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ABSTRACT

Chromatin immunoprecipitation followed by high-
throughput sequencing (ChIP-seq) allows research-
ers to determine the genome-wide binding locations
of individual transcription factors (TFs) at high reso-
lution. This information can be interrogated to
study various aspects of TF behaviour, including
the mechanisms that control TF binding. Physical
interaction between TFs comprises one important
aspect of TF binding in eukaryotes, mediating
tissue-specific gene expression. We have developed
an algorithm, spaced motif analysis (SpaMo), which
is able to infer physical interactions between the
given TF and TFs bound at neighbouring sites at
the DNA interface. The algorithm predicts TF inter-
actions in half of the ChIP-seq data sets we test,
with the majority of these predictions supported by
direct evidence from the literature or evidence of
homodimerization. High resolution motif spacing in-
formation obtained by this method can facilitate an
improved understanding of individual TF complex
structures. SpaMo can assist researchers in extract-
ing maximum information relating to binding mech-
anisms from their TF ChIP-seq data. SpaMo is
available for download and interactive use as part
of the MEME Suite (http://meme.nbcr.net).

INTRODUCTION

Chromatin immunoprecipitation (ChIP) followed by
high-throughput sequencing (ChIP-seq) has proven to be
a powerful and high-resolution method for mapping the
in vivo locations of individual transcription factors (TF)
proteins, genome-wide in higher eukaryotes (1). In the
ChIP methodology, DNA is first covalently cross-linked
to bound proteins in a specific tissue. The cross-linked

DNA is next broken into small fragments. An antibody
for the TF of interest is then used to isolate the population
of DNA bound to the feature. High-throughput
sequencing of short tags from the resulting DNA popula-
tion, followed by mapping to a reference genome allows
the original genomic binding locations of the TF to be
inferred.
Computational analysis is necessary in order to extract

biologically relevant information from a transcription
factor’s ChIP-seq data. Previous TF ChIP-seq studies
have employed several common analytical steps.
Although the extent of DNA binding by a TF is, in fact,
a continuous variable, defining a set of discrete binding
regions simplifies subsequent analyses and is therefore a
common preliminary step. Once a set of binding regions
have been declared, existing computational tools can be
employed to investigate the mechanisms by which the TFs
bind at those genomic loci.
Some TFs directly interact with DNA via DNA-binding

domains (DBDs), with sequence specificity of binding
determined by the structure of the DBD. A TF ‘motif’
models the sequence specificity of the TF’s DBD. Given
a set of binding regions determined by ChIP-seq, ab initio
motif discovery tools such as MEME (2) and GLAM (3)
can discover the motif corresponding to the TF’s DBD,
while sometimes identifying additional motifs correspond-
ing to co-regulatory TFs. Motif enrichment analysis tools
such as Clover (4) and PASTAA (5) can identify motifs for
co-regulatory TFs with increased sensitivity, by consider-
ing a restricted set of TF motifs hypothesised to be
enriched in the peak regions.
Many TFs physically interact with specific partner TFs

when binding to genomic DNA (6,7). These combinatorial
interactions are critical to TF biology, as they provide a
means by which the cell can integrate diverse signals (8), as
well as increasing the sensitivity of transcriptional rates to
TF concentration, and allowing non-functional random
occurrences of individual motifs to be left unbound (9).
Protein–protein interactions between TFs can occur
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directly, yielding dimers, such FOS/JUN (10) and MYC/
MAX (11). Alternatively, interactions between TFs
can occur via intermediate bridging proteins, resulting
in a DNA-binding complex of multiple TFs, such as
GATA-1/SCL/E47/Ldb1 (12). In both cases, spacing of
motifs for the DNA-binding TFs is often inflexible, as
addition or removal of base pairs disrupts the protein–
protein interactions between the TFs (6).
Existing motif analysis tools do not harness the know-

ledge that spacing of motifs is often tightly restricted in
TF complexes. Unlike existing motif enrichment analysis
tools, SpaMo detects enrichment of motif spacings rather
than enrichment of motif occurrences. By employing this
approach, SpaMo is able to detect TF complexes from
ChIP-seq data with a high positive predictive value.
The resulting high resolution information can facilitate
prediction of 3D complexes, given X-ray crystal structures
of the component TFs. We demonstrate this on 39 prior
ChIP-seq data sets, successfully inferring known TF
complexes as well as identifying high-confidence novel
TF complexes.

