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Abstract
Purpose An intraoperative real-time respiratory tumor motion prediction system with magnetic tracking technology is
presented. Based on respiratory movements in different body regions, it provides patient and single/multiple tumor-specific
prediction that facilitates the guiding of treatments.
Methods A custom-built phantom patient model replicates the respiratory cycles similar to a human body, while the custom-
built sensor holder concept is applied on the patient’s surface to find optimum sensor number and their best possible placement
locations to use in real-time surgical navigation and motion prediction of internal tumors. Automatic marker localization
applied to patient’s 4D-CT data, feature selection and Gaussian process regression algorithms enable off-line prediction in
the preoperative phase to increase the accuracy of real-time prediction.
Results Two evaluation methods with three different registration patterns (at fully/half inhaled and fully exhaled positions)
were used quantitatively at all internal target positions in phantom: The statical method evaluates the accuracy by stopping
simulated breathing and dynamic with continued breathing patterns. The overall root mean square error (RMS) for both
methods was between 0.32 ± 0.06 mm and 3.71 ± 0.79 mm. The overall registration RMS error was 0.6 ± 0.4 mm. The
best prediction errors were observed by registrations at half inhaled positions with minimum 0.27 ± 0.02 mm, maximum
2.90 ± 0.72 mm. The resulting accuracy satisfies most radiotherapy treatments or surgeries, e.g., for lung, liver, prostate and
spine.
Conclusion The built system is proposed to predict respiratory motions of internal structures in the body while the patient
is breathing freely during treatment. The custom-built sensor holders are compatible with magnetic tracking. Our presented
approach reduces known technological and human limitations of commonly used methods for physicians and patients.

Keywords Real-time tumor tracking · Respiratory motion · Prediction optimization · Magnetic tracking

Introduction

The advantages of surgical tracking technology are used for
real-time tumor or organ motion prediction aiming to guide
the surgeries or therapies with minimal damage to the sur-
rounding tissue around the target. In particular, treatments
in stereotactic ablative radiotherapy (SABR) or stereotactic
body radiation therapy (SBRT) while the patient is breath-
ing freely are an important concern in clinical workflows for
the safe and effective provision of precision radiotherapy,
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computer-assisted tumor surgery and biopsy interventions
[1–4]. Existing approaches that are requiring extensive train-
ing for the patients and physicians such as respiratory
gating and breath hold are often a constraint. For abdominal
compression, used pneumatic belts or mechanical pressure
systems are inconvenient for the patients when considered
the long therapy sessions and periods.

We present a patient-specific approach that predicts inter-
nal tumor motions using real-time tracked skin sensors with
magnetic tracking while giving to patient relaxed freely
breathing condition. The respiratory cycle of the patient and
thus the 3D temporospatial movements of the internal tar-
gets are observed from patient’s 4D-CT preoperatively. Our
optimization technique [5] and custom-made surface sensor
holder (SH) allow to determine the best possible localiza-
tion and number of sensors to be placed on the patient’s
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Fig. 1 Left: Respiratory model with the fixed SHs. Right: Inside of
the model. To place the markers in the balloon, the balloon is turned
inside–out and 6X-Spot CT skinmarkers (� 1.5mm, lead-free metallic
pellet), 1 titanium Rhinospider ball (� 4 mm) isocentrically carrying
a cylindrical 5D magnetic sensor (� 0.5 mm, L 8 mm), are glued on

the inner wall of the balloon (maximum inflation � 120 cm). There-
after the balloon is turned outside–in. For inflating with a water blaster
(82 × 5 × 15 cm), a flexible silicone tube (� 20 mm, L 200 cm) is
connected to the balloon

surface to predict single or multiple tumor movements at the
best possible locations. Accurate positioning of the sensors
at the proposed SHs preoperatively allows submillimetric
registration accuracy and thus clinical acceptable real-time
prediction in intraoperative phase.

