segment. The pairwise
interaction in the simulation can be described by a soft potential, meaning that the beads
can overlap considerably. The motion of the beads satisfies Newton’s equations of motion,

dri

dt
= vi; mi

dvi

dt
= fi (1)

where the vector ri and vi represent the position and velocity of the ith bead, respectively.
The total force fi acting on a bead i is the sum of the conservative forces, the dissipative
forces, the random forces, and the harmonic spring force [41].

fi = ∑
j 6=i

(
FC

ij + FD
ij + FR

ij

)
+ FS

i (2)

The conservative force FC
ij , the dissipative force FD

ij , the random force FR
ij , and the

harmonic spring force FS
i are given by the following equation:

FC
ij = −αijω

C(rij
)
eij (3)

FD
ij = −γωD(rij

)(
vij·eij

)
eij (4)

FR
ij = σωR(rij

)
ξij∆t−1/2eij (5)

FS
i = ∑ Crij (6)

in which rij = ri − rj, rij =
∣∣rij
∣∣, eij = rij/rij, vij = vi − vj. The repulsion parameter αij is a

constant that can describe the maximum repulsion between the interacting beads. γ, σ and
ξij are the friction coefficient, amplitude of the noise, and Gaussian random number with
zero mean and unit variance, respectively. ωC, ωD, and ωR denote the weight functions
of the conservative force FC

ij , dissipative force FD
ij , and random force FR

ij , respectively. For

the conservative force FC
ij , we simply take ωC(rij

)
= 1− rij for rij < 1 and ωC(rij

)
= 0

for rij ≥ 1. Unlike ωC(rij
)
, ωD(rij

)
and ωR(rij

)
have a certain relation, which obeys the

fluctuation-dissipation theorem, [41]

ωD(r) =
[
ωR(r)

]2
, σ2 = 2γkBT (7)

where kB represents the Boltzmann constant and T is the temperature. The weight functions
ωD, and ωR can be simply chosen as the previous work of Groot and Warren [41].

ωD(r) =
[
ωR(r)

]2
=

{
(1− r)2 (r < 1)

0 (r ≥ 1)
(8)
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The conservative interaction αAB (A and B are two different types of beads) strength
is proportional to Flory–Huggins parameters χ for polymers, and obey the following
relationship [41].

αAB ≈ αAA + 3.50χAB (9)

The interaction parameter between the same type of beads is set as αAA = αBB = 25.
Further, the harmonic spring force in Equation (6) is employed to account for the connection
between polymer beads, where C = 4.0 is the corresponding spring force constant.

2.2. Simulation Details

In the present work, we perform the DPD simulations in a cell of size 30 × 30 × 30
with periodic boundary conditions using the Materials Studio program (developed by
Accelrys). The radius of interaction, the bead mass, and the temperature are chosen as the
reduced unit rc = m = kBT = 1 (where rc is the interaction radius and m is the bead mass).
We set the number density of the beads as ρ = 3 so that each simulation approximately
includes 81,000 beads. The time step is taken as 0.05, and the friction coefficient γ is chosen
as 4.5.

To investigate the effects of copolymer on interfacial properties, we include An ho-
mopolymers and Bn homopolymers as well as the diblock AmBm or triblock Am/2BmAm/2
copolymers as the compatibilizers in the simulations. The chain length (Ncp) of the diblock
AmBm and the triblock Am/2BmAm/2 are set as 8, 16, 28, 40, respectively. The copolymer
concentration ccp varies from 0.01 to 0.2. The chain length of the uniform homopoly-
mers is fixed as NA = NB = 8. The copolymer consists of the same number of A and B
beads. We fixed the Flory–Huggins interaction parameters between different beads as
χAB = 4.298. As shown by Equation (9), the interaction parameter between A and B is set
as αAB = αAA + 3.50χAB = 40, which leads to a regime of strong segregation of A and B [7].
In our simulation, we first perform 2.0 × 105 steps, which were tested long enough for
the system equilibration. In addition, we perform 5×104 steps as the production runs. We
carry out several parallel simulations and obtain the final results from the order of 103 to
104 statistically independent samples.