MATERIALS AND METHODS

Input data sets

Sequence data sets. We use 39 human and mouse
ChIP-seq datasets derived from 7 prior publications and
the ENCODE project (13). The complete list of data sets is
given in Supplementary Table S1. We process each input
ChIP-seq data set in preparation for running SpaMo.
For each ChIP-seq peak declared in a given data set, we
extract 500 bp of DNA sequence centred on the centre of
the declared peak. We use the UCSC table browser tool
(14) to extract genomic sequences.
Our null model assumes the sequences corresponding

to ChIP-seq peaks are independent, so it is important
to remove homologous sequences and repeat regions.
Therefore, we filter out highly similar sequences, and we
use repeat masking (http://www.repeatmasker.org) to
convert repeat regions to the information-less character
‘N’. To remove similar sequences from a data set,
we align the sequences (without gaps) on the primary
motif occurrence and randomly remove a sequence that is
Hamming distance 150 or less from some other sequence.
We repeat this until no sequence can be removed.

Primary motifs. We assign primary motifs to the input
ChIP-seq data sets as shown in Supplementary Table S1.

Secondary motif database. Input secondary motifs include
all motifs from the JASPAR CORE (15) and Uniprobe
(16) databases, supplemented with custom motifs, as
described in Supplementary Table S4. This database
contains 645 motifs.
We trim all motifs to eliminate low information content

(IC; see definition below) flanking columns prior to
running SpaMo. We remove all columns with IC� 0.25
bits from both sides of the motif. Failure to trim low
IC flanking columns can result in significant spacings
not being detected (Supplementary Figure S3).

The IC of an individual column in a motif is defined as:

IC ¼
X4

i¼1

pi � log2ð4� piÞ ¼ 2þ
X4

i¼1

pi � log2ð piÞ;

where pi is the probability of observing the i-th letter in the
given column under the motif model, and the i-th letter is
specified by element i in the array [A, C, G, T].

Identifying locations of primary and secondary motifs

FIMO (2) is used to perform motif scans. The best match
to a motif of length w in a given double-stranded sequence
is defined as the position and strand that yields the highest
log-likelihood ratio (LLR), considering all possible
substrings of length w in either strand of the sequence.
Ties are broken by randomly choosing a single match
from all equal best matches.

The LLR of a given genomic position Q is defined as:

LLR ¼ log2
PrðQjmotifÞ

PrðQjbgÞ
;

where motif is the motif model of binding, and bg is
a zero-order background Markov model of the DNA.
A single background model is compiled using all the se-
quences in given input sequence data set.

The primary motif scan excludes 150 bp at either end of
each 500 bp input sequence. The secondary motif scan is
performed over the 300 bp region centred on the primary
motif, and excludes all positions overlapping any part of
the primary motif occurrence. Thus, the ‘trimmed’ length
of the sequences is 300 bp plus the width of the primary
motif.

Sequences with a maximum primary or secondary LLR
less than a specified bit threshold are discarded. In the case
of the primary motif, the rationale is that such sequences
may not have bound the TF of interest directly. In
the case of the secondary motif, discarding sequences
reduces noise in the statistical analysis. We used a score
threshold of 7 bits for all analyses, except for analysis of
the E2F1 ChIP-seq input data set. In the case of the E2F1
ChIP-seq input data, we applied a less strict threshold of
4 bits, as no statistically significant results were obtained
using a threshold of 7 bits for this data set.

The distance, D, between the best primary and sec-
ondary motif occurrences is defined as the number of
nucleotides occurring between the closest edge of the
primary motif and the closest edge of the secondary
motif. The offset, f, between the primary and secondary
motifs is defined as f=�(D+1) if the secondary motif
occurs 50 of the primary motif, and f=(D+1) otherwise
(Supplementary Figure S1).

Assessing the significance of motif spacings

The displacement of a given secondary motif site is written
as d=(s, f ), where s 2 {same, opposite} is the strand of
the secondary site, and f2 [�r, . . . ,�1, +1, . . . ,+r] is the
offset of the secondary site.
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r is given by:

r ¼
m� wp

2
� ws;

where, m is the length of trimmed sequences, following
centering on the primary motif, ws is the width of the
secondary motif and wp is the width of the primary
motif (Supplementary Figure S2).

We assume that every value of d is equally probable
under the null hypothesis of no spatial relationship
between the motifs. Therefore, the probability of a given
displacement value is 1

4r under the null model. For an
interval of integer size x, we define the probability of a
single sequence having observed spacing contained in the
given interval as:

q ¼ Prðd 2 intervalÞ ¼
x

4r

Therefore, if there is no spatial relationship between
the given primary and secondary motifs, the number of se-
quences, s, with observed displacements in a given interval
should follow a binomial distribution Bin(s,N, q), where s
is the number of successes, N is the number of trials, and q
is the probability of success. The number of trials, N, is
the total number of filtered sequences yielding a second-
ary–primary motif displacement value. Hence, we use
the cumulative distribution function for Bin(s, N, q) to
calculate the probability of observing a displacement
value in the given interval for s or more sequences by
chance. The resulting value is an uncorrected P-value for
the given interval. When applying the algorithm to our
input data sets, we consider only intervals of size 1,
although SpaMo can also consider larger intervals.