Methods

This section describes the hardware and software compo-
nents of the respiratory motion prediction system, possible
clinical workflow and the implementation of respiTrack.

Components

Custom respiratory systemmodel

To replicate the human respiratory system artificially and to
predict the tumormotion based on the respiratory simulation,
a custom-made realistic phantom model was built (Fig. 1).
The standard rubber hot-water bottle simulates, e.g., abdomi-
nal region of the human body that contains a spherical rubber
balloon inside to simulate a moving organ. The respiratory
cycle of themodel is performed by inflating/deflating the bal-
loon using water blaster manually. A silicone tube connects
the balloon to water blaster. The SHs (Fig. 2) are fixed on
the model surface (surface fiducials/markers). The balloon,
inside the bottle, contains different markers in size internally
(target markers) distributed in various locations and repli-
cates moving tumors along different movement directions
such as vertical, lateral or longitudinal.

Sensor holder

Several real-time movement prediction techniques apply
external surface sensors [6–8]. However, those sensors are
placed at discretionary locations and distributed empirically

using a fixed number of sensors for each patient that may be
sub-optimal for the real-time prediction accuracy [9].

The concept of the custom-made SH can improve the
real-time prediction accuracy in intraoperative phase by
optimizing the spatiotemporal distribution and alternating
number of surface markers to use for each patient and
multiple tumor movement prediction with respect to their
predictive power in the preoperative phase. The improved
SH design enables switching the tracking sensors while
maintaining the same sensor origin and provides off-line
prediction preoperatively using surface fiducials in SH and
the pre-trained predictors with magnetic tracking during the
intervention after the known relative transformation between
the surface fiducials and the inserted real-time tracker sensor.

The main component of the SH consists of a X-Spot
CT skin fiducial (Beekley Medical, Bristol-CT), centered in
a sensor attachment point. During the preoperative phase,
≈10–25 of these main SHs are fixed on the patient’s surface
at randomized candidate locations according to the interested
body region. In the intraoperative phase, the main SH holds
an magnetic sensor holder (EM-SH) within a tracking sensor
(NDIAurora, 40Hzmeasurement rate, NorthernDigital Inc.,
Canada) concentrically. The SHs provide user error-free rigid
body image-to-patient registration [10], and therefore, more
accurate real-time motion prediction can be achieved. A 6D
sensor was used as a dynamic reference frame (DRF) for the
registration. The SH design allows both automated localiza-
tion in 4D-CT patient images and during real-time motion
tracking. A fully automated registration process eliminates
possible user errors and allows high-accuracy registrations
potentially with submillimetric errors on the target.

Rhinospider

Rhinospider (RS) is a novel registration technique used in
combination with magnetic tracking to determine the accu-
rate fiducial localization and optimize the workflow for
patient-to-image registration [11]. In this work, a RS ball was
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Fig. 2 Left: (a) Main part of SH. (b) A X-Spot CT marker placed in
the main part concentrically. (c) Two M2 screws are applied from both
directions to establish a rigid setup once an EM-SH is placed in the
main SH. (d) The EM-SH holds the tracking sensor perpendicular to
CTmarker and plugged into the main part, so that the offset (e) between
sensor and CT marker center is determined. (f) 5D tracking sensor is
fixed in the EM-SH concentrically. Right: SHwith anEM-SH and track-
ing sensor shown in cm. The parts (a) and (b) are intended to use for
off-line prediction after image acquisition and all together in intraoper-
ative real-time prediction. The SHs are distributed homogeneously on
the surface with ≈ 3 cm distance

Fig. 3 Left: RS ball within sensor placed in the phantom model. Right:
Original RS device design, inserted in the posterior nasal cavity pre-
operatively. The sensor tip is shifted along the ball for better visibility.
Both shown in cm

used for the validation of the real-time prediction to deter-
mine the correctness of prediction accuracy and identify the
positional deviations between the tumor (predicted RS ball
center) and the center of tracked 5D sensor in the ball. In the
RS ball, a 5D sensor was attached (both centroids of the RS
ball and sensor are matching) (Fig. 1, right and Fig. 3, right)
and placed inside of the phantom model before 4D-CT scan
(Fig. 3 left). The RS ball was detected and localized in CT
image space automatically same as other CT skin/internal
markers in the model.

respiTrack software

A plugin-based prototype software system (respiTrack) fea-
turing preoperative planning (off-line prediction), intraopera-
tive registration, surgical navigation and real-time prediction

was developed. All the required modules [12] were imple-
mented using open-source libraries [13–18].

