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Recently, advancements in computational machinery have facilitated the integration of
artificial intelligence (AI) to almost every field and industry. This fast-paced development in
AI and sensing technologies have stirred an evolution in the realm of robotics.
Concurrently, augmented reality (AR) applications are providing solutions to a myriad of
robotics applications, such as demystifying robot motion intent and supporting intuitive
control and feedback. In this paper, research papers combining the potentials of AI and AR
in robotics over the last decade are presented and systematically reviewed. Four sources
for data collection were utilized: Google Scholar, Scopus database, the International
Conference on Robotics and Automation 2020 proceedings, and the references and
citations of all identified papers. A total of 29 papers were analyzed from two perspectives:
a theme-based perspective showcasing the relation between AR and AI, and an
application-based analysis highlighting how the robotics application was affected.
These two sections are further categorized based on the type of robotics platform and
the type of robotics application, respectively. We analyze the work done and highlight
some of the prevailing limitations hindering the field. Results also explain how AR and AI
can be combined to solve the model-mismatch paradigm by creating a closed feedback
loop between the user and the robot. This forms a solid base for increasing the efficiency of
the robotic application and enhancing the user’s situational awareness, safety, and
acceptance of AI robots. Our findings affirm the promising future for robust integration
of AR and AI in numerous robotic applications.
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INTRODUCTION

Artificial intelligence (AI) is the science of empowering machines
with human-like intelligence (Nilsson, 2009). It is a broad branch
of computer science that mimics human capabilities of
functioning independently and intelligently (Nilsson, 1998).
Although AI concepts date back to the 1950s when Alan
Turing proposed his famous Turing test (Turing, 1950), its
techniques and algorithms were abandoned for a while as the
computational power needed was still insufficient. Recently, the
advent of big data and the Internet of Things (IoT),
supercomputers, and cheap accessible storage have paved the
way for a long-awaited renaissance in artificial intelligence.
Currently, research in AI is involved in many domains
including robotics (Le et al., 2018; Gonzalez-Billandon et al.,
2019), natural language processing (NLP) (Bouaziz et al., 2018;
Mathews, 2019), and expert systems (Livio and Hodhod, 2018;
Nicolotti et al., 2019). It is becoming ubiquitous in almost every
field that requires humans to perform intelligent tasks like
detecting fraudulent transactions, diagnosing diseases, and
driving cars on crowded streets.

Specifically, in the field of robotics, AI is optimizing a robot’s
autonomy in planning tasks and interacting with the world. The
AI robot offers a greater advantage over the conventional robot
that can only apply pre-defined reflex actions (Govers, 2018). AI
robots can learn from experience, adapt to an environment, and
make reasonable decisions based on their sensing capabilities. For
example, research is now leveraging AI’s learning algorithms to
make robots learn the best path to take for different cases (Kim
and Pineau, 2016; Singh and Thongam, 2019), NLP for an
intuitive human-robot interaction (Kahuttanaseth et al., 2018),
and deep neural networks to develop an understanding of
emotional intents in human-robot interactions (HRI) (Chen
et al., 2020a; Chen et al., 2020b). Computer vision is also
another field of AI that has enhanced the perception and
awareness of robots. It combines machine learning with image
capture and analysis to support robot navigation and automatic
inspection. This ability of a robot to possess self-awareness is
facilitating the field of HRI (Busch et al., 2017).

The field of robotics has also benefited from the rising
technology of augmented reality (AR). AR expands a user’s
physical world by augmenting his/her view with digital
information (Van Krevelen and Poelman, 2010). AR devices
are used to support the augmented interface and are classified
into eye-wear devices like head-mounted displays (HMD) and
glasses, handheld devices like tablets and mobile phones, and
spatial projectors. Two other extended reality (XR) technologies
exist that we need to distinguish from AR, and they are virtual
reality (VR) and mixed reality (MR). VR is a system that,
compared to AR which augments information on a live view
of the real world, simulates a 3D graphical environment totally
different from the physical world, and enables a human to
naturally and intuitively interact with it (Tzafestas, 2006).
MR combines AR and VR, meaning that it merges physical
and virtual environments (Milgram and Kishino, 1994).
Recently, the research sector witnessed a booming activity of
integrating augmented reality in supporting robotics