Multiple-testing correction

To reduce the number of independent tests (and, hence, to
improve our ability to detect significant results), we only
test spacing enrichment for each integer displacement
value in the range [�20, +20], ignoring any enrichment
in the rest of the potential range, [�r, . . . ,�1,+1, . . . ,+r].
For each primary–secondary motif pair, we independently
test for enrichment where the motifs are on the same
or opposite DNA strands, resulting in a total of
40� 2=80 separate binomial tests. Therefore, we
perform a Bonferroni correction to correct for the 80
separate intervals tested and the 645 secondary motifs
considered. Thus, motif spacing P-values we report are
the binomial P-values multiplied by 51 600.

Redundancy reduction

Many motifs included in the secondary motif input
database are similar, and hence yield highly similar
results. To facilitate easier interpretation of the output
data, we perform a redundancy reduction on the output
for each ChIP-seq data set.

To determine the degree of similarity between results
obtained for two secondary motifs, we measure the
overlap in the sequences exhibiting significant enrichment,
instead of measuring similarity between the motifs

themselves. We define the fractional overlap fij, between
the results yielded by secondary motifs i and j as:

fij ¼
jsij
T
jsjj

minðjsij; jsjjÞ

Here, sx is the set of sequences whose secondary–primary
motif displacement value shows statistically significant
enrichment and vertical bars are the set-size operator.
For each secondary motif with at least one interval

enrichment P< 0.05, the lowest P-value for that motif is
identified among the 80 intervals tested. We refer to this
value as the ‘best P-value’. Secondary motifs are sorted
according to their best P-value. Then, proceeding from the
secondary motif with the most significant best P-value to
the secondary motif with the least significant best P-value
(which is still <0.05), for each secondary motif i we con-
sider each motif j with best P-value greater than that of
motif i. We calculate fij between the two motifs, and if fij
exceeds 0.25, then we mark motif j as being redundant
with motif i. We then only report results for secondary
motifs that are found to be non-redundant (i.e. have a
more significant best P-value than all motifs with signifi-
cant fractional overlap).

TF complex structure prediction

We manually performed superimposition of structures
using PyMOL (17). The simulated sequence structure
was generated using the Nucleic Acids Builder tool, with
default parameters (18). We visualized the resulting struc-
ture by hiding all atoms in the original DNA structures.

RESULTS

The SpaMo algorithm

SpaMo analyses the genomic DNA sequences of a set
of TF binding site loci estimated by ChIP-seq for a
given TF. The algorithm attempts to identify enriched
motif spacing patterns indicative of specific transcription
factor complexes.
Inputs to the algorithm comprise a set of DNA se-

quences corresponding to the genomic regions bound by
a specific TF, a primary motif that describes the DNA
binding specificity of that transcription factor and a
database of secondary motifs. SpaMo uses the primary
motif to predict the exact location of a binding in each
ChIP-seq peak region. For each secondary motif, SpaMo
tests the hypothesis that there is enriched spacing of pre-
dicted binding sites with respect to the primary motif sites.
An individual test corresponds to the following question:
‘Does TF A tend to bind DNA at a fixed distance from TF
B?’. If the answer is ‘yes’, it suggests that A is likely to
form a complex with B.
SpaMo uses motifs defined as position weight matrices

(19), but could easily be adapted to used lookup-table
based motifs derived from protein-binding microarrays
(20). SpaMo scans each of the input sequences with the
primary motif and finds the best match (‘hit’) to the motif
in each sequence as defined by position-weight ma-
trix score. Each sequence is then trimmed to identical
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length, centred on the primary motif occurrence (Step 1,
Figure 1). For each secondary motif, SpaMo finds the
strongest secondary motif hit, and calculates the displace-
ment from the secondary motif hit to the primary motif
hit (Step 2, Figure 1). With motif hits defined in this way,
a reasonable null model for the distance between the
primary and secondary hits in a single sequence is the
uniform distribution.
Each interval of displacements in a user-specified range

is tested to determine whether the observed number of
sequences with displacements in that range exceeds the
number expected by chance. Under the assumption of a
uniform distribution of secondary–primary displacements,
the expected number of sequences with displacements
scoring in a given interval should follow a binomial
distribution. Thus, SpaMo uses a binomial test to assess
significance for each interval of interest. A Bonferroni cor-
rection is then applied to each P-value, to correct for both
the number of intervals and the number of secondary
motifs considered.
SpaMo produces two histograms of secondary–primary

motif site displacements: one for sequences where the
primary and secondary motifs occur on the same strand,
and a separate histogram for sequences where the motifs
occur on opposite strands (Figure 1). Each histogram

displays motif site displacement, indicating whether
the secondary motif site is upstream or downstream of
the primary motif site. Visualizing the resulting four
categories of displacement (same strand/opposite strand,
upstream/downstream) separately is of practical import-
ance, as they correspond to distinct physical placements of
the corresponding TFs.