Workflow

The individual steps (Fig. 4) in respiTrack describe the
performed procedures from preoperative until postoperative
phase consecutively.

Data acquisition

For the 4D-CT, a scanner (cardiac scan with SOMATOM
Definition Flash; temporal resolution 75 ms; scan time 0.6 s;
Siemens healthineers, Austria) at the University Clinic for
Radiology in Medical University of Innsbruck was used.

The phantom model with 20 SHs within 7 targets was
placed into the CT gantry and held at fully inhaled position
by adjusting air in the balloon. (position 1 in Fig. 5). In total,
≈10–15 CT scans with discrete time steps of a half breathing
cycle were acquired. Before each scan, the air in the balloon
was decreased by moving the handle of the water blaster
to the next marked position until fully exhaled position was
reached. The distance between each marked positions on the
handle is 2 cm.

The slice thickness for each CT image (512 × 512 px)
was 1.0 mm, and the 12 discrete CT phases consist of 303
images with 0.488 × 0.488 × 0.488 mm pixel spacing. The
4D-CT scan was loaded into the respiTrack software and
visualized as standard DICOM view (axial, sagittal, coronal
and multiplanar) (Fig. 6).

Marker detection and localization

The automatic localization of the surface and target markers
was performed using aGPUaccelerated volumetric detection
method [19] that uses morphological opening and closing
operators.

To determine the marker centroids, each 4D-CT image set
was loaded into the respiTrack and thresholded with given
Hounsfield unit parameter that binarizes the images.Avirtual
structuring sphere element with given physical dimensions
and appropriate scale given the voxel size of the image, was
generated and applied to the images. A geometry filter selects
best candidates based on the shape and size on the determined
spherical blobs and calculates the 3D positional centroids in
CT image space.

The detectedmarker locations for each 4D-CT phase were
exported (input and target data) and used for training data
during prediction. The observations represent the respiratory
cycle of the patient and the 3D temporospatial movement
variance of all surface and target markers for a half breathing
cycle in 12 discrete time steps (Table 1). The most marker
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Fig. 4 respiTrack workflow

Fig. 5 Visualization of the handle

movement amplitude was observed in z image plane (SI-
superior/inferior), while less movements were observed in y
(AP-anterior/posterior) and x planes (LR-left/right), respec-
tively. The total movements assure consequently that internal
marker movements are replicating very similar respiratory
organ motions with internal organs of a human body, such
as heart, lung, liver, trachea, prostate and spine [20–23]. The
temporospatial movements of surface markers behave sim-
ilar to target marker movements. Maximum movement in
the AP plane was observed for Marker 9 (−18.25 mm) and
minimum for marker 15 (1.20 mm). In SI plane, maximum
was observed for marker 6 (1.01 mm) and minimum for
13 (0.02 mm), while in LR plane, maximum movement for
marker 10 (2.83 mm) and minimum for 20 (0.26 mm).

Respiratory motion prediction and optimization

On the basis of known spatial coordinates of surface and
target markers in 4D-CT image space, the optimal number
of sensors to be used for desired single or multiple tumors
and their best possible sensor locations to be placed on
the patient’s surface were determined in off-line prediction
phase. This optimization process eliminates one of the major
error sources for the prediction accuracy as configurable for

each tumor and patient individually. During real-time pre-
diction, the 5D sensors were applied in the corresponding
SHs recommended by off-line prediction and tracked while
patient is breathing freely.

