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Abstract 
Inquiries into properties of brain structure and function have progressed due to 

developments in magnetic resonance imaging (MRI). To sustain progress in investigating and 

quantifying neuroanatomical details in vivo, the reliability and validity of brain measurements 

are paramount. Quality control (QC) is a set of procedures for mitigating errors and ensuring the 

validity and reliability of brain measurements. Despite its importance, there is little guidance on 

best QC practices and reporting procedures. The study of hippocampal subfields in vivo is a 

critical case for QC because of their small size, inter-dependent boundary definitions, and 

common artifacts in the MRI data used for subfield measurements. We addressed this gap by 

surveying the broader scientific community studying hippocampal subfields on their views and 

approaches to QC. We received responses from 37 investigators spanning 10 countries, covering 

different career stages, and studying both healthy and pathological development and aging. In 

this sample, 81% of researchers considered QC to be very important or important, and 19% 

viewed it as fairly important. Despite this, only 46% of researchers reported on their QC 

processes in prior publications. In many instances, lack of reporting appeared due to ambiguous 

guidance on relevant details and guidance for reporting, rather than absence of QC. Here, we 

provide recommendations for correcting errors to maximize reliability and minimize bias. We 

also summarize threats to segmentation accuracy, review common QC methods, and make 

recommendations for best practices and reporting in publications. Implementing the 

recommended QC practices will collectively improve inferences to the larger population, as well 

as have implications for clinical practice and public health.  
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Introduction 
 

Continuing developments in magnetic resonance imaging (MRI) have enabled 

progressively deepening inquiries into properties of brain structure and function. This progress 

has in part enabled the development of well-defined and anatomically grounded segmentation 

protocols for various neuroanatomical regions that can be visualized on MR images. To sustain 

progress in investigating and quantifying neuroanatomical details in vivo, the reliability and 

validity of brain measurements are paramount.  

Hippocampal subfields are small regions, sometimes less than a millimeter in thickness, 

that are defined by contiguous boundaries and are distinct in their cytoarchitecture, 

neurochemistry, and function (Duvernoy, 2005; Insausti & Amaral, 2012). In the context of 

hippocampal subfields, valid in vivo structural measurements start with the acquisition of 

appropriate MR images (i.e., high-resolution T2-weighted images, see 

http://www.hippocampalsubfields.com/people/acquisition-working-group and Yushkevich et al., 

2015a for details), which are segmented and labeled based on anatomical atlases developed to 

reflect underlying cytoarchitecture. The HSG (hippocampalsubfields.com) was developed in 

2013 with the aim of developing a harmonized protocol for the segmentation of hippocampal 

subfields for high-resolution T2-weighted MRI data (Olsen et al., 2019). In our prior publications 

we have reviewed common imaging methods and recommended best practices for MRI protocol 

design for measuring hippocampal subfields in vivo (Wisse et al., 2020). In that prior work, we 

emphasized that reliable application of boundary definitions is needed to maintain confidence in 

the hippocampal measurement results. Although the problems arising from variations in scan 

quality and segmentation accuracy are not unique to hippocampal subfields, because of the small 
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size of the targets and different application of labels along the anterior-posterior axis, the 

consequence of measurement error is disproportionately high. Therefore, consistent applications 

of quality control (QC) of collected scans and segmentation accuracy (i.e., detecting deviations 

in labeling of regions from the defined protocol), are important for ensuring reliable and valid 

measurement of the hippocampal subfields. 

Although most brain MRI studies report using some form of QC, and despite occasional 

calls for its standardization (e.g., Backhausen et al., 2021), there are limited QC guidelines that 

are clearly recommended in the literature, especially in relation to specific and widely studied 

anatomic structures such as the hippocampus. When testing hypotheses involving MRI-derived 

measurements, QC provides a means to mitigate measurement error that can lead to Type I and 

Type II errors, and subsequently improves the reproducibility of results (Elyounssi et al., 2023). 

Therefore, reporting QC details of the segmentations are necessary to support interpretation of 

hippocampal subfield measures correlated with function and cognition across the human 

lifespan, and potential application as biomarkers of disease processes.  

Survey on QC 
Currently neither concrete recommendations for best practices of QC for hippocampal 

subfield measurement nor minimum reporting standards exist in the literature. We recently began 

to address this gap by surveying the views and approaches to MRI QC from the broader 

community of Hippocampal Subfields Group (HSG) investigators who work with measures of 

hippocampal subfield structure. Thus, as investigators concerned with assessing the role of 

hippocampal subfields in development, aging, cognition, and neuropathology, our goal is to 

provide a guide to QC that will be effective in this specific application to subfield segmentation.  
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An extensive survey assessed the views and approaches to QC of hippocampal subfield 

segmentation in the HSG community and was distributed using the HSG’s listserv, social media, 

and website. Survey responses were collected from 07/11/2022 to 10/14/2022. The survey was 

completed by 37 respondents each representing a different laboratory spanning 10 different 

countries and 4 continents. Respondents’ research represented the study of hippocampal 

subfields across the lifespan (from 0 years - 75+ years) and in healthy and diseased populations 

(see Supplementary Material for detailed breakdown of respondent demographics). 

Of the 37 respondents, 81% considered QC to be “very important or important” and 19% 

considered QC to be “fairly important”. While all respondents considered QC to be important to 

some degree, only 46% reported on their QC practices in prior publications. This response 

highlights the mismatch between the importance of QC and the inconsistent standards of 

reporting QC in published studies. In many instances, this may not be due to absence of QC but 

merely ambiguous guidance on relevant details to report (see Supplementary Material for 

detailed survey results). 

QC Guidelines 

The goal of this guide is to provide guidance covering the various decision points 

investigators may encounter during the QC process. We take an à la carte approach and 

anticipate an investigator may choose to implement some or all of the practices we review, and 

that this will vary across studies. Our intention is to provide an overview of each stage of QC to 

allow for the investigator to make informed decisions for their study and follow best practice 

recommendations on reporting the procedures they implement. The goal of this guidance is to 
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improve the quality of data and transparency in reporting within the hippocampal subfields 

literature.  

Although the many protocols to delineate hippocampal subfields vary meaningfully in 

both their label composition and defined boundaries (Yushkevich et al., 2015a), a common set of 

QC procedures will be applicable to any manual or automated segmentation protocol. In the 

following sections, we propose best practices for QC of acquired MR images and labeling to 

measure hippocampal subfields. We also provide concrete suggestions and illustrations of how to 

identify, correct, and report segmentation errors. Below, we briefly address several topics related 

to the QC process, such as excluding data of questionable quality, measuring the reliability of 

QC interventions, reducing bias in subfield measurement, and special considerations for 

implementing QC procedures in longitudinal studies (see schematic summary of QC procedures 

in Figure 1).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.29.568895doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.29.568895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8

 

Figure 1. Illustration of the QC process and investigator-guided decision making for data quality. Green 

checkmarks indicate passed QC, while red cross marks indicate failed QC. 