Evaluating performance of SpaMo

We evaluated the performance of SpaMo on 39 human
and mouse ChIP-seq data sets. These data sets were
derived from seven prior publications and the ENCODE
project (13). For the c-Fos ChIP-seq (comprising two
data sets), we performed the analysis twice, using two
distinct primary motifs. Thus, we performed a total of
41 analyses (Supplementary Table S1). The complete set
of 87 significant motif spacing results at P-value threshold
of 0.01 are provided (Supplementary Table S3).

We examined our strongest predictions (P< 0.001) to
estimate what fraction represent true in vivo complex for-
mation. In 20 of our 41 analyses, at least one significant
spacing was detected at this more stringent P-value thresh-
old. To validate our approach, we evaluated the single
most statistically significant result for each input data set

Figure 1. Algorithm procedure and output. Step 1. The strongest match to the specified primary motif is identified in each ChIP-seq peak region
genomic sequence. Each sequence is centred on the motif occurrence and trimmed to a consistent length. Step 2. A library of secondary motifs is
considered. For a given secondary motif, the processed sequences are scanned to identify the strongest match in each sequence, and the displacements
from the primary hit to the secondary hit are recorded. Output. Same-strand and opposite-strand histograms are produced. For the example output
shown, the primary and secondary motifs are Gata6 and Ebox, respectively, and the input ChIP-seq data set is human GATA1 in the K562 cell line.
The same-strand displacement histogram indicates a clear enrichment of sequences with a secondary–primary displacement of �8 bp.
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using primary–secondary motif similarity and literature
evidence, as described below.

SpaMo identifies secondary motifs that exhibit enriched
spacing with respect to the specified primary motif. Many
TFs have paralogs sharing the same DBD and hence the
same DNA-binding specificity. For example, there are
17 known KLF family members in mammals, as defined
by the presence of a DBD consisting of three highly
conserved Cys2His2 zinc fingers, which bind to a
CACC-box motif (21). Since multiple TFs can bind to
the same motif, knowledge of relevant TFs in an individ-
ual system must be applied in order to identify the
TF corresponding to an observed secondary motif
spacing enrichment. Therefore, in order to evaluate our
results, we have manually assigned a likely TF to each
spatially enriched secondary motif where possible. In
some cases, we were unable to assign a likely binding
partner corresponding to the given secondary motif
(Table 1, ‘?’ in ‘Likely Partner’ column). This is
expected, as many TFs currently have no binding motif.

We searched prior publications for evidence of forma-
tion of a complex involving the primary and secondary
TFs each of the top 20 results. Ten of the top 20 results
are supported by prior publications (Table 1). These
studies employed X-ray crystallography, electrophoretic
mobility shift assays (EMSAs), immunoprecipitation,
yeast two-hybrid and luciferase assays to demonstrate for-
mation of complexes involving our predicted TF pairs
(Supplementary Table S2). In addition to the 10 predic-
tions with clear support for complex formation in the lit-
erature, we found partial support for our prediction of a

complex involving JUND and IRF4. Specifically, IRF4
interacts with both PU.1 (30) and NFAT (31), which are
also binding partners of the Jund/c-Fos heterodimer,
AP-1, suggesting that our predicted interaction between
JUND and IRF4 is plausible.
For five of our top 20 results (Table 1, ‘S’ in ‘Evid.’

column), the primary and secondary motifs are highly
similar or identical. High similarity between the primary
and secondary motifs is unlikely to occur by chance.
Instead, a likely explanation is homodimer formation,
whereby two copies of a TF bind to each other to form
a ternary complex with the DNA.
A total of 13 of the top 20 TF complex predictions

made by SpaMo are supported by either literature
evidence or primary–secondary motif similarity, yielding
an estimate of 65% for positive predictive value. The very
signficant P-values of the remaining seven top predictions
(including the JUND/IRF4 interaction) suggest that they
are also likely to be relevant to the given TF’s binding
mechanism. In particular, the interactions predicted by
SpaMo between TFs Stat1 and YY1, and between
Gabp1 and Fhl1, are very high confidence (P-values of
1.52� 10�29 and 7.95� 10�28, respectively). We, there-
fore, estimate that SpaMo can yield predictions for
about half input ChIP-seq data sets, with the majority of
such predictions likely to be correct.