In this work, we not only studied the phase separation process of the blended system,
but also the thermodynamic properties of the blended system. For the study on phase
separation, we initially place molecular chains randomly in the simulation box and adopt
χij = 0, i.e., αAA = αBB = αAB = 25 for 5 × 104 steps to obtain initial homogenous mixtures
of the systems.

The static structure factor SAA(q) of homopolymers An is calculated to identify phase
properties,

SAA(q) =
1

NA

NA

∑
i=1

NA

∑
j=1
〈e−iq·(ri−rj)〉 (10)

where ri and rj are the position vectors of beads i and j of homopolymer An, NA is the total
number of beads A in homopolymers, and q is the wave vector [47].

In a ternary blend with flat interfaces, one of the most important parameters is interfa-
cial tension which can directly reflect interfacial properties. Also, the interfacial tension
obtained from DPD simulation [35–37] is often used as a basis to compare with the theo-
retical treatment of Groot and Warren [41]. Likewise, we calculate the interfacial tension
according to the Irving–Kirkood equation [48], which is obtained by integrating the stress
difference over x,

γDPD =
∫ [

Pxx −
1
2
(

Pyy + Pzz
)]

dx (11)

where P represents the pressure tensor, x is the axis normal to the interface, and y and z
are the axes parallel to the interface. In addition, we obtain the orientation parameters by
calculating the difference between the normal component and the transverse component
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of the mean-square radius of gyration <Rg
2> of the triblock copolymers according to the

previous work of Qian et al. (Ref. [5]), which can be written as:

q =

(
〈R2

g〉x − 1/2
(
〈R2

g〉y + 〈R2
g〉z
))

R2
g

(12)

where <Rg
2>x, <Rg

2>y, <Rg
2>z are the components in three principal directions of <Rg

2>.
We also calculate the mean-square end-to-end distance <Ree

2> of the polymer chains to
characterize the detailed polymer conformations.

3. Results and Discussion
3.1. Evolution of Phase Separation

We start our analysis from the evolution of the blends’ phase separation in DPD simula-
tion, in which the systems A8/A4B4/B8 and A8/A2B4A2/B8 are considered. Figures 1 and 2
show the representative morphology snapshots and the structure-factor SAA(q) for the
diblock and triblock systems at different simulation times (t), respectively. Here, the
copolymer concentration is set as ccp = 0.05. At t = 0, the copolymers and homopolymers
were randomly mixed, and the blend exhibits a disordered phase state, corresponding to
the black solid line of SAA(q) in Figure 2a,b. At t = 1000, as shown by the morphology
and the characteristic peaks of SAA(q) at q < 3, we see the bicontinuous microemulsion
(BME) structures of the blends, due to the immiscibility between beads A and B, which
indicates the microscopic phase separation of the blends. With further time evolution,
the smaller bicontinuous microemulsion gradually segregates into larger bicontinuous
phases (at t = 5000), and the characteristic peaks of SAA(q) disappear. The system finally
achieves the macrophase separation (at t >= 20,000), resulting in the formation of the A
bulk phase and B bulk phase separated by the flat interfaces. In the final state, the structure
factor SAA(q) obeys the Ornstein–Zernike form [49,50], and the maximum value of SAA(q)
appears at the smallest q due to the macroscopic phase separation of the system, which
also means that the size of the characteristic domain is infinite. Herein, SAA(q) is used to
reflect the changes in the phase behaviors of the blend over time. We found that there is no
substantial difference in SAA(q) between the systems with diblock and triblock copolymers,
which is due to the similar macroscopic phase separation processes for A8/A4B4/B8 and
A8/A2B4A2/B8 systems.