 
 
QC of MR Images 

Quality of MR images directly affects the reliability and validity of segmentations, and 

by extension, the reproducibility of results. Two related aspects of MR image QC are the 

identification of artifacts affecting overall image quality and image features that impede the 
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ability to visualize neuroanatomical landmarks. Prior to segmenting hippocampal subfields 

(either manually or automatically), a critical first step in the QC process is assessing the quality 

of acquired images for imaging artifacts, poor contrast, and insufficient landmark visualization. 

Across the investigators surveyed by the HSG, over 89% of respondents reported conducting QC 

of MR images, and 94% of those exclude images due to quality issues. Segmentation of 

hippocampal subfields relies on the visualization of specific landmarks, typically on T2-weighted 

high-resolution images (Wisse et al., 2020), in order to determine outer boundaries of the 

hippocampus and the inner boundaries between subfields (see QC of Landmark Visibility 

section). Thus, our discussion and illustration of QC for MR images in the following sections are 

applied in the context of hippocampal subfield measurement from oblique coronal T2-weighted 

scans with high in-plane resolution and orientation roughly orthogonal to the hippocampus as 

recommended by the HSG (for a discussion of T1-weighted image QC not specific to 

hippocampal subfields see Alfaro-Almagro et al., 2018; Rosen et al., 2018).  

 

MR Image Artifact Identification 

Description of the Problem  

MR images are prone to artifacts during acquisition due to a variety of factors, including 

participant movement, metal implants, magnetic field inhomogeneities related to head geometry 

and tissue compartments, and mechanical faults in the gradient coils. These result in suboptimal 

image quality and the ensuing “artifacts”. These artifacts affect the quality of the data, which in 

turn reduces the quality of the segmentation. Although images do not need to be perfect to have 
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valid measurements of brain structures, there is a minimum standard of data quality that often 

leads investigators to exclude scans as a first step in QC.  

Among surveyed investigators, motion artifacts (e.g., ghosting) and susceptibility 

artifacts (e.g., image distortion due to metallic dental work) (Figure 2) were the most common 

examples of imaging artifacts flagged in QC of T2-weighted images. Motion artifacts can 

degrade the clarity of the image due to blurring of boundaries between tissue compartments and 

loss of image contrast (Reuter et al., 2015). Of note, the majority of respondents identified 

problems related to motion as the most common cause of exclusion (70%). For example, 

ghosting artifacts appear as rings or streaks within slices and are due to motion. Artifacts due to 

reconstruction errors can occur near high contrast boundaries and can also appear as multiple 

lines in the image that alternate between bright and dark coloring (i.e., rings or bands) (Bellon et 

al., 1986). Susceptibility artifacts also affect the tissue appearance on MR images as local 

magnetic field inhomogeneities are translated into structural distortions and signal dropout. For 

example, the presence of an implanted metallic object with significant magnetic susceptibility 

(e.g., metallic dental work) results in pronounced inhomogeneities in the B0 static magnetic field 

and subsequently issues in the reconstruction of the affected areas. These artifacts are 

exacerbated at higher field strengths (Dietrich et al., 2008) and independently, as well as 

collectively, lead to insufficient image contrast that could severely distort hippocampal subfield 

segmentation.  

Review of Current Approaches and Recommendations 

As an overall summary of image quality, a practice noted by a number of investigators 

surveyed is to quantify the image signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). 
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MR image SNR is the proportional mean signal of a region of interest to background noise 

(typically the standard deviation of the signal sampled from air space), whereas CNR refers to 

comparison of the mean signal in a region of interest to a reference region (e.g., gray matter to 

white matter) in proportion to background noise. Thus, SNR provides a global estimate of image 

quality, whereas CNR provides a local estimate of contrast between tissue types. Additional 

inspection of the MR image for artifacts can be performed manually or with automated tools 

(detailed below). 

Manual Image Quality Screening Procedures. Qualitative review is a common approach 

in assessing the quality of MR images. This type of approach entails the visual inspection of all 

images in a data set, which is usually done by one or more trained raters. Manual QC procedures 

are based on investigator judgment and experience. As some degree of imaging artifact is often 

tolerated during segmentation, the rater decides whether artifacts are severe enough to undermine 

confidence in subsequent segmentation, including anticipating a critical segmentation failure 

with automated software. Based on the results of the inspection, low-quality images are often 

excluded from the data set.  

Rater’s review of image quality is sometimes reported in methods sections of papers, but 

the specific procedure for this is rarely explicated. In some applications, the QC decision appears 

to be a binary choice (i.e., include or exclude), whereas in other instances, an ordinal rating scale 

may be used to describe the quality of the image or severity of artifacts (e.g., 0 = no artifact/pass, 

1 = minimal artifact/check, 2 = severe artifact/fail). We recommend using a rating system (either 

a binary or multi-point ordinal scale) to determine if an image is of sufficient quality for 

segmentation. This approach aids investigators in specifying the operational criterion used to 
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determine the image quality as sufficient and improves the transparency and reproducibility of 

the methods. For examples of scales and criteria related to imaging artifacts see Backhausen et 

al. (2021), Ding et al. (2019), and Rosen et al. (2018). Because of subjectivity in this procedure, 

describing the criteria for the decision and the reliability of the procedure (e.g., kappa statistics 

between- or within-rater; minimum 0.75 indicates a strong level of agreement; Fleiss et al., 2003) 

is important for ensuring the quality of the generated data and reproducibility of the findings.  

Automated Image QC Methods. As manual image quality evaluation can be labor 

intensive and time consuming, especially when working with large data sets, automated 

approaches present an efficient alternative. There are several automated tools available to assess 

the quality of MR images (e.g., MRIQC, Esteban et al., 2017; LONI QC, Kim et al., 2019) and a 

semi-automated approach using machine learning (Ding et al., 2019). These tools provide 

internal consistency and easy-to-read outputs with user-rating options (e.g., html pages for 

MRIQC). Some of the tools also provide volumes of the structures in question and flag statistical 

outliers, which is particularly useful in dealing with very large data sets (see Measurement Data 

Screening section for additional information on statistical outliers). We recommend reporting the 

parameters for exclusion and the level of artifacts or image quality tolerated by the automated 

method (e.g., Ding et al., 2019). An optional addition for those who use a quantitative SNR or 

CNR measurement is to exclude scans with low ratios in the areas of interest (i.e., hippocampus) 

compared to the reference region, with SNR less than 40 and CNR less than 10 (Magnotta et al., 

2006). A caveat to this recommendation is that the procedures were developed for the data 

collected in healthy participants and have not been validated in the images with significant 

structural pathology (e.g., hippocampal sclerosis in temporal lobe epilepsy). 
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Automated approaches have high internal consistency. However, it is important to note 

that their application to detecting poor image quality may have some disadvantages. These tools 

can be used with little user knowledge of relevant parameterization programmed into the method, 

and users may be unable to change certain steps or parameters during the automated assessment. 