applications (Makhataeva and Varol, 2020). These
applications include robot-assisted surgery (RAS) (Pessaux
et al., 2015; Dickey et al., 2016), navigation and teleoperation
(Dias et al., 2015; Papachristos and Alexis, 2016; Yew et al.,
2017), socially assistive robots (Čaić et al., 2020), and human-
robot collaboration (Gurevich et al., 2015; Walker et al., 2018;
Makhataeva et al., 2019; Wang and Rau, 2019). AR has also
revolutionized the concepts of human-robot interaction (HRI)
by providing a user-friendly medium for perception,
interaction, and information exchange (De Tommaso et al.,
2012).

What has preceded affirms that the benefits of combining AI
and AR in robotics are manifold, and special attention should be
given to such efforts. There are several review papers highlighting
the integration of augmented reality to robotics from different
perspectives such as human-robot interaction (Green et al., 2008;
Williams et al., 2018), industrial robotics (De Pace et al., 2020),
robotic-assisted surgery (L. Qian et al., 2020), and others
(Makhataeva and Varol, 2020). Similarly, there exist papers
addressing the potential of integrating artificial intelligence in
robotics as reviewed in Loh (2018), De Pace et al. (2020) and
Tussyadiah (2020). A recent review (Makhataeva and Varol,
2020) summarizes the work done at the intersection of AR
and Robotics, yet it only mentions how augmented reality has
been used within the context of robotics and does not touch on
the intelligence in the system from different perspectives as
highlighted in this paper. Similarly, another systematic review
(Norouzi et al., 2019) presented the convergence of three
technologies: Augmented reality, intelligent virtual agents, and
internet of things (IOT). However, it did not focus on robotics as
the main intelligent systems and even excludes agents having
physical manifestations of humanoid robots. Consequently, this
paper systematically reviews literature done over the past 10 years
at the intersection of AI, AR, and robotics. The purpose of this
review is to compile what has been previously done, analyze how
augmented reality is supporting the integration of artificial
intelligence in robotics and vice versa, and suggest prospective
research opportunities. Ultimately, we contribute to future
research through building a foundation on the current state of
AR and AI in robotics, specifically addressing the following
research questions:

1) What is the current state of the field on research incorporating
both AR and AI in Robotics?

2) What are the various elements and disciplines of AR and AI
used and how are they intertwined?

3) What are some of the current applications that have benefited
from the inclusion of AR and AI? And how were these
applications affected?

To the best of our knowledge, this is the first literature review
combining AR and AI in robotics where papers are systematically
collected, reviewed, and analyzed. A categorical analysis is
presented, where papers are classified based on which
technology supports the other, i.e., AR supporting AI or vice
versa, all under the hood of robotics. We also classify papers into
their perspective robotic applications (for example grasping) and
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explain how this application was improved. Research questions 1
and 2 are answered in Results, and research question 3 is
answered in Discussion.

The remainder of the paper is organized according to the
following sections: Methods, which specifies the survey
methodology adopted as well as inclusion and exclusion
criteria, Results, which presents descriptive statistics and
analysis on the total number of selected papers in this review
(29 papers), Discussion, which presents an analysis on each paper
from different perspectives, and finally Concluding Remarks,
which highlights key findings and proposes future research.

METHODS

This paper follows a systematic approach in collecting literature.
We adopt the systematic approach set forth in Pickering and
Byrne (2014), which is composed of 15 steps as illustrated in
Figure 1.

Steps 1 and 2 were explicitly identified in the Introduction.
This section outlines the used keywords (step 3) and the used
databases (step 4).