We also calculate the radial distribution functions between beads A and B [gAB(r)]
from homopolymers An and Bn, beads A and A [gAA(r)] of all homopolymers An, beads A
and A [gAAintra(r)] within homopolymers An, and beads A and A [gAAintrer(r)] with different
homopolymers An to characterize the detailed structural information of the blends during
phase separation (as illustrated in Figures S1 and S2 in the Electronic Supplementary
Information). In the initial state, homopolymers An and Bn are randomly mixed, which
results in the small contact peaks of gAB(r) at r < 2 and the value of gAB(r) achieving a
flat value of gAB(r) = 1 at large r. With the time evolution, due to the significant phase
separation between homopolymers An and Bn, the contacting between beads A and B
is hindered, which results in the gAB(r) < 1 at the equilibrium state in Figure S1a,b. In
accord, the corresponding value of gAA(r) exhibits a significant increase, which indicates
the structural variations within the polymer blends. Note that in the An/Am/2BmAm/2/Bn
blends, the central B block of the triblock copolymer preferentially segregated into Bn phase,
whereas the corresponding A end blocks segregated into the An phase, which implies the
folding structure of the copolymers.
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green and blue spheres represent beads A and B of the copolymers. 

 
Figure 2. Structure factor of the beads A in homopolymer An for the cases of (a) A8/A4B4/B8 and (b) 
A8/A2B4A2/B8 at different simulation times. Copolymer concentration is set as ccp = 0.05. 

After verifying the blends‘ phase separation, we next initiated the structure of 
homopolymers and copolymers in the distinct of the box along the x-direction and 
performed the simulation [5]. This design serves as an effective strategy to speed up the 
formation of the interfaces (perpendicular to the x-direction) for the accurate calculation 
of the interfacial tension, and to save the computational cost [5]. 

3.2. Comparison between An/AmBm/Bn and An/Am/2BmAm/2/Bn Blends 
Due to the unique amphiphilic features, copolymers are usually used as compatibil-
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Figure 1. Representative morphology snapshots for ternary mixtures at different simulation times.
Compositions are A8/A4B4/B8 for (a,b), and A8/A2B4A2/B8 for (c,d). Concentration of the copolymer
is fixed as ccp = 0.05. Red and yellow spheres represent bead A and bead B of homopolymers, and
green and blue spheres represent beads A and B of the copolymers.
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Figure 2. Structure factor of the beads A in homopolymer An for the cases of (a) A8/A4B4/B8 and (b)
A8/A2B4A2/B8 at different simulation times. Copolymer concentration is set as ccp = 0.05.

After verifying the blends‘ phase separation, we next initiated the structure of ho-
mopolymers and copolymers in the distinct of the box along the x-direction and performed
the simulation [5]. This design serves as an effective strategy to speed up the formation of
the interfaces (perpendicular to the x-direction) for the accurate calculation of the interfacial
tension, and to save the computational cost [5].

3.2. Comparison between An/AmBm/Bn and An/Am/2BmAm/2/Bn Blends

Due to the unique amphiphilic features, copolymers are usually used as compatibiliz-
ers to lower the interfacial tension between the immiscible homopolymers and enhance
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the thermal stability of the polymer mixtures. To examine the efficiency of diblock and
triblock copolymers as the compatibilizers, we examine the interfacial tension of the two
ternary systems. Figure 3a shows the reduced interfacial tension γ∗ = γ0− γ (where γ and
γ0 indicate the interfacial tensions’ binary homopolymer mixtures with and without the
copolymers) as a function of the chain length of the added diblock and triblock polymers
at different copolymer concentrations.
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In our simulations, it is noted that when the copolymer concentration is fixed as
ccp = 0.01, the interfacial tensions between diblock and triblock systems differ slightly, and
the interfacial tension is almost unchanged. With the increase of copolymer concentration,
there appears to be a significant discrepancy in the reduced tensions between blends
containing the diblock and triblock copolymers; the reduced interfacial tension of the
triblock polymer system is always higher than the diblock polymer system. Therefore, we
can conclude that the triblock polymers serve as more effective compatibilizers than the
diblock in reducing the interfacial tension. This result is supported by the experimental
observations of Russell et al. [8]

To further elucidate the underlying mechanisms of interfacial tension reduction caused
by copolymer addition, we calculate the relative density profiles for beads A and B of the
homopolymers and copolymers along the x-axis. Figure 3b,c show the density distribution
of beads A, B, and A + B of the diblock and the triblock. The chain lengths of the copolymers
are set as Ncp = 8 and Ncp = 28, respectively; the concentration of the copolymer is ccp = 0.1.
As shown in these figures, all copolymer beads aggregate at the interface, with beads A and
B penetrating the A and B homopolymer phases, respectively. For the case of Ncp = 8, the
density of beads A+B of the triblock copolymers at the center of the interface (the vacant
blue triangles) is slightly higher than that of the diblock (the solid blue triangles). As
shown by Figure 3c, this phenomenon turns out to be more pronounced with the increase
in copolymer chain length. Specifically, as the chain length of copolymer Ncp = 28, the
A and B beads’ density of the triblock copolymers at the interface was also higher than
that of the diblock copolymers, which indicates the enhanced enrichment of the triblock at
the interface.