Moreover, automated methods may not be as accurate as experienced human raters in detecting 

subtle distortions in images. In choosing between manual and automated procedures, the 

investigators can weigh their knowledge of the methods against the expertise of the team and 

available time.  

One final note. During QC decisions, investigators should consider the context of the 

population under study. For example, individuals with more severe diseases are likely to have 

more artifacts on MRI. In these instances, extremely conservative QC practices may lead to 

disproportionately excluding persons with high disease severity, which leads to another form of 

bias due to underrepresentation of the population under study. Therefore, an investigator may use 

their knowledge of the population in evaluating the risk-benefit tradeoff of their data QC 

practices.  
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Figure 2. Examples of the quality of T2-weighted images according to rating categories of 

“Pass” (left panel), “Check” (middle panel), and “Fail” (right panel). In this example, image 

quality rated as “Pass” and “Check” are considered passable. However, those in the “Check” 

category may be at higher risk of subsequent segmentation errors. The types of imaging 

artifacts present in the example images are noted. 

 

QC of Landmark Visibility 

Description of the Problem 

Brain region segmentation in manual and automated protocols is based on anatomical 

landmarks that are visible on MRI and correlate with histologically identifiable macro- and 

micro-structural tissue features. As the correspondence of MRI labels to histology constitutes the 

basis of construct validity of in vivo measurements, any artifact or distortion that interferes with 
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visualization of key landmarks in the segmentation protocol weakens the validity (Wisse et al., 

2020). Of particular importance for hippocampal subfield segmentation is the visualization of the 

stratum radiatum lacunosum moleculare (SRLM), a thin, layered sub-1-mm3 structure (de Flores 

et al., 2020). It spans the anterior-posterior length of the hippocampus and forms a layer of the 

cornu ammonis (CA) regions and subiculum. It also serves as a critical landmark for determining 

the internal boundary between dentate gyrus (DG) and CA subfields, or subiculum (Duvernoy, 

2005; Insausti & Amaral, 2012). In addition, the visualization of the SRLM in the hippocampal 

head is important for the identification of structural digitations, which play a critical role in 

determining the presentation of subfields in the anterior hippocampus (Adler et al., 2018). In T2-

weighted images of sufficient quality as we presume here, the SRLM should be clearly visible 

across most hippocampal slices as a dark band perpendicular to the anterior-posterior axis of the 

hippocampus (Figure 3). 

Because of similar decision-making regarding MR image quality, the procedures for 

evaluating landmark visibility follow the same steps and are often performed together. Although 

issues of image quality and landmark visibility apply to any region of interest, segmentation of 

hippocampal subfields is somewhat unique in its contiguous regions that share internal 

boundaries. If one boundary is incorrectly determined due to poor visualization of a landmark, 

the error can propagate across all subfield measurements, diminishing the validity of each 

subsequent label. An additional nuance of hippocampal subfield segmentation is that the label 

definitions for a subfield often shift on the anterior-posterior axis, and in many cases the same 

region will have separate labels anterior-to-posterior and by hemisphere. Therefore, depending 

on the protocol used, QC decisions may vary across different levels of measurement. For 
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example, QC decisions may differ by slice, subfield, subregion, or hemisphere. In addition, an 

investigator may evaluate landmark visibility only within the limited range of the hippocampus 

sampled (e.g., many subfield protocols are exclusive to the hippocampal body) or decide to use 

measurements from one region or hemisphere and not others due to differences in quality (see 

Approaches to Data Exclusion and Recommendations considerations of missing data). Further, 

QC decisions may vary depending on the imaging modality. Extensive discussion of modality 

considerations in QC falls outside the scope of this guide. However, to provide an example, those 

employing hippocampal subfield segmentations to estimate the volume of these structures rely 

on information across numerous slices whereas those applying segmentations as a mask in fMRI 

may use measurements from only a few slices.  

Notably, among those survey respondents who conducted QC, the SRLM was the most 

frequently identified landmark reviewed in QC (42% of investigators). However, decisions 

regarding exclusion based on SRLM visibility varied across investigators. For example, multiple 

respondents noted that scans were excluded only if there were issues with SRLM visualizations 

on multiple consecutive slices, while others did not specify criteria but included SRLM visibility 

as a factor in a subjective judgment combining multiple artifacts and problems. See Figure 3 for 

examples of different SRLM visualization quality on T2-weighted images.  

In addition to the SRLM, other prominent landmarks (e.g., alveus, fimbria, endfolial 

pathway, ambient cistern, or uncus depending on specific segmentation atlases used) should be 

visible in order to determine the border of contiguous hippocampal subfields and the anterior-

posterior transitions from hippocampal head, body, and tail. For example, the uncal apex is often 

used for identifying the transition from hippocampal head to the body (Malykhin et al., 2007), 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.29.568895doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.29.568895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17

which marks a change in the morphometry of the subfields for labeling. The lamina 

quadrigemina (LQ) and visualization of the fornix are additional landmarks used to determine 

the posterior boundary of the hippocampal body and transition to tail. Bender et al., (2018) noted 

that different ranges can be established by hemisphere so long as at least one of the four colliculi 

of the LQ is visible. The fornix is also used in some protocols to define the most posterior slice 

of the hippocampal body, namely the slice before the fornix is fully visible or clearly separates 

from the wall of the ventricle (Malykhin et al., 2007, 2010). 

Apart from landmarks used to identify anterior and posterior portions of the 

hippocampus, structures such as the alveus and fimbria facilitate the identification of outer 

boundaries to exclude external white matter and partial voluming with cerebrospinal fluid and 

choroid plexus in the gray matter labels. The alveus is a thin white matter structure enveloping 

the dorsal aspect of the hippocampus. It appears as a dark band on T2-weighted images on the 

dorsal edge of the hippocampus and is contiguous with the fimbria in the posterior hippocampus. 

This structure helps identify the boundary of the hippocampus and the shape of digitations in 

hippocampal head and can aid in identifying the first slice of the hippocampus as it distinguishes 

from the amygdala. Visualized external white matter structures often serve as a landmark to 

identify the superior boundary of the CA regions throughout the length of the hippocampus. In 

the posterior hippocampus near the tail region, the fimbria is continuous with the columns of 

fornix that form a sulcus at the junction with the DG. In addition, it serves as a posterior 

landmark to the hippocampus (for depiction of selected landmarks see Figure 3). While the 

specific landmarks referenced may differ between protocols, clear visualization of these 
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landmarks is essential to reliably identify the outer boundaries of the hippocampus and its inner 

subfield boundaries.  