Search Strategy and Data Sources
Regarding keywords, this review targets papers that combine
augmented reality with artificial intelligence in robotics. The first
source used was Google Scholar denoted by G. Initially, we excluded
the words surgery and education (search keys G1, G2, and G3) to
narrow down the total number of output papers. Concurrently, there
are several papers reviewing AI Robots in surgical applications (Loh,
2018; Andras et al., 2020; Bhandari et al., 2020) and AI in education
(Azhar et al., 2020; Chen et al., 2020a; Chen et al., 2020b). Then,
search keys G4 and G5 were used (Where we re-included the terms
“surgery” and “education”) to cover a wider angle and returned a
large number of papers, upon which we scrutinized only the first 35
pages. The second source of information is Scopus Database denoted
by S, upon which two search keys were used, S1 and S2, and the third
is ICRA 2020 proceedings. Finally, the references and citations of the
corresponding selected outputs from these three sources were
checked.

The time range of this review includes papers spanning the
years between 2010 and 2020. Note that the process of paper
collection for search keys G1, G2, G3, G4, S1, and S2 started on
the 30th of June and ended in July 21st 2020. G5 search key was
explored between August 11th and August 20th, 2020 and finally,

FIGURE 1 | The adopted systematic approach in this review paper.
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ICRA 2020 proceedings were explored between August 20th and
August 31st 2020.

Study Selection Criteria
The selection process was as follows: First duplicates, patents, and
non-English papers were excluded. Then, some papers were
directly excluded by scanning their titles, while others were
further evaluated by looking into their abstract and keywords
and downloading those that are relevant. Downloaded papers
are then scanned through quickly going over their headers, sub-
headers, figures, and conclusions. Starting from a total of 1,200,
329, and 1,483 papers from Google Scholar, Scopus database, and
ICRA proceedings respectively, the total number of selected papers
were funneled down to 13, 8, and 3 papers, respectively. After that,
we looked into the references and citations of these 24 papers and
selected a total of five papers. The inclusion and exclusion criteria
were as follows:

Exclusion Criteria
• Papers with a non-English content
• Duplicate papers
• Patents

Inclusion Criteria
• The application should directly involve a robot
• Artificial Intelligence is involved in the Robotics Application.
Although thewords artificial intelligence andmachine learning
are used interchangeably in this paper,most of the citedwork is
more accurately a machine learning application. Artificial
intelligence remains the broader concept of machines acting
with intelligence and thinking as humans, with machine
learning being the subset of algorithms mainly concerned
with developing models based on data in order to identify
patterns and make decisions.

• An Augmented Reality technology is utilized in the paper.

The process flow is also illustrated in Figure 2 according to the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (Moher et al., 2009).

RESULTS

A total of 29 papers were selected and individually examined
through checking their abstracts, conclusions, and analyzing their
main content. This section presents how the collected literature
was classified into categories and presents some descriptive
statistics visualized through figures and tables.

Categorization
There are two parallel categorizations in this paper: a theme-
based categorization and an application-based categorization.
Initially, all papers were grouped into two clusters based on a
theme-based grouping of how AR and AI serve each other in a
certain robotics application. The two distinguished clusters were
as follows: AR supports AI, and AI supports AR. Each of these

clusters is further explained below along with the total number of
papers per group.

AR Supports AI (18 Papers)
This cluster groups papers in which a certain augmented reality
visualization facilitates the integration of artificial intelligence in
robotics. An example is an augmented reality application which
provides visual feedback that aids in AI robot performance
testing.

AI Supports AR (11 Papers)
Papers in which the output of AI algorithms and neural networks
support an accurate display of augmented reality markers and
visualizations.

Another remarkable pattern was noted among the 29 papers in
terms of the specific robotics application that this AR-AI alliance
is serving. In consequence, a parallel categorization of the 29
reviewed articles is realized, and three clusters were distinguished
as follows:

Learning (12 Papers)
A robot learns to achieve a certain task, and the task is visualized
to the human using AR. This category combines papers on
learning from demonstration (LFD) and learning to augment
human performance.

Planning (8 Papers)
A robot intelligently plans a certain path, task, or grasp, and the
user can visualize robot information and feedback through AR.

Perception (9 Papers)
A robot depends on AI vision algorithms to localize itself or uses
object detection and recognition to perceive the environment. AR
serves here in identifying the robot’s intent.

Statistical Data
For the sake of analyzing historical and graphical aspects of the
reviewed topic, Figures 3, 4 present the yearly and regional
distribution of reviewed papers, respectively. Historically, the
number of publications integrating AR and AI in robotics
applications has increased significantly between the years 2010
and 2020 (2020 is equal to 2019 but the year has not ended yet),
demonstrating the growing interest in combining the capabilities
of AR and AI to solve many challenges in robotics applications.
Regionally, the united states is the leading country in terms of the
number of published articles, followed by Germany. Note that we
only considered the country of the first author for each paper.

Additional quantitative data are detailed in Table 1. For each
article, the table identifies five types of information: The AR
technology and platform, the type of robot platform, the used AI
algorithm, and to which cluster (from each category) it belongs.
Overall, the most commonly used AR component is the HMD
(48% of papers), mainly Microsoft HoloLens (Microsoft
HoloLens, 2020), Oculus Rift (Oculus, 2021), or custom
designed headsets. This is followed by desktop-based monitors
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(28%) and AR applications on handheld tablets and mobile
phones (21%). Projection-based spatial AR were the least
implemented (3%), which can be explained by the added
complexity of the setup and lack of mobility. Unity3D game
engine was the most commonly used for developing AR
applications and visualizations, in comparison to Unreal
Engine. Other options were using the Tango AR features

supported by the Google Tango tablet or creating applications
from scratch using the OpenGL graphics library. Regarding the
type of robot used, aerial robots, such as UAVs and drones, were
the least utilized (13%) in comparison to mobile robots (48%) and
robotic arms (39%). Deep Neural networks were the most
investigated in literature (52%) along with other state-of-the-

FIGURE 2 | The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) chart.

FIGURE 3 | The growing rate of published papers addressing our target
topic over time.

FIGURE 4 | The distribution of reviewed papers over their countries of
origin.
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TABLE 1 | Descriptive elements on the type of the used AR Component, robotics platform, AI component, and categorization for all reviewed papers.

References Tablet/

Desktop

AR components Robot AI components Category 1 Category

2

HMD Spatial Unreal Unity OpenGL Tango Mobile Arm Aerial ADIOS Neural

networks

FP-

Growth

Q-

learning

SVM SVD KNN Regression MDP Expectation

maximization

DBSCAN DTW Gradient

boosting

AR

supports

AI

AI

supports

AR

Learning Planning Perception

Ong et al., (2010) — x — — — x — — x — — x — — — — — — — — — — — x — x — —

Fang et al., (2013) x — — — — x — — x — — x — — — — — — — — — — — x — x — —

Fang et al., (2014) x — — — — x — — x — — x — — — — — — — — — — — x — x — —

Ghiringhelli et al.,

(2014)

x — — — — — — x — — — — — — — — — x — — — — — — x — — x

Measurable

Augmented Reality

for Prototyping

Cyberphysical

Systems (2016)

— — x — — x — x — x — — — — — — — — x — — — — x — — x —

Sawarkar et al.,

(2016)

— x — — — — — x — x — x — — — — — — — — — — — — x — — x

Muvva et al. (2017) — x — — x — — x — — — — — x — — — — — — — — — x — — x —

Chakraborti et al.,

(2017)

— x — — — — — — x — — — — x x — — — — — — — — x — — x —

Warrier and

Devasia, (2018)

— x — — — — — — x — — — — — — — — x — — — — — — x x — —

Wang et al., (2018) x — — — — x — x — — — x — — — — — — — — — — — — x — — x

Gradmann et al.,

(2018)

x — — — — — x — x — — — — — — — — — — — x — — x — x — —

Sprute et al.,

(2019b)

x — — — — — x x — — — x x — — — — — — — x — — x — x — —

Bentz et al., (2019) — X — — — — — — — x — — — — — — — — — x — — — — x x — —

Corotan and

Irgen-Gioro, (2019)