Biological interpretation of motif spacing classes

Biologically relevant distinctions are apparent among
the observed motif spacings. Meaningful classes can be
derived by considering the degree of similarity between

Table 1. Positive predictive value of top predictions

TF/tissue Primary motif Secondary motif Likely partner Lowest P-value Evid.

Esrrb/ESC C Esrrb C Esrrb Esrrb 4.23� 10�56 S (22)
STAT1/HeLa Stim. C Stat3 J YY1 YY1 1.52� 10�29

GABP/Jurkat U Gabpa i U Fhl1 ? 7.95� 10�28

cFos/Gm12878 C NFYA J NFYA C/EBP 2.87� 10�23 S (23)
cFos/K562 C NFYA U Cbf1 b ? 8.62� 10�21

Jund/Gm12878 U Jundm2 ii U Irf4 i Irf4 2.02� 10�16

GATA1/K562b U Gata6 i C Ebox SCL 2.76� 10�16 (12)
cJun/K562 U Jundm2 ii J SPIB PU.1 3.49� 10�16 (24)
cFos/K562 U Jundm2 ii J SPIB PU.1 9.24� 10�14 (24)
Tcfcp2l1/ESC C Tcfcp2l1 C Tcfcp2l1 Tcfcp2l1 9.24� 10�14 S
GATA1/G1EER4 U Gata6 i U Ascl2 i SCL 1.32� 10�10 (12)
STAT1/HeLa Stim. C Stat3 J YY1 YY1 9.70� 10�10

Srebp1a/Hepg2 C Srebp U Rsc30 ? 3.58� 10�8

Klf4/ESC U Klf7 i U Zfp740 i Klf4 4.35� 10�7 S
Nfe2/K562 C Nfe2 U Jundm2 ii Nfe2 1.08� 10�5 S
cMyc/K562 J Mycn J bZIP910 ? 6.30� 10�5

Sox2/ESC C Oct4 U Sry ii Sox2 1.33� 10�4 (25)
Tcf4/Hct116 U Tcf3 i U Jundm2 ii c-Jun 3.12� 10�4 (26)
SRF/Jurkat U Srf i J ETS1 SAP-1 3.99� 10�4 (27)
E2F1/ESC J E2F1 J YY1 YY1 9.39� 10�4 (28)

For each input dataset that yielded one or more results at a P-value threshold of 0.001, the single most significant result is presented. In the first
column, the TF tissue and reference for the ChIP-seq data set is given. The ‘primary motif’ indicates the motif used during the first step of the
algorithm. The ‘secondary motif’ indicates the motif found to exhibit the significant spacing. Summary names are provided for both motifs, where ‘J’
indicates a JASPAR (15) motif, ‘U’ indicates a Uniprobe (16) motif, ‘C’ indicates a custom motif. Corresponding sequence logos (29) are shown
in Supplementary Table S4. The ‘Likely partner’ column indicates the TF that we manually assigned to the secondary motif, with ‘?’ indicating we
could not assign a likely partner. The P-value corresponds to the single most significant spacing interval. The ‘Evid.’ column states evidence
validating the given prediction, with references indicating literature confirmation, and ‘S’ indicating that the primary and secondary motifs are
highly similar.
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Table 2. Classes of motif spacing

Input Primary motif Secondary motif Same Disps Opp. Disps Sig. Interval Evid.

hg18 GATA1
K562b

–9, Same

U Gata6 i C Ebox

2.76 × 10−16
1

1.43 × 10−21
hg18 GABP
Jurkat

+1, Same

U Gabpa i U Sp4 i

2

U Gata6 i J Hand1::Tcfe2a

hg18 GATA1
K562b

–5, Same

7.02 × 10−13
1,3 #

hg18 cFos
K562

+6, Opp.

C NFYA U Cbf1 b

8.62 × 10−21

hg18 cFos
K562

–17, Opp.