Review of Current Approaches and Recommendations 

To our knowledge, there are no automated methods for evaluating landmark visualization 

independent of general image quality and artifacts. Therefore, these evaluations are performed 

manually and completed using software such as ITK-SNAP (www.itksnap.org; Yushkevich et 

al., 2006), FreeSurfer’s FreeView application (Fischl et al., 2002), FSLeyes (McCarthy, 2023), 

and Analyze (AnalyzeDirect, Overland Park, KS, USA) to view the slice images. Common 

practice requires that raters be familiar with neuroanatomy on MR images in reference to the 

protocol used to make sound judgments about landmark visualization.  

Following the recommended practices for QC of MR image artifacts mentioned in the 

prior section, we recommend using rating scales to determine the quality of landmark 

visualization required for hippocampal subfield segmentation. For example, on a 3-point scale, 

scans could be identified as “Pass/Clearly Visible”, “Check/Somewhat Visible”, or “Fail/Not 

Visible” based upon the visibility of the selected landmark (e.g., SRLM). This or other similar 

rating systems could be used to make determinations of exclusion across the multiple criteria we 

have discussed. As noted above, QC decisions may vary across different levels of measurement 

by slice, by region, or by subfield and hemisphere. 

As with artifacts, the rating procedure for landmarks is somewhat subjective, and 

consistency in the decision within a research team applied to a data set should be prioritized. To 

allow for the transparency necessary for replication across research groups and references in the 

extant literature, we recommend that investigators describe the rating procedure, including the 
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specific landmarks examined for the chosen segmentation atlas and criterion used to determine 

the rating system. Further, investigators should report reliability of the raters in the decision (e.g., 

a kappa statistic) to demonstrate consistency in the subjective decisions made using the defined 

criteria. This will allow some continuity of methods in the literature, even if different 

investigators refer to different criteria based on the study sample (e.g., healthy vs. patients), 

segmentation protocol, or imaging modality. When trained raters cannot clearly identify the 

landmarks, the scan is judged to be of insufficient quality and is typically excluded from 

measurement.  

Finally, like the QC of MR image quality, QC of landmark visibility should consider the 

context of the population under study. For example, in the context of disease, the SRLM might 

be more difficult to visualize with increasing severity. 
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Figure 3. Examples of scan quality ratings based on the landmark visualization of the SRLM, a 

critical landmark for segmentation in the head (top panel) and body (bottom panel) of the 

hippocampus. Additional landmarks, the alveus and uncus, are also depicted. Note: Definitions 

of quality may differ between investigators but there should be consistency in the application of 

operational definitions. 

 

QC of Hippocampal Subfield Segmentations 
Description of the Problem 

The procedure for determining the accuracy of hippocampal subfield segmentation labels 

depends on whether the segmentation was generated using manual or automated methods. 

Among the survey respondents, 88% report having employed automated segmentation methods 
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and 49% manual segmentation methods for delineating hippocampal subfields. Many 

investigators applied either of these methods depending on the data set.  

When using manual segmentation, rater reliability should be established before segmentation 

commences. Besides being an indicator for accurate segmentation, a high rater reliability of a 

manual segmentation protocol also implies accurate identification of severe segmentation errors 

that deviate from the protocol during QC. Of the respondents who used a manual approach for 

segmenting hippocampal subfields, 77% reported assessing inter- or intra-rater reliability of the 

protocol. Whereas QC of the labels may be done concurrently with manual segmentation, labels 

from automated segmentation must be vetted afterward. Additionally for automated 

segmentation, reliability between the manual and automated segmentation should be confirmed 

(e.g., Yushkevich et al., 2010). Even though automated segmentation has high reliability (Bender 

et al., 2018), it can produce errors with high consistency.  

QC Segmentation Error Identification 

Among investigators surveyed, 95% reported reviewing the quality of subfield 

segmentations, with 63% providing specific examples of errors identified. The survey response 

notably highlights that, despite differences in existing protocols, there are some common types of 

segmentation errors: 36% reported issues related to overestimation (e.g., inclusion of choroid 

plexus or cerebrospinal fluid, overestimation errors due to partial volume effects or voxels 

erroneously extending into the fimbria) or groups of pixels labeled unattached to the 

hippocampus; 13% reported mislabeling of hippocampal subfields (e.g., labels overextending 

internal boundaries, or sulcal cavities labeled as tissue); and 9% reported underestimation of 

regions (e.g., labels not fully extending to the boundary, or groups of pixels dropped from within 
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the label). Errors in segmentation labels may result from multiple sources: some related to image 

quality and landmark visualization that we have already discussed, and others reflecting specific 

properties of the automated software (for examples see Wang & Yushkevich, 2013). It is 

important to note that in applying automated software, the segmentation atlases validated in one 

data set can produce segmentation errors when applied to new data sets. Bias in the frequency or 

type of errors may also differ depending on the population under study—e.g., certain errors may 

be more common in particular populations (patients, childhood development) as compared to 

healthy adults (see Breakout Box 1). Identifying such errors using QC allows for the efficiency 

of an automated approach while ensuring measurement validity. 

 

Review of Current Approaches and Recommendations 

Despite the similarity among segmentation error types, there was little consensus among 

the survey responders on the steps taken to identify these errors. Further, these steps differed 

between those investigators who performed manual as compared to automatic segmentation 

procedures. In both automated and manual segmentation, QC for segmentation errors depends on 

knowledge of the standard anatomy and the segmentation atlas or protocol used to define 

hippocampal subfields. Our key recommended practice is to clearly describe in the methods 

section of a paper how segmentation labels were reviewed for errors. 

For manual procedures, labels are commonly reviewed during segmentation as well as 

post-segmentation. Expert knowledge of the trained, reliable rater is typically depended upon for 

identifying errors. We recommend investigators report rater reliability for the manual 

segmentation protocol, with intra-class correlation assuming random raters (ICC[2,1]; Shrout & 
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Fleiss, 1979) if measuring volumes, or report dice coefficients if using the segmentations as 

masks on other imaging modalities. Investigators should also report if segmentations have been 

reviewed by trained independent raters. For reliability assessment that enables the user to 

partition multiple sources of unreliability, see Brandmaier et al. (2018).  

For automated segmentation procedures, the most common approach to identifying errors 

is visual inspection of the output using specialized software to open segmentation files (e.g., 

ITK-SNAP, www.itksnap.org; Yushkevich et al., 2006). For those respondents on the survey 

who indicated visually inspecting automated segmentations, 56% sought large or obvious errors. 

If an investigator is considering manual correction of automated segmentation errors (e.g., semi-

automated methods), we recommend using segmentation quality ratings to correct only the most 

severe errors, reducing burden as well as possible introduction of human error in the process. 

Scales should have operational criteria to define error severity levels and establish reliability of 

the rater(s) (e.g., kappa statistics for within- or between-rater reliability). Criteria across 

protocols do not need to be identical. Instead, the best practice is to provide operational 

definitions that allow investigators to consistently identify errors that threaten validity. For 

example, investigators may define error severity based on the percentage of the label affected 

(see Figure 4 for an example of an error rating scale). Another approach has been to determine 

the extent of subfield labels affected on multiple slices along the longitudinal axis of the 

hippocampus as an index of severity (see Figure 5 for an example). In this approach, only errors 

affecting a certain length (e.g., 3-7 mm, 3 or more slices) of the longitudinal axis were 

considered severe and subsequently corrected or excluded. There is also value added by 
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concretely defining specific errors that commonly occur (see Figure 4) to aid rater training and 

promote consistency within and between raters.  