Off-line prediction

The exported spatial coordinates of both marker locations in
4D-CT reference frame (k time-series, eachwith T time steps
and 3D output dimensions in x, y, z yields the time-series
p ∈ RT×3) were used to determine the optimal surface sen-
sor locations preoperatively by using multi-objective genetic
algorithm (GA)-based feature selection method [24,25],
which trains an accurate prediction of tumor motion from
few optimally positioned SHs.

An individual I in total population (possible solution in
metaheuristic search) during the GA search is represented by
a chromosome of a k-dimensional binary vector I = {0, 1}k ,
where the nth bit (gene) in chromosome represents whether
the nth SH marker is used for prediction 1 or not 0.

If a SH marker is selected to use, its 3D positional coor-
dinates within the CT reference frame are added to the
input coordinate set used for prediction. This yields 3 × M-
dimensional input feature for each time step, where M is the
number of enabled markers within the individual. For each
I , the fitness function is defined by multi-objective function
F(I ) = (F1(I ), S(I )). The primary component is given by
the weighted sum:

F1(I ) = E(I ) + α ∗ min(0, S(I ) − K ),
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Fig. 6 Top: 3D positions of the
surface and target marker
centroids were detected and
localized automatically and
managed in a fiducial list for
each 4D-CT phase, respectively.
20 green spheres on the images
show the localized and accepted
surface markers and blues,
candidate target markers to be
accepted. Bottom: Enlarged CT
views of detected RS ball. It is
clearly visible that the crosshair
(indicates the localization
position) is located in the center
of the ball

Table 1 3D temporospatial
movement variations of the
internal target markers
(centroids) during 4D-CT
imaging in mm

Target 1 2 3 4 5 6 RS1

LR 4.00 − 1.91 1.00 0.14 0.51 0.29 7.75

AP − 3.67 1.71 0.10 − 3.65 − 11.25 − 6.67 −9.56

SI 11.04 − 4.39 − 0.18 0.01 0.54 9.82 11.35

where E(I ) is the average RMS error between the predicted
and target locations using X as the input feature set over
a threefold cross-validation on the T time steps, S(I ) is
the number of features enabled, K is the maximum pre-
ferred number of enabled surface markers, and α is a scaling
parameter, which balances the trade-off between additional
prediction error and the number of enabledmarker. This setup
leads to an optimization goal of finding the minimum achiev-
able prediction errorwith as fewmarker as possible, but softly
punishing configurations that havemore than K enabled sen-
sors. The GA in respiTrack was configured with generation
size 60 (termination criteria), population size 600, crossover
proba 0.5, mutation proba 0.2, cv independent proba 0.5 and
mu independent proba 0.05.

For each I , the predictions were evaluated using 3 Gaus-
sian process regressors (GPR) (Gi : X → ti , i = 1, 2, 3)
for each coordinate of the target y, with kernel C ∗ SE + W
where C is constant kernel σ 2, SE is squared exponential

σ 2 exp
(
− (x,x ′)2

2l2

)
, and W is white noise kernel σ 2ln [26].

TheC kernelwas configuredwith variance 1.0 and bounds
(1e−3, 1e3), while SE kernel with length scale 10.0, bounds
(1e − 2, 1e2) and W kernel with noise variance 0.1 and
bounds (1e − 10, 1e + 0.5). The GPR was configured with
normalized target-datamean valuewithout an optimizer. Off-

line prediction was repeated ten times for each individual
target y, respectively, that gave same recommendation SH
list after each run.

Real-time prediction

The intraoperative image-to-patient registration was estab-
lished, while 50 sensor location readings (relative to DRF)
were averaged for every attached single sensor (dependent
on the number of recommended sensor list S(I ) for an indi-
vidual target y) and patient maintains a fixed position relative
to the field generator with or without breath held. The com-
bined sensors and SHmarker coordinates were matched Tt ,p
to find the minimum registration error (FRE) [27].