C NFYA (rc) J NFYA

6.71 × 10−20
S

mm8 Esrrb
ESC

–4, Same

C Esrrb C Esrrb

4.23 × 10−56
S

In the first column, the genome assembly, TF, tissue and reference for the input ChIP-seq data set is given. For ‘Primary motif’ and
‘Secondary motif’ columns, the sequence logos and summary names are provided. Same strand and opposite strand displacement
histograms are shown in columns three and four. The X-axis of each histogram shows the motif displacement value. The Y-axis shows
the number of sequences that exhibited the given secondary–primary motif displacement value, and is scaled linearly with the origin
corresponding to zero. The ‘Sig. Interval’ specifies the displacement value and strand for the single most significant interval, with
‘Opp.’ indicating opposite strand. The corrected P-value of that interval is given. The ‘Evid.’ column is described in Table 1. ‘#’: the
cited studies demonstrate that GATA1 and Tcfe2a (Tcf3; E2A; E47) form at least two distinct DNA-binding complexes. While neither
of these complexes correspond to our predicted ‘U Gata6 i’/‘JHand1::Tcfe2a’ motif spacing, they do support our predicted association
between GATA1 and Tcfe2a. The reverse complement of the ‘C NFYA’ motif is shown in row 5 in order to exhibit similarity with the
secondary motif ‘J NFYA’. Literature evidence is as follows: 1=(12), 2=(34), 3=(35).
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the primary and secondary motifs, the breadth of intervals
enriched and the distance between the primary and
secondary motif sites.

We observed statistically significant motif spacings in
which the primary motif is dissimilar to the secondary
motif (Table 2, rows 1–4), and others in which the
primary motif is similar or identical to the secondary
motif (Table 2, rows 5 and 6). The distinction between
these two classes is biologically important, as TFs
can form homodimers comprising two occurrences of
the same TF, or they can form complexes involving
distinct TFs. Statistically significant spacings involving
highly similar primary and secondary motifs suggest
binding of homodimers in the ChIP-seq peak regions. In
contrast, spacings involving dissimilar primary and sec-
ondary motifs are potentially due to complexes involving
the TF of interest and one or more distinct TFs. We
detected a statistically significant (P< 0.01) spacing sug-
gestive of homodimer formation in 10 (24%) of 41
ChIP-seq data set analyses we performed.

We found some motif spacing enrichments occurred
over very tight intervals of 1–2 bp (Table 2, rows 1–4),
while others occurred over broader intervals (Table 2,
rows 5 and 6). The occurrence of tight motif spacing en-
richment can be parsimoniously explained by the binding
of TF complexes in the ChIP-seq regions. Previous work
on the MATa1/MATa2 TF complex showed that modify-
ing the distance between the respective binding motifs
abolishes binding of the complex (32). The fact that TF
complex formation requires highly specific motif spacing
explains the tight restriction of spacings observed in many
of the significant results. Of the 87 results obtained at
a P-value threshold of 0.01, the majority (84%) exhibit
tight spacing enrichment [exactly one displacement value
declared significant (Supplementary Figure S6)], which is
consistent with TF complex formation.

The relatively small number of results with broad
spacing enrichment could be due to the occurrence of
multiple adjacent but independent in vivo binding sites,
rather than adjacent cooperative sites. Clustering of inde-
pendent binding sites in some cases arises due to selection
for a specific response of transcriptional rate to TF con-
centration (33). However, the two example broad spacings
shown (Table 2, rows 5 and 6) are likely to indicate
complex formation, as narrow peaks are clear within the
broader intervals of enrichment. A periodicity is clear for
the broad NFYA-NFYA motif spacing enrichment
detected in the c-Fos data set. The periodicity is 10 bp in
length, which corresponds to approximately one turn of
the DNA double helix, suggesting that the orientation of
the two TFs relative to the DNA is important.

Most of the observed significant spacings involved a
small gap of <2 bp between the primary and secondary
motifs, while a minority of results showed larger gaps
(Supplementary Figure S4). Large gaps between the
primary and secondary motifs can indicate TF complexes
containing bridging molecules. For example, the
Gata-Ebox motif spacing shows a gap of 9 bp between
the two motifs (Table 2, row 1), consistent with previous
CASTing experiments (12). The relatively large gap of
9 bp is due to the formation of a multi-protein/DNA

complex in which GATA1 binds to a Gata motif, SCL
binds to an Ebox, while E47, Ldb1 and Lmo2 comprise
a molecular bridge between GATA1 and SCL. In contrast,
small gaps between the primary and secondary motifs
suggest dimer formation via direct protein–protein inter-
actions. For example, Gabpa and Sp1 are known to
interact directly (34), which corroborates our observation
that the Gabpa/Sp motif spacing involves no gap between
the two motifs (Table 2, row 2).