The main purpose of identifying errors on a severity scale is not to have perfect 

segmentations but rather to identify cases with egregious threats to validity. Multiple 

investigators reported using a 4-point scale to quantify the severity of segmentation errors as not 

present (0), minor (1), moderate (2), or major (3), while others reported using pass/fail ratings. In 

addition, 31% of respondents reported examining inter- or intra-rater reliability of error 

identification ratings. To determine severity of errors, some investigators employ a group review 

where either the segmentation or screenshots are examined by multiple people simultaneously 

and decisions on the presence or absence of an error are determined by group consensus. 

Reporting on the approach(es) that investigators take to identify segmentation errors, 10% of 

respondents stated that segmentation error identification was always completed by multiple 

raters, 60% mentioned that errors were sometimes reviewed by more than one rater, and 30% 

said that only a single rater reviewed errors. It is important to note that the variability in the 

number of raters that review segmentation errors across labs may be due to differences in the 

availability of personnel necessary to review segmentation quality. It is important to note that in 

cases involving very large data sets (e.g., Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

data sets), it may not be feasible to QC all of the collected scans for segmentation errors. As 

such, at least a subset of the data set should be QC-ed in order to get a sense of the data quality.  

Similar to the judgments of MR image quality, the manual evaluation of segmentation 

errors is also subjective; thus, it requires standardized approaches to promote consistent 

decisions. There are several resources available to provide some options for standardized 
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protocols: 1) MAGeT-related QC (https://github.com/CoBrALab/documentation/wiki/MAGeT-

Brain-Quality-Control-(QC)-Guide), 2) HippUnfold’s automated QC (DSC overlap with a 

deformable registration), and 3) MRIQC (Esteban et al., 2017). Additionally, the examples of 

manual evaluations from Canada et al. (2023) and Wisse 

(https://www.youtube.com/watch?v=XHXu-AGR6pE) demonstrate that investigators can use 

different criteria but similarly implement the recommended best practice to identify severe 

segmentation errors. Using existing QC protocols as a resource provides operational definitions 

and criterion that can be applied or modified for an investigator’s particular data set.  

The inability to confidently appraise or correct segmentations due to image quality can be 

a related, but distinct, problem that also can lead to exclusion of images. However, if an image 

has passed the QC for artifacts and landmark visualization, this issue is less likely to occur (see 

MR Image Quality).  
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Figure 4. Example QC approach using a 4-point error severity scale from a published and 

validated protocol (Canada et al., 2023). In this example protocol, errors could be 0- not present 

(not pictured here), 1- minor (<10% of label affected), 2- moderate (10–25% of label affected), 

or 3- major (>25% label affected) and were categorized by type. Only major errors are corrected 

in this protocol to mitigate human bias. Overestimated label (OL), underestimated boundary 

(UB), and dropped pixel (DP) errors are depicted.  
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Figure 5. Example QC approach from https://www.youtube.com/watch?v=XHXu-AGR6pE for 

the PMC segmentation atlas (Yushkevich et al., 2015b) applied to data collected using the 

parameters reported in Daugherty et al. (2016). In this approach, QC mosaic screenshots 

generated by ASHS are examined by hemisphere to detect potential errors for each subject. 

Segmentations are subsequently fully reviewed slice-by-slice only for regions with identified 

errors. This protocol recommends correcting only larger errors that are present on a 

predetermined number of slices (3 slices is used in the linked demonstration). In the depicted 

example, major errors were present in the right hemisphere QC screenshot for the subiculum 

(pink) label. In the full review of the segmentation, errors in the right subiculum label were 
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Resegmentation, Manual Correction, or Exclusion of Cases with Errors from Automated 

Segmentation 

Description of the Problem 

Segmentation errors often affect multiple subfields because they share boundaries. 

Following QC of images and segmentations, decisions for resegmentation, correction, or 

exclusion may differ by subregion or hemisphere. As hippocampal subfields are part of a whole, 

the choice to exclude any single subfield label on a particular slice or for a particular participant 

would preclude interpretation of generalized hippocampal effects.  

Because of these challenges to hippocampal subfield segmentation, we review multiple 

approaches to support measurement validity after identifying automated segmentation errors: 

manual correction, submitting images for re-segmentation by automated methods, and data 

exclusion. Each approach calls for different degrees of rater expertise and time investment. The 

choice to exclude cases versus correcting errors can depend on several factors. Among survey 

respondents who reported either practice, 25% of investigators made the decision to correct or 

exclude based on the sample size available (e.g., excluding subjects in large studies versus 

correcting segmentations in smaller studies), 31% made their decisions based on the uniqueness 

of the population (e.g., retaining rare cases), 31% made their decisions based on bias in 

segmentation errors (e.g., error frequency related to certain demographics; responses not 

present in 8 slices. Following this QC approach, the depicted subject would require manual 

correction of these errors or be excluded from analyses. 
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mutually-exclusive). However, 49% of survey respondents who correct or exclude segmentations 

reported that they did not consider sample or study specific factors in decisions. 

We describe common procedures for each approach and a few considerations that can 

help the investigator make an informed choice. These approaches have a shared goal: to 

minimize the threat of segmentation errors to measurement validity while maximizing retained 

sample size (when images are flagged for exclusion). A valid segmentation does not require 

perfection (i.e., without any error); some segmentation errors that are randomly distributed 

across slices and cases will introduce statistically negligible bias and thereby not affect validity 

of analyses with imperfect data. Therefore, choices for remediation of automated segmentation 

errors are about minimizing the greatest threats to validity and maintaining the efficiency (i.e., 

reduced time required) of automated methods.  

Approaches to Re-segmentation of MR images and Recommendations  

Commonly used methods for automated segmentation of the hippocampal subfields are 

often based on segmentation atlases that are validated against manual segmentations in a 

particular data set (e.g., Bender et al., 2018; Yushkevich et al., 2015b). Some software tools offer 

choices of segmentation atlases (e.g., ITK-SNAP, www.itksnap.org; Yushkevich et al., 2006). It 

is often difficult to predict the performance of these tools prior to applying them on a new data 

set. When selecting a segmentation atlas, an investigator should consider if the protocol has been 

validated in similar samples as the one to be processed (Wisse et al., 2020). Poor segmentation 

quality across the majority of a data set may indicate the specific segmentation atlas or protocol 

is not suitable. However, even when investigators select segmentation atlases that are appropriate 

to their studied population and ensure MR images are of sufficient quality, underperformance of 
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the automated segmentation atlas can still occur and result in a high degree of error. This has 

been reported in the literature by investigators using validated segmentation atlases with MR 

images collected from both 3T and 7T magnets. For example, Wisse et al.’s (2017) segmentation 

atlas resulted in consistently smaller automatically segmented volumes of certain hippocampal 

subfields compared to manual segmentation. Another example is errors in the automated 

segmentation using the Bender et al. (2018) atlas that primarily occurred at the most anterior and 

posterior aspects of the hippocampal body. One solution to this problem is manual intervention. 