During real-time prediction, each observed sensor read-
ings Li ∈ S(I ) were transformed from tracker to image
coordinate system proposed to use as test data Tp,r in GPR

by (
−→
V Li (x,y,z,1))

T ∗ R, where
−→
V was a 1×4 vector for each

individual sensor coordinate in tracker coordinate space and
R is a 4 × 4 matrix observed through rigid-body registra-
tion (Fig. 7). The GPR was applied with the same kernel and
input-data L ∈ X to a desired target y with read real-time
test data Li .
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Fig. 7 Built transformation chain in respiTrack

Evaluation

Experimental setup

For each target, the recommended number of SHs and their
identified locations were used, respectively. The patient was
then positioned in the FOV of tracker, and real-time sensor
data (test data) were observed. The prediction accuracy was
validated using RS ball within located sensor, which was
intended to use as a tracked target marker (Target RS1 in all
tables).

Evaluation procedure

Two different validation methods were applied. In statical
method, the prediction for a selected target was determined
in different three fixed positions by reading test data without
simulating any breathing. For this, the following steps were
executed:

1. Load first patient dataset into respiTrack (4D-CT scan in
fully inhaled position) (Fig. 8, top).

2. Fill air in the model until marked position on the handle
regarding number of loaded dataset and perform patient-
to-image registration.

3. Perform real-time prediction for all targets, respectively,
while holding the handle on the fixed position without
changing the air in the model.

4. Repeat same experiment for half inhaled (6th) and fully
exhaled (12th) dataset.

In dynamical method, the prediction was determined with
the same steps (except 3) above while changing the amount
of air in the patient between handle positions 1 and 12
repetitively (Fig. 8, bottom). The operator was synchro-
nizing his/her relaxed breathing cycle while simulating the
inhalation and exhalation with the patient. Each validation
procedure was repeated five times, and standard devia-
tion (SD) for each run was calculated. The correctness of
prediction accuracy was determined for target RS1 while

comparing the predicted and real-time sensor reading posi-
tions (Table 6). For each validation step, 100 predictionswere
accomplished that took ≈ 1 min. Each individual prediction
took 0.62 s. The registrations were established on the three
different marked positions, which were not showing any sig-
nificant influence on registration accuracy but on prediction
accuracy (See prediction RMS columns “Reg. at 6th pos.” in
Tables 3 and 5). Test data were observed during simulated
breathing.

Results

Various external surface markers were discovered to pre-
dict temporospatial movements of 7 internal targets from
best possible SH locations. The resulting number of SHs
was decided by the feature selection algorithm from 20 SHs
in total, distributed on the patient’s surface, and predictions
were performed by the heuristic GPR algorithm. The best
prediction accuracy was observed by combined kernels with
their generalization properties. Tables 2 and 3 represent the
resulting off-line and real-time prediction accuracy for each
target in the phantom.Each inputmarker in the recommended
SH list was processed with an individual target, respectively.

Leave-one-out cross-validation procedure (LOO) [28]
was applied to validate off-line prediction from both input
and target marker positions Nx(L ∗ D), respectively, where
N is the total number of 4D-CT phases, L is the total number
of recommended SHs, and D is the dimension of the data.
The training of the predictor was performed on N−1xDth of
the NxD input data, and the predictionwas tested on remain-
ing N th test data for an individual target y. This process was
repeated N times each time leaving out a different pair to use
as the single test case.

Instead of recommended SHs, randomly selected SH loca-
tions were used to cross-validate the results and to investigate
different location of SHs on the accuracy effect between the
motions of SHs and a target under various registration pat-
terns (Tables 4 and 5).