Since we demonstrated that the triblock copolymers exhibit better performance in
maintaining the stability of the polymer mixture at the molecular level, we next focus on
exploring the effects of chain length and concentration of the triblock copolymers on the
phase properties of the polymer blends.

3.3. Effect of Chain Length of Triblock Copolymers

In Figure 3a, we found that for the polymer blends composed of An/Am/2BmAm/2/Bn,
the reduced interfacial tension of the blends exhibits a significant decay with increasing
the chain length of triblock copolymers; that is, the triblock copolymer compatibilizers
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with a shorter chain length show a higher efficiency in maintaining the stability of the
blends than their counterparts with longer chain length. This finding is consistent with
the experimental studies of Zhao et al. [18]. More specifically, Figure 4 shows the relative
density profiles of triblock copolymers with different chain lengths at a fixed concentration
of ccp = 0.1, which illustrates that the density of beads A+B of the triblock copolymer at the
center of the interface decreases with increases in the triblock copolymer chain length.
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We also found that at any chain length of the triblock copolymers, the central beads
B of triblock copolymers preferentially segregated into homopolymers Bn bulk phase,
whereas the end beads A of triblock copolymers segregated to the homopolymers An
bulk phase [Figure 3c and Figure S4], which indicates that the triblock copolymers form a
“hairpin” type of conformation at the interface. In comparison with the diblock copolymers,
these hairpin-type triblock copolymers cause the reduction in the mixing entropy and the
interfacial tension, which results in the enhanced stability of the interfaces.

Figure 5a,b show the variations in density profiles of homopolymers An and Bn and
the interfacial width at different chain lengths of the diblock and triblock copolymers when
ccp = 0.1. The calculation of the interfacial width between the homopolymers An and Bn
is according to the previous work of Guo et al. [4]. We extract the width w by fitting the
function tanh ((x + d)/w) to the profile (ρA(x) − ρB(x))/ρ(x) across each interface, where
d stands for the interface center shift along the x-directions. For comparison, the density
profiles and the interfacial width of the pure An/Bn binary blends without copolymers are
also provided [the filled and vacant squares in Figure 5a, and the first point (i.e., Ncp = 0)
in Figure 5b].

Our simulation indicates that the density profile gaps for the homopolymers and the
interfacial widths of the ternary blends are broader than the pure duality homopolymer
blends because of the occupation of triblock copolymers at the interfaces. As the chain
length of the triblock copolymers increases from Ncp = 8 to 60, the density of beads A and B
in homopolymers near the center of the interface exhibits an increase, whereas the density
of beads A and B in homopolymers near the edge of the interface exhibits a decrease (as
illustrated in Figure S3). With the triblock copolymers, the interfacial widths exhibit an
increase of Ncp (the chain length of triblock copolymers) from 8 to 40, and decrease slightly
as Ncp further increases from Ncp = 40 to 60 (the red filled dots in Figure 5b). However,
with the diblock copolymers, as the Ncp increases from Ncp = 8 to 16, the interfacial widths
increase slightly, and as Ncp further increases from Ncp = 16 to 60, the interfacial widths
decrease rapidly (the black filled squares in Figure 5b). We inferred that the decrease in the
interfacial widths for the cases with the longer chain length of copolymers is related to the
distribution of copolymer beads. This phenomenon becomes more obvious in the diblock
copolymer system. As the chain length of the copolymers increases to Ncp = 60, beads A
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and B of the copolymers tend to penetrate the corresponding homopolymer phase, which
results in the reduction of copolymer segregation at the interface.
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Figure 5c shows the orientation parameter q and the mean-square, end-to-end distance
<Ree