However, practical factors including rater expertise and time may be untenable, especially in 

large data sets. Thus, re-segmenting data with an alternative segmentation atlas or modified 

parameters is one approach investigators can take when severe errors are prevalent.  

A decision to exclude all existing segmentations may be made if the investigator finds 

that a large number of scans fail to segment, a large number of severe segmentation errors affect 

the majority of the sample, or there is systematic bias in the segmentation errors with 

demographic features of the sample.  

We recommend considering re-segmentation when segmentations fail on more than 40% 

of the data set, severe errors that threaten measurement validity are present in more than 40% of 

slices counted across all images, or when failed segmentations and major errors are 

systematically correlated with a variable of interest. This recommendation is based on guidelines 

on tolerance of data loss (see Little et al. (2014), McNeish (2017), and Raykov (2005) in-depth 

reviews, and section “Approaches to Data Exclusion and Recommendations” below for brief 

review of missing data tolerance and application to neuroimaging studies). If re-segmentation 
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using a different segmentation atlas is not feasible or is unsuccessful, investigators may modify 

software-specific parameters and re-segment with the original segmentation atlas.  

If a given segmentation software does not allow for parameter adjustment, then there may 

be other ways to correct for mis-segmentations. For example, in ASHS, frequent large mis-

segmentations have been found to be caused by a subject’s T1-weighted scan not being properly 

co-registered to the T1 template or to their T2-weighted scan. This problem in registration is often 

due to the subject’s neck being too visible in their T1 scan, or due to the header information 

being incorrectly recorded in their T1- and T2-weighted scans, which can lead to problems in the 

initialization of the registration of the T1 and T2 scans. The solution to the first case is to trim the 

neck in the T1-weighted scan (which ASHS has a script for). In the second case, the T1- and T2-

weighted scans can be run with a set of rigid registration parameters in ASHS. The other times 

ASHS fails are typically related to poor image quality (addressed in prior sections) or if the 

segmentation protocol is very distinct from the target data (i.e., there is a mismatch between the 

data used to develop the segmentation atlas and the data to be segmented).  

Following the re-segmentation of hippocampal subfields, investigators should repeat the 

QC procedure on the re-segmented data. While not perfect, re-segmentation has been shown in 

practice to be a reasonable approach to retaining a greater proportion of data or reducing the 

number of errors that require further manual intervention. If issues of segmentation quality are 

not reduced following re-segmentation, investigators need to determine if manual correction or 

data exclusions are warranted. Final atlas selection and relevant parameters should be reported in 

the methods sections accompanying the data analysis. The trial-and-error of methods selection 
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and atlas evaluation in the sample may be additionally helpful to the filed as we continue to 

refine our neuroimaging and segmentation procedures. 

 

Approaches to Manual Correction of Automated Segmentation and Recommendations 

With rater expertise and available time, errors in automated hippocampal subfield 

segmentation can be corrected manually. Manual intervention was reported by 43% of 

respondents as always being used to correct identified errors (the decision of which errors to 

correct differed between investigators), sometimes being used to correct identified errors by 31% 

of respondents (i.e., decisions on manual correction differed across data sets for the same 

investigator), and not being used to correct identified errors by 26% (i.e., errors were consistently 

uncorrected). Selective manual correction of only some errors, such as removing an obvious 

mislabel (e.g., cerebrospinal fluid) or adding labels to voxels that should have been labeled 

originally, is a viable approach to addressing severe segmentation errors while preserving 

benefits of automated segmentation efficiency, especially when working with large data sets. The 

severity ratings of segmentation errors made in prior QC steps are used to determine where 

manual intervention is applied (e.g., Canada et al., 2023). In this practice, manual corrections are 

made according to the segmentation protocol that was used to generate the segmentations which 

allows all images to be segmented using the same protocol regardless of whether it was 

corrected. Therefore, rater expertise in the segmentation protocol is a prerequisite of this 
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approach. 

 

Similar to our prior recommendations, human error should be minimized during the 

correction procedure by ensuring consistent decisions about data treatment and reliable error 

correction. However, as reflected by the responses of those surveyed, currently only 23% of 

respondents assess reliability of corrections to hippocampal subfields. As a best practice, we 

recommend establishing inter- or intra-rater reliability of the measurements following corrections 

in a subset of scans with errors before corrections are applied to the full data set. Specifically, we 

recommend reporting in the methods on good agreement in volume measures (with ICC > .85; 

Koo & Li, 2016) and spatial overlap (with DSC > .70; Zijdenbos et al., 1994) by making 

 Breakout Box 1: Considerations of bias and error. 

Because human raters are prone to error, especially in the absence of clear rules, high 

reliability of a manual correction procedure must be established. Human error can be 

introduced to the measurement even with highly reliable correction procedures. The amount 

of human error introduced can be indexed by the ICC departure from 1.0 (because 

automated segmentation without human intervention shows high consistency) and should be 

both small and randomly distributed in order to mitigate bias. Unbiased error is supported if 

the frequency of corrected segmentations is not correlated with demographic features. If 

segmentation errors correlate with sample characteristics it leads to systematic bias in the 

measurement, even if the error is small. For example, in aged brains the loss of gray-white 

matter contrast is common, which could cause more segmentation errors for older brains as 

compared to younger ones for a given automated atlas.  
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corrections on the same subjects to be compared between raters, or in the case of a single rater, 

with themselves after a delay. In addition, we recommend reporting the proportion of cases that 

were corrected or re-segmented using adjusted segmentation software parameters.  

Approaches to Data Exclusion and Recommendations 

Maintaining all cases in the collected sample is a top priority for external validity; 

however, there are instances where the segmentation errors cannot be remediated by re-

segmentation or manual correction and the suitability of the MR images for hippocampal 

subfield segmentation may be deemed insufficient. In these instances, subfield segmentations 

from the original segmentation atlas are retained and the choice to exclude cases with errors that 

threaten measurement validity is reasonable. Among the investigators surveyed, 43% always 

excluded cases based on QC procedures, 31% sometimes excluded them, and 14% never 

excluded them despite segmentation errors. In most instances, cases with severe error are 

excluded from further analysis while cases with small or moderate errors are retained. Following 

from the QC decisions that vary by subregion and hemisphere, portions of the measured structure 

might be excluded while other parts are retained for the case (e.g., excluding left hemisphere but 

retaining the right hemisphere; or excluding hippocampal head measurements while retaining 

measurements in hippocampal body). 