X — — — — x — x — — — — — x — — — — — — — — — x — — x —

Puljiz et al., (2019) — X — — X — — — x — — x — — — — — — — — — — — — x — — X

Liu et al., (2018) — X — — X — — — x — x — — — — — — — — — — — — x — x — —

(Tay et al., n.d.) X — — — X — — X — — — — — — — — — — — — — — x — x x — —

De Gregorio et al.,

(2020)

X — — — — — — — X — — x — — — — — — — — — — — x — — — X

Kästner et al.

(2020)

— X — X — — — X — — — x — — — — — — — — — — — — x — — X

Dias et al., (2020) X — — — — — — X — — — x — — — — — — x — — — — x — x — —

Weisz et al., (2017) X — — — — — — — X — — — — — — x — — — — — — x — — x —

Hastie et al., (2018) X — — — — — — X — — — x — — — — — — — — — — — x — — x —

Cao et al., (2019) — X — — X — — — X — — — — — — — — — — — X — X — x — —

Kastner et al.,

(2020)

— X — — X — — X — — — x — — — — — — — — — — — — x — — X

Zhang et al., (2020) X — — — X — — X — — — x — — — — x — — — — — — — x — — X

Zein et al., (2020) X — — — — — — — — X — — — X — — — — — — — — X — — x —

El Hafi et al., (2020) — X — — X — — X — — — x — — — — — — — — — — — —x — — x —

(Chu et al., 2018.) — X — — X — — — X — — x — — — — — — — — — — — — x — — X

Gadre, (2018) — X — — X — — — x — — — — — — — — x X — — — — x — x — —
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art machine learning algorithms. Furthermore, the majority of
papers were involved in creating visualizations that support AI
integration to robotics, rather than implementing AI to enhance
the augmented reality application in robotics.

Another set of distinctive features were extracted through
analyzing three attributes, mainly the type of robot platform
used, the type of AR technology employed, and the nature of the
AI method performed, for each of the three robotics
applications. The results are depicted in Figure 5. The
majority of papers (around 70%) that fall under the
“Learning category” were using robot arms and manipulators
as their robot platform. This is mainly because the Learning
category reviews the learning from demonstration application,
which is historically more common for industrial robotics
applications in which a user demonstrates the trajectory of
the end effector (EE) of a robot arm (Billard et al., 2008;
Mylonas et al., 2013; Zhu and Hu, 2018) than in the context
of mobile robots (Simões et al., 2020) or aerial robots (Benbihi
et al., 2019). On the other hand, around 70% of reviewed papers
targeting robot “Perception” applications were using mobile
robots. The reason is that vision-based localization algorithms
are usually more ubiquitous for mobile robots (Bonin-Font
et al., 2008) compared to the other two platforms. The three
robot platforms were almost equally distributed in the
“Planning” category with a relatively higher prevalence of
mobile robots.

Regarding the type of AR hardware/technology used, it was
noted that the HMD was the most commonly used for all
robotics applications covered, followed by the tablet or the
desktop-based monitor. Spatial AR, or projection-based AR,
was the least commonly used given its rigidness in terms of
mobility and setup. As for the used AI, there was a variety of
methods used, including regression, support vector machine
(SVM), and Q-learning. However, neural networks, including
YOLO and SSD deep neural networks, were the more
commonly used across the three robotics applications.
Neural networks were utilized in 42, 25, and 80% of the
reviewed papers in the learning, planning, and perception
categories, respectively.

DISCUSSION

Augmented reality technology has created a new paradigm for
human-robot interaction. Through enabling a human-friendly
visualization of how a robot is perceiving its environment, an
improved human-in-the-loop model can be achieved (Sidaoui
et al., 2019; Gong et al., 2017). The use of AR technology for
robotics has been elevated by the aid of several tools, mainly
Vuforia Engine (Patel et al., 2019;Makita et al., 2021; Comes et al.,
2021), RosSharp (Kästner and Lambrecht, 2019; Rosen et al.,
2019; Qiu et al., 2021), ARCore (Zhang et al., 2019; Chacko et al.,
2020; Mallik and Kapila, 2020), and ARKit (Feigl et al., 2020;
McHenry et al., 2021). ARCore and ARKit are tools that have
enhanced the AR experience for motion tracking, environmental
understanding, light estimation, among other features. RosSharp
has provided an open-source software for communication
between ROS and Unity, which have greatly facilitated the use
of AR for robot applications and provided useful easy-access
functionalities, such as publishing and subscribing to topics and
transferring URDF files.

In this section, 29 papers are analyzed in two parallel
categorizations as explained in Results, a theme-based analysis
capturing the relation between AR and AI in a robotic context
(AR supports AI, AI supports AR) and an application-based
analysis focusing on the perspective of how the robotic
application itself was improved. We have also compiled a
qualitative table (Table 2) highlighting several important
aspects in each paper. The highlighted aspects include the type
of robot used, the nature of the experiment and number of human
subjects, the human-robot interaction aspect, and the advantages,
disadvantages and limitations of integrating AR and AI.

Theme-Based Analysis
The two themes highlighted here depend on the nature of the AR-
AI alliance. Consequently, 18 papers in which an augmented
reality technology is facilitating the integration of AI to robotics
are reviewed under the “AR supports AI” theme, and 11 papers in
which AI has been integrated to enhance the AR experience for a
certain robotics application are reviewed under the “AI supports
AR” theme.

AR Supports AI
In this cluster, augmented reality is used as an interface to
facilitate AI, such as visualizing the output of AI algorithms in
real-time. Papers are grouped depending on the type of robotic
platform used: mobile robots, robotic arms, or aerial robots. Some
papers contain both and are categorized based on the more
relevant type.

Mobile Robots
An AR interface was developed in El Hafi et al. (2020) for an
intelligent robotic system to improve the interaction of service
robots with non-technical employees and customers in a retail
store. The robot performs unsupervised learning to
autonomously form multimodal place categorization from a
user’s language command inputs and associates them to
spatial concepts. The interface provided by an HMD enables

FIGURE 5 | The quantity distribution of three factors: Robot platform, AR
technology, and AI method, over the three robot applications: Learning,
Planning, and Perception.
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TABLE 2 | Qualitative information and analysis of each paper.

References Robot Methodology Human-robot interaction

Real/
Virtual

Type Human subject Experiment

Ong et al. (2010) Virtual PUMA 560 industrial robot In-house author
case study

The user provides several demonstrations
for a system to learn an unknow curve

Demonstrating robot paths
instead of explicitly programming
them

Fang et al. (2013) Real SCORBOT-ER VII
manipulator

11 Participants Participants were asked to plan the EE
orientation along some visible curve.
Also they filled a questionnaire

Making robot path planning
easier for non-technical users

Fang et al. (2014) Real SCORBOT-ER VII
manipulator

12 Participants Participants performed two case studies,
including a pick and place task

Making robot path planning
easier for non-technical users

Ghiringhelli et al. (2014) Real Swarm Robots In-house author
case study

Robot tracking and visualization modules
were implemented and tested

Simplifying the debugging of
swarm robots for human
developers

Measurable Augmented
Reality for Prototyping
Cyberphysical Systems, (2016)

Both Autonomous Aerial Vehicle In-house author
case study

Given a set of randomly generated
destinations, a swarm of quadrotors plans
paths while avoiding self and human
collisions

Seeking a collision free human-
robot shared workspace

Sawarkar et al. (2016) Real UGV In-house author
case study

Controlling the pan-tilt of an IP camera
through a HMD and identifying the terrorist
probabilities of two cases

Making teleoperation and
monitoring of robots intuitive

Muvva et al. (2017) Real Arduino-controlled mobile
robot

In-house author
case study

Reaching a predetermined destination
while avoiding physical and augmented
objects

-Implementing a cost-effective
solution for training a