Discussion and conclusions

In this paper, we proposed a real-time respiratory motion
prediction system that uses surface sensors to predict inter-
nal tumor motions (Fig. 9). For magnetic tracking, provided
nondisposable SH concept ensures user error-free regis-
tration and uninterrupted data flow without line-of-side
limitations. Automatically identifying best possible sensor
locations on the patient’s surface preoperatively that shows
the distribution of recommended sensor locations having a
high correlation between the surface motion and the internal
tumormotion, provides better target accuracyusing less num-
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Fig. 8 Visualizations of statical
(top) and dynamical (bottom)
evaluation patterns

Table 2 Off-line prediction results associated with proposed LOO

Target Optimal sensor number Recommended SHs Kernel Data LOO Mean RMS

1 4 1–7–15–16 C ∗ SE + W Nx(L ∗ D) 0.085

2 6 7–12–16–17–19–20 0.146

3 5 6–8–12–14–16 0.072

4 4 4–8–17–18 0.067

5 4 1–2–5–13 0.093

6 5 3–6–8–16–18 0.41

RS1 3 8–11–12 0.207

The RMSs in mm show the deviations in each time step when using the recommended SH list

Fig. 9 Visualization of the
prediction for target 1. Green
line indicates prediction, red
dotted line: measured positions
of target marker in the first
4D-CT phase, blue dotted line:
movement of the recommended
marker group (1–7–15–16) at 14
different time steps
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Table 4 Off-line prediction results with randomly selected SH/s than recommended by GA

Target Optimal sensor number Random SHs Kernel Data LOO Mean RMS

1 4 2–5–10–12 C ∗ SE + W Nx(L ∗ D) 0.157

2 6 1–3–5–11–12–15 0.154

3 5 2–3–7–16–20 0.080

4 4 3–7–15–18 0.72

5 4 3–7–15–18 0.106

6 5 1–3–4–17–20 0.174

RS1 3 8–13–17 0.235

The results are clearly showing that recommended SHs locations provide better accuracy

Table 5 Real-time prediction results using randomly selected SHs in mm. Dynamical validation was not necessary since the statical validation
results already show better prediction accuracy (Table 3)

Target Random SHs Pred. size Data Mean Reg. RMS Statical validation

Reg. at 1st pos. Reg. at 6th pos. Reg. at 12’th pos.

Pred. RMS Pred. RMS Pred. RMS Mean RMS

1 2–5–10–12 3000 Lx(R ∗ D) 0.6 ± 0.4 4.16 2.17 3.79 3.37 ± 1.12

2 1–3–5–11–12–15 1.19 1.01 2.10 1.43 ± 0.34

3 2–3–7–16–20 4.31 3.47 3.76 3.84 ± 0.18

4 3–7–15–18 1.18 0.69 1.41 1.09 ± 0.13

5 3–7–15–18 3.21 1.98 3.94 3.04 ± 0.98

6 1–3–4–17–20 4.03 2.73 5.85 4.20 ± 2.45

RS1 8–13–17 3.84 2.11 5.21 3.72 ± 2.41

Table 6 Measured 3D deviations between predicted and read sensor
data for target RS1 in Table 3 with overall ±0.05 mm SD that occurs
due to time-variant expansion of the balloon

Target RS1 Pred. size Variance

LR 0.29

AP 500 0.17

SI 0.29

bers of external sensors to use, e.g., in the thorax or abdominal
regions in intraoperative phase. In particular, enabling free
breathing for the patient during treatments and multiple
tumor prediction without additional workload on the med-
ical staff, enhance common workflows in such treatments.

Our internal tests with the system serve reliable predic-
tion accuracy and show a promising potential to be used in
SABR and SBRT treatments or tumor and biopsy surgeries.
The system overcomes many of the limitations of common
clinical approaches and can be integrated into the existing
clinical workflows in the medical environment.

More rigid respiratory system designs (due to temporal
expansion of the balloon’s volume, Table 6) could further
reduce the registration and prediction errors. Further prelim-
inary clinical trial with patients is planned and under way;

due to the complexity of the trials, it is foreseen to be pub-
lished separately.
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