When cases are excluded, the criterion for exclusion and number of cases excluded 

should be reported and noted as a limitation. Exclusion of cases contributes to overall data loss 

and impacts statistical analysis and interpretation. Excluded cases are missing data; therefore, the 

same statistical considerations for randomness should apply. The loss of data due to exclusion 

may meaningfully reduce statistical power for subsequent hypothesis testing. The statistical 
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literature offers a good overview of missing data considerations (Little et al., 2014; McNeish, 

2017; Raykov, 2005), which we will review briefly for applied neuroimaging studies.  

The decision about parameter estimation under the condition of missing data is informed 

by three criteria: the planned statistical estimation method, the amount of missing data, and the 

randomness of missingness. We have emphasized detection of errors during QC to maximize 

validity of the hippocampal subfield measurements, but we also must consider if the retained 

sample upon completion of QC still represents the study population. Many of the common 

analyses in applied neuroimaging studies are based on cases with complete data. Listwise or 

pairwise deletion of cases of missing data (in this case by exclusion) will provide unbiased 

estimates of the population-level effect only when data are missing completely at random 

(Baraldi & Enders, 2010). There are alternative approaches including multiple imputation or 

latent modeling with incomplete data (see Little et al. (2014) for an overview) that can maximize 

external validity and have additional benefits to statistical power, but these also rely on data 

missing at random to provide unbiased estimates. To support the conclusion of data missing at 

random, formal test statistics (e.g., Little’s chi-square test) can indicate for randomness and the 

frequency of data loss due to QC should be negligibly correlated with demographic or study 

variables of interest, as shown with descriptive statistics or logistic regression. In practice, 

however, the assumption of data missing completely at random in QC is difficult to meet as more 

severe cases are more likely to fail QC, which underscores the importance of re-segmentation 

and manual correction options to retain as much data as possible. Based on current recommended 

practices for statistical tolerance of missing data (Little et al., 2014; McNeish, 2017; Raykov, 

2005), we recommend that no more than 40% of data should be lost to QC issues collectively. 
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Data Screening 

Description of the problem 

Following QC of hippocampal subfield segmentation labels, an important additional step 

in the process is statistical data screening prior to hypothesis testing. Data screening helps 

provide assurance that the data included for analysis is accurate, meets assumptions of the 

planned statistical analyses and promotes rigorous best practices.  

Review of Current Approaches and Recommendations 

Data screening following other steps in the QC procedure is an important last check point 

to identify errors such as statistical outliers in the data and is an approach taken by 33% of the 

respondents. Although prior QC steps discussed will facilitate the identification of the majority 

of errors, some errors may be overlooked, or investigators may choose to conduct a subset of the 

reviewed procedures. Thus, data screening of measurement values provides a secondary check of 

the QC procedures. A common first step in data screening is the inspection of univariate 

descriptive statistics. This includes examining data for out-of-range values (e.g., implausibly 

small or large volumes), inspecting the means and standard deviation for plausibility, and 

assessing the presence of univariate outliers. This step was included in the QC steps of most 

respondents, with 54% examining segmentation values for outliers within the sample. Screening 

procedures for out-of-range values and outliers are often repeated for volumes adjusted for 

intracranial volume that are intended for planned analysis, which is a sample-specific procedure 

that can modify the relative rank of a case relative to its sample distribution.  
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As an initial data screening approach, an investigator can examine correlations of a 

regional measure between hemispheres: for many populations, high consistency is expected and 

cases that deviate from the diagonal of the scatterplot would be candidates for review. Outlier 

detection is the highest priority in data screening related to QC best practices. With a reasonable 

approximation of a normal distribution, univariate outliers can be determined by z-scores 

exceeding |3.29|. However, the majority of statistical methods used in applied neuroimaging 

studies are more sensitive to multivariate outliers than univariate deviations. For hippocampal 

subfield measurements, assessing multivariate normality by quantile-quantile (Q-Q) or 

probability-probability (P-P) plots is recommended. Multivariate outliers can be detected by 

Mahalnobis distance with a cut-off of a critical chi-square (degrees of freedom = number of 

variables; alpha = 0.001), in addition to assessments of outliers in regression residuals during 

hypothesis testing (Tabachnick & Fidell, 2019). Decisions to remove outliers from analyses are 

another instance of missing data, which contributes to the overall consideration of tolerance in 

the statistical design discussed above. It is important to note that investigators should be aware of 

individual differences in data sets (e.g., cases of severe neurodegeneration) when assessing 

outliers. Here we have described the use of statistical outlier detection as a means to identify 

cases for QC review, but extreme values are realistically plausible especially in the scenario of a 

severe disease stage. After review of an outlier case, the investigator may determine it meets all 

criteria that we have reviewed to retain in the sample—it is, in fact, an accurate measurement—

and proceed with analysis following standard practices with outlier values.  

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.29.568895doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.29.568895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

38

Special considerations for longitudinal data sets 

Different procedures can be used to ensure continuity in longitudinal studies. One 

approach is segmentation of data collected at each measurement independent of prior timepoints. 

During QC, raters can refer to all available timepoints when evaluating possible segmentation 

errors. This type of approach has produced high test-retest consistency and supports 

measurement invariance over longitudinal assessments (Homayouni et al., 2021). In addition, 

when applied to manually segmented data, raters can be blinded to timepoint to ensure no bias is 

introduced.  

An alternative approach is to study longitudinal change in subfields using deformation-

based morphometry (Das et al., 2012). In this approach, the change in volume is combined by 

performing registration between MRI scans at different timepoints, and only one timepoint needs 

to be segmented to obtain subfield-specific measures of change. While this approach reduces the 

burden of QC of segmentations, it does require QC of the MRI scans at each timepoint separately 

and of the pairwise registrations. However, QC of pairwise registrations can be done using a 

semi-automatic method by examining registration quality metrics (e.g., intensity cross-

correlation in the MTL region after registration) and focusing manual QC procedures on image 

pairs where that metric is more than 2.5 standard deviations from the mean (Xie et al., 2020).  

It is important to note that although there are differences in the approach for longitudinal 

segmentation, the QC procedures we have reviewed above apply similarly to data at all 

timepoints (Shaw et al., 2020). When datasets are large, the general quality of segmentation and 

potential extent of segmentation errors can be approximated from the procedures applied to a 

subset of cases that are selected at random. This approach benefits from the same principle of 
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sampling in statistical analysis: if the subset is randomly selected and representative of the 

sample features, then the frequency and severity of segmentation errors is expected to generalize 

to the whole sample. Because the goal of QC is to minimize systematic measurement error, and 

the goal is not perfect data per se, this subset evaluation may identify that major threats to 

validity are infrequent and therefore the investigator retains the data for further analysis. In the 

event that severe image artifacts and severe segmentation errors are identified with high 

frequency in a subset, the investigator can weigh the further time investment to screen the dataset 

in more detail.  