2> (as well as <Ree
2>x, <Ree

2>y, <Ree
2>z) of the triblock copolymers at different triblock

copolymer chain lengths. We found that as Ncp increases, <Ree
2> and its components

<Ree
2>y, <Ree

2>z exhibit an increase, and <Ree
2>x is smaller than the components in y

and z directions. The chain orientation parameter is q < 0 and decreases rapidly as Ncp
increases from 8 to 28 with ccp = 0.1, but as Ncp increases from 28 to 60, the chain orientation
parameter remains almost unchanged.

3.4. Effect of Concentration of Triblock Copolymers

We further investigate the effects of the concentration of triblock copolymers ccp on
the interfacial properties. Figure 6a shows the interfacial tension of the ternary blends as a
function of the triblock copolymer concentration ccp. The interfacial tension decreases as the
concentration of the triblock ccp increases. These results are in qualitative agreement with
the experimental findings of Wagner et al. [9]. We also find that the interfacial tension has a
larger value for longer triblock copolymer Ncp = 40 at the fixed copolymer concentration,
which indicates that the shorter triblock copolymers show better performance in reducing
the interfacial tension of the blends.
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Figure 6b,c show the simulated density profiles (ρ) of beads A and B of triblock
copolymers, with Ncp = 8 and Ncp = 28 as a function of ccp, respectively. In accord with
Figure 6b,c, Figure 7 shows the morphology snapshots of ternary blends. In the case of
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Ncp = 8, as ccp increases from 0.1 to 0.2, the densities of the A, B (Figure 6b), and beads
A + B (Figure S5a) of triblock copolymer near the center of the interface only increases
slightly, the triblock copolymer segregation in the homopolymers bulk An is enhanced,
and the interface is no longer flat (Figure 7b). However, for the case of Ncp = 28, as the
concentration of the triblock copolymer increases from ccp = 0.01 to 0.2, the densities of the
A, B [as illustrated in Figure 6c], and beads A + B [as illustrated in Figure S5b] of triblock
copolymers at the interface exhibit significant increases, all the triblock copolymers enrich
at the interface; i.e., no triblock copolymers segregate at the bulk of homopolymers and
the interface always remains flat [as illustrated in Figure 7c,d]. Further, our simulation
indicates that at a higher copolymer concentration of ccp = 0.5, the ternary blends form
BME structures rather than the macroscopic phase separation structure (as illustrated in
Figures S6 and S7).
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Figure 7. Morphology snapshots for ternary mixtures at different triblock copolymer concentrations.
Compositions are (a) A8/A2B4A2/B8; (b) A2B4A2; (c) A8/A7B14A7/B8; (d) A7B14A7. Red and yellow
spheres represent bead A and bead B of homopolymers, and green and blue spheres represent beads
A and B of copolymers.

The density profiles of beads A and B of the homopolymers and the interfacial width
w along the x-axis as a function of triblock copolymer concentration at the copolymer chain
length of Ncp = 8 (ccp = 0 to 0.1) and Ncp = 28 (ccp = 0 to 0.2) are shown in Figure 8a,b,
respectively. It is shown that as the concentration of triblock copolymer increases, the
density of homopolymer near the center of the interface decreases and the interfacial width
w increases monotonically, which illustrates the decayed correlations between beads An
and Bn of homopolymer with increasing the triblock copolymer concentration.
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Finally, we calculate the orientation parameter q and the mean-square radius of
gyration <Rg

2> (as well as <Rg
2>x, <Rg

2>y, <Rg
2>z) of the triblock copolymers at different

triblock copolymer concentrations in Figure 9a,b. We found that as the concentration
increases, <Rg

2>x also exhibits an increase. For the case of Ncp = 28 and ccp = 0.2, the x
component of <Rg

2> is greater than the components in y and z directions. In addition, the
chain orientation parameter q increases monotonically as the concentration of the triblock
copolymer increases. Combining the value of q from Figure 9a,b, we can see that: (1) the
orientation parameter q exhibits a larger value for shorter triblock copolymer at the same
concentration; (2) as the concentration of the triblock copolymer increases from ccp = 0.1 to
0.2 with Ncp = 28, the chain orientation parameter q is greater than 0, which indicates that
the triblock copolymer with higher concentration is more stretched along the x-direction,
which is perpendicular to the interface.
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4. Conclusions

We employed DPD simulation to study the interfacial properties of symmetric ternary
An/AmBm/Bn and An/Am/2BmAm/2/Bn polymeric blends. We systematically explored
the effects of composition, chain length, and copolymer concentration on the interfacial
tension, the density of different beads near the interface, the interfacial width, and the
detailed chain conformations in the polymeric blend.

Through the comparison between the interfacial tensions of the An/AmBm/Bn and
An/Am/2BmAm/2/Bn blends, we found that the triblock copolymer is more effective in
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reducing the interfacial tension than the diblock copolymer, and the density of beads A + B
of the triblock copolymers at the center of the interface is higher than that of the diblock.
For the An/Am/2BmAm/2/Bn polymeric blend systems, the addition of shorter triblock
copolymer chains results in a more reduced interfacial tension and a higher density of
copolymers at the center of the interface, which indicates the better performance of triblock
copolymers as the compatibilizers compared to that of their counterparts with longer chain
lengths. By elevating the concentration of the triblock copolymer, the density of the triblock
copolymer increases, the interfacial width w enlarges, and the interfacial tension decreases;
accordingly, the triblock copolymers are more stretched along the direction perpendicular
to the interface.

Our simulations indicate that the efficiency of the added copolymer compatibilizers is
strongly correlated with their microscopic architectures and chain properties. In this context,
it would be necessary to systematically explore the effects of other molecular details on the
interfacial and phase properties of blends composed of the triblock as the compatibilizers.
Besides, given that ion-containing polymer mixtures serve as a new class of material that
combines ionic conductivity with mechanical robustness [51], we also predict that study
of the effects of copolymers (as compatibilizers) on ion-containing polymer/polymer or
polymer/inorganic compound blends would contribute to the optimization of the polymer
electrolytes used for new batteries and energy storage devices. Our work provides insights
into the fundamental understanding of phase properties for polymer blends and the design
of the copolymers as the ideal compatibilizer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13091516/s1. Figure S1: the radial distribution functions between (a) beads A and B
[gAB(r)] from homopolymers An and Bn, (b) beads A and A [gAA(r)] of all homopolymers An, (c) beads
A and A [gAAintra(r)] within homopolymers An, and (d) beads A and A [gAAinter(r)] within different
homopolymers An for the case A8/A4B4/B8 at different simulation times; Figure S2: the radial
distribution functions between (a) beads A and B [gAB(r)] from homopolymers An and Bn, (b) beads
A and A [gAA(r)] of all homopolymers An, (c) beads A and A [gAAintra(r)] within homopolymers An,
and (d) beads A and A [gAAinter(r)] with different homopolymers An for the case A8/A2B4A2/B8 at
different simulation times; Figure S3: density profiles of beads A + B of the triblock copolymer along
the x-axis as a function of triblock copolymer concentration at the copolymer chain length, (a) Ncp = 8,
and (b) Ncp = 28; Figure S4: morphology snapshots of ternary blends in the simulation. (a) Ncp = 8
and ccp = 0.5, (b) Ncp = 28 and ccp = 0.5; Figure S5. Density profiles of beads A + B of the triblock
copolymer along the x-axis as a function of triblock copolymer concentration at the copolymer chain
length (a) Ncp = 8, and (b) Ncp = 28; Figure S6. Density profiles of beads A and B of the homopolymers
and triblock copolymer along the x-axis at the copolymer chain length (a) Ncp = 8, and (b) Ncp = 28
with triblock copolymer concentration ccp = 0.5; Figure S7. Representative morphology snapshots for
ternary mixtures at triblock copolymer concentration ccp = 0.5. The compositions are A8/A2B4A2/B8
for (a), and A8/A7B14A7/B8 for (b). The red and yellow spheres represent bead A and bead B of
homopolymers, and the green and blue spheres represent beads A and B of the copolymers.
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