Identification of multiple partners for a single TF

SpaMo is capable of identifying more than one significant
and distinct secondary motif association for a given input
data set. For example, using the Rozowsky et al. (36)
Stat1 ChIP-seq data set as input, we identified 11 second-
ary motif interactions at a P-value threshold of 0.01
(Supplementary Table S3). The secondary motifs with
the five most statistically significant corrected P-values
are clearly distinct from one another (Table 3).
The observed distribution of the number of predicted

partners suggests that most TFs have very few inter-
actions, while a small fraction of transcription factors
(such as Stat1) possess a relatively large number of inter-
acting partners (Supplementary Figure S5). This might
change as more motifs become known. The GATA1,
c-Fos, GABP, Stat1 and Tcfcp2l1 input data sets all
yield two or more extremely high confidence, distinct sec-
ondary motif associations (Supplementary Table S3), and
are possible hub nodes in the network of physically inter-
acting TFs. It is noteworthy that we do not detect any
high-confidence predicted partners for STAT1 in unstimu-
lated HeLa cells. This is consistent with previous observa-
tions that interferon-gamma stimulation causes Janus
kinase (Jak) to phosphorylate the polymerization
domain of STAT proteins, enabling them to interact
with other proteins and bind DNA cooperatively (37).

Predicting 3D transcription factor complex structures

The detailed motif spacing information produced by
SpaMo can facilitate prediction of the 3D structure of
the corresponding TF complexes. For example, our
results show that GABP and CREB1 motifs are enriched
at a spacing of 1–2 bp on opposite strands. Based on this
information, we construct a model for the structure of
the GABP–CREB1–DNA ternary complex, using two
separate GABP and CREB1 TF X-ray crystal structures
from the Protein Data Bank (PDB) (38) (accessions
1AWC and 1DH3, respectively).
We used the Nucleic Acids Builder tool (18) to generate

an artificial structure for a double-stranded DNA
sequence consisting of the GABP consensus sequence
(50ACCGGAAGT30) followed by the reverse complement
of the CREB1 consensus sequence (50ACGTCAGCATG30),
in accordance with the spacing enrichment shown (Figure
2A). We aligned the DNA structures in the original X-ray
crystal structures with the corresponding regions of the
simulated DNA structure, by manually overlaying the
positions of the corresponding nucleotides in the two
structures. The resulting predicted ternary GABP/
CREB1/DNA complex contains no major steric
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hindrances between the GABP and CREB1 proteins,
although the protein structures are located close to each
other in the model. The model predicts two interactions
between the proteins, with CREB1 contacting both the
GABPa and GABPb subunits of the GABP protein.
First, the N-terminus of one CREB1 alpha-helical
subunit contacts an alpha helix of GABPa in the major
groove of the DNA. Second, the N-terminus of the re-
maining CREB1 subunit is positioned close to a loop in
GABPb (Figure 2A). These results are consistent with the
findings of Sawada et al. (39), who identified an inter-
action between CREB1 and hGABPa, and found that
hGABPb increases the affinity of the GABP–CREB1
interaction. The putative interactions, lack of steric

hindrance and literature conformity all support the
accuracy of the model.

As a further illustration of SpaMo’s ability to yield
correct TF complex structure information, we have
compared the inferred SRF/ETS motif spacing with the
known ternary complex involving SRF, SAP-1 (which
binds to the ETS motif) and the c-fos promoter DNA
determined by Mo et al. (26) using X-ray crystallography
(PDB accession 1K6O). The known structure shows an
interaction between the N-terminal loops of the two
DBDs at a distance of 4 Å, over the minor groove of the
DNA. The c-fos promoter DNA sequence used in the
structure has a spacing of zero nucleotides between the
SRF and ETS motif occurrences (the sequence is

Table 3. Discovery of multiple distinct spacings for a single TF

Input Primary motif Secondary motif Same Disps Opp. Disps Lowestp-val Evid.

C Stat3 J YY1

hg18 STAT1
HeLaStim

+1, Opp.

1.52 × 10−29

hg18 STAT1
HeLaStim

–1, Opp.

C Stat3 U Bhlhb2 i

2.35 × 10−16
1

hg18 STAT1
HeLaStim

+1, Same

C Stat3 J NFE2L1::MafG

1.03 × 10−14

hg18 STAT1
HeLaStim

+7, Opp.

C Stat3 U Hdx

7.89 × 10−12

hg18 STAT1
HeLaStim

+10, Same

C Stat3 C Stat3

9.44 × 10−08
S

See Table 2 caption for explanation of columns. 1: This observation is supported by evidence from ref. (40).
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50TGTCCTAATATGGACATCC30, with the SRF and ETS
motif occurrences underlined and italicised, respectively).
The enriched motif displacement interval identified by
SpaMo includes this spacing, and suggests that
SRF-ETS motif distances of 1–6 are commonplace.
Additionally, the observed enriched spacings indicate
that interactions can occur on either side of SRF. Both
observations are consistent with the known crystal struc-
ture, as the interaction domains of both proteins are
flexible loops, with SRF exhibiting an identical structure
at both ends of its DBD (Figure 2B).

DISCUSSION

The strength of our method is its ability to infer TF
complexes from ChIP-seq data with a high positive pre-
dictive value. Various computational studies have ad-
dressed the issue of cooperative TF binding (41,42).
However, previous methods are not targeted at inferring
the presence of TF complexes from ChIP-seq data sets,
instead of aiming to extract motif associations from
unfocused genomic sequence data (43,44). SpaMo is de-
veloped specifically to harness the power and resolution
provided by ChIP-seq data, and yields information
specific to the input transcription factor and tissue in
which ChIP-seq was carried out.

Motif enrichment analysis (MEA) has previously been
applied to ChIP-seq data to identify TFs that co-regulate
gene expression with the TF of interest (45). MEA assesses
whether individual motifs occur more frequently than
expected by chance in the input DNA sequences (4,5).
When MEA is applied to ChIP-seq data, enrichment of
motifs other than the ChIP-ed motif does not necessarily
imply the presence of a physical TF complex since the
definition of enrichment does not require any particular
spatial relationship between the ChIP-ed motif and the
secondary motif. In contrast, we focus our analysis on a

primary motif that is known to be relevant to the TF (e.g.
the motif for the TF’s DBD), and we assess whether indi-
vidual secondary motifs exhibit enriched spacing with
respect to the primary motif. This approach specifically
identifies TF complexes, which we have demonstrated by
detecting known and high confidence novel TF complexes,
using existing ChIP-seq data sets.
The mammalian two-hybrid (M2H) system was recently

employed to detect protein–protein interactions between
TFs, from a comprehensive set of human and mouse
TFs (7). This application of the M2H approach was
subject to three limitations that are overcome by our
method. First, M2H was employed to study direct inter-
actions between TFs. Thus, a complex between two TFs
that occur indirectly via a bridging protein will not be
detected. For example, the authors do not report a
complex between GATA-1 and SCL, presumably
because GATA-1 and SCL interact indirectly, via LDB1
and E47 in the known GATA-1/SCL/E47/Ldb1 complex
(12). Our method is able to identify the complex between
GATA-1 and SCL in both the human and mouse
GATA-1 ChIP-seq data sets. Second, the M2H analysis
measures binding between TFs without considering the
role of DNA in stabilizing the interaction between the
two TFs. For some TF complexes, the DNA may play a
critical role in reducing the free energy of complex forma-
tion. Third, M2H can identify physical complexes, but
cannot identify the genomic regions at which those
complexes bind in vivo. In contrast, SpaMo infers the
likely genomic loci of complex formation, as it isolates
the sequences containing the enriched motif spacing.
In 39 of our 41 analyses, the primary motif represents

the DNA-binding specificity of the DBD for the TF
investigated with ChIP-seq. The remaining two analyses
are alternative analyses of c-Fos ChIP-seq data sets, in
which we employed a primary motif derived by running
ab initio motif discovery on c-Fos ChIP-seq data. This

Figure 2. Ternary complex structure elucidation. (A) Displacement histograms for GABP/CREB1, with corresponding predicted GABP/CREB1/
DNA ternary complex structure. The distance indicated by the red dotted line is 6.8 Å. This is the minimum distance between any pair of GABP
and CREB1 atoms at this estimated contact point. (B) Displacement histograms for SRF/ETS, with corresponding known SRF-ELK1 ternary
complex structure (PDB accession 1K6O).
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motif does not represent the known binding specificity of
c-Fos itself. However, by employing this motif as the
primary in our analysis, we obtained a distinct set of
high-confidence TF complex predictions, compared with
results obtained using the c-Fos DBD motif. This demon-
strates that it can be worthwhile repeating SpaMo analysis
using alternative biologically relevant motifs as the
primary, in addition to using a motif based on DBD
specificity.
In this study, we have used SpaMo with a width par-

ameter of 1 bp to predict numerous TF complexes exhibit-
ing tight motif spacing patterns. In contrast, we identified
relatively few broad motif spacings, which suggest clusters
of independent binding sites. Clusters of inconsistently
spaced binding sites have been observed in various
systems, and can mediate a specific rate at which transcrip-
tion responds to TF concentration (33). Using a larger
width parameter with SpaMo should increase the sensitiv-
ity of SpaMo to detecting these clusters, although that is
not the primary goal of the algorithm.
ChIP-seq technology facilitates high-resolution esti-

mates of TF binding. In combination with complementary
methods such as MEA and ab initio motif discovery, motif
spacing analysis with SpaMo should assist researchers
with maximizing biological knowledge extracted from
ChIP-seq data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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