 

Reporting QC Procedures 

All data screening procedures and decisions for data conditioning or exclusion should be 

described in publications. Describing the amount of missing data and reasons for data loss (i.e., 

poor image quality, segmentation failure, segmentation error, or statistical outlier) is paramount 

for determining the external validity of the analysis based on the representativeness of the 

retained sample. 

Guidelines for implementing and reporting QC methods*: 

Note (*) that we review options for QC procedures and provide guidelines for the reporting and 

implementing of QC that the investigator can use to inform their choice of QC steps. The 

recurring recommendation for best practice across all possible QC steps is reporting in 

publications which steps were implemented and with enough detail so that readers can 

sufficiently understand the decisions made and amount of data affected.  
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QC Step Recommendations What to report: 
Assessment of MR 
Image Quality 

• Rating scale for image 
quality and landmark 
visualization 

 
• Optional: SNR/CNR 

• Criteria for exclusion (e.g., rating 
scale, yes/no) 

• Number of raters 
• Rater reliability (inter and/or intra) of 

scans (kappa statistic) 
• Number (percentage) of scans 

excluded 
• If exclusion correlated with variables 

of interest 
Assessment of 
Segmentation 
Quality 

• Rating scale of severity 
of error 

• Determine amount of 
data loss due to 
segmentation failure 
(less than 40 
recommended%) 

• If segmentations were reviewed and 
criteria for judgment 

• Number of raters 
• Rater reliability (inter and/or intra) of 

manual segmentations (kappa statistic) 
• Number (percentage) of segmentations 

failed 
• Potential covariates of segmentation 

error frequency or exclusion 
Options for Error Remediation 
Manual Correction 
of Automated 
Segmentation  
 

• Establishing reliability 
of correction procedure 

• Correction of only 
severe errors to reduce 
human bias 

• If segmentations were corrected, what 
procedure was used 

• Number of raters 
• Rater reliability (inter and/or intra) of 

the correction procedure for 
measurement of interest: volume 
(ICC2) or mask (DSC coefficient) 

• Number (percentage) of segmentations 
corrected 

Data Exclusion • Define specific 
parameters for exclusion 

• Assessment of data loss 
due to exclusion 
(percent) 

• Assessment of missing 
data assumptions 

• Number (percentage) of segmentations 
excluded 

• Chi-Square test for MCAR 
• Potential covariates of exclusion 
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Data Screening • Assess distribution of 
data 

• Examine and exclude 
outliers 

• Report criterion used 
and data excluded 

• Univariate outlier detection 
• Assessment of missing data 
• Multivariate outlier detection (e.g., 

Mahalnobis distance) 
• High correlation between hemispheres 
• Longitudinal consistency within 

hemisphere (ICC3, DSC) 
 

 

Conclusion 

In the ever-growing field of hippocampal subfields neuroimaging research, ensuring 

accurate measurement is vital to progress our understanding of brain structural and functional 

correlates, lifespan development, and neuropathology. QC is an essential part of ensuring valid 

results by promoting accurate hippocampal subfield segmentation and retaining all eligible data 

for analysis. In addition, recent advancements in neuroimaging have given investigators the 

unique opportunity to study hippocampal subfields with greater precision than ever before in 

pursuit of the ultimate goal of drawing robust scientific conclusions that meet a high standard of 

quality.  

Using the literature and our findings from a survey of investigators with experience 

segmenting hippocampal subfields, we summarized the threats to segmentation accuracy, 

reviewed common methods for QC, and made recommendations for best practices and reporting 

of QC in publication. In the following section we highlight broader impacts of ensuring quality 

data on neuroimaging and clinical research.  

The importance of QC is underscored by goals related to investigating and validating 

structure-function relationships. The study of hippocampal subfields is a unique in vivo endeavor 

as a major focus is the ability to understand the nuanced roles of hippocampal function in human 
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cognition and forward translation from animal models of development, aging, and disease. For 

example, determining the impact of normative and pathological aging on hippocampal structure 

and related memory abilities requires reliable measurements of both cognition and brain that 

allow accurate conclusions from hypothesis testing. Moreover, validity is critical in supporting 

the clinical translation of hippocampal subfields measurement to biomarkers of healthy 

development, neurodegenerative disease, and neurodevelopmental disorders. The requisite of 

interpreting hippocampal subfields as biomarkers is confidence that the measures used reflect the 

underlying tissue structure and its changes over the course of time. 

Further, QC of hippocampal subfield segmentations is essential to promoting 

reproducibility of findings and methods because the subfields are small regions that share 

boundaries, increasing the risk of errors with serious consequences to validity. While we focused 

on hippocampal subfield segmentation in this manuscript to highlight the importance of QC, it 

should be noted that it is within the larger context of measurement reliability and validity in 

applied neuroimaging. Thus, the QC practices we recommend here play a two-fold role in 

supporting reproducible neuroimaging research broadly. First, using best practices in QC 

supports reproducibility in neuroimaging research by focusing on transparent reporting of the 

methods and decisions made. Reporting decisions made in the treatment of data from post-

acquisition to analysis contextualizes the results of a given study within the larger literature and 

provides a path forward for others to implement similar approaches in the study of hippocampal 

subfields. Second, harmonization of methods across laboratories, including QC procedures, is 

essential to reproducible research. The Hippocampal Subfields Group (HSG) is leading 

harmonization efforts, including a harmonized set of definitions for subfield segmentation (Olsen 
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et al., 2019; Wisse et al., 2017; Yushkevich et al., 2015a). These efforts have highlighted another 

gap in the available literature, best practices for QC. We attempt to address this gap by providing 

recommendations that will apply to any segmentation approach, including a harmonized 

procedure that is in development. The need for QC remains critical, especially with 

harmonization efforts, as site- and sample-specific errors that affect image quality and 

segmentation accuracy can occur even with a harmonized segmentation protocol. With possible 

errors occurring for the many reasons discussed in this paper, the application of QC procedures 

aids in the harmonization of data, ensuring transparent and appropriate decision making across 

sites. With repeated calls for large, representative data sets in the neuroimaging field, transparent 

knowledge and reporting of decisions made when segmenting, correcting, and ultimately 

retaining measures of hippocampal subfields are facilitated by the QC procedures recommended 

here. In addition, it is critical for research groups to share their data and QC procedures in their 

publications in order to aid in the further development of robust automatic QC tools (e.g., 

artificial intelligence-based QC). 

Retaining all eligible data is a priority for external validity to address substantial 

limitations in sample representation and inferences on development, aging, and neuropathology. 

As we have discussed, there is the potential for bias in the occurrence of errors. For example, the 

risk of threats to validity is increased when applying automated methods with segmentation 

atlases developed in healthy populations to clinical populations or vice versa. Identifying and 

correcting errors in hippocampal subfield segmentations ensures measurement validity is 

acceptable across different subpopulations. Thus, implementing QC to identify and correct data 
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errors increases not only the validity of the measures but also the validity of the inferences to the 

larger population and subsequently the implications for clinical practice and public health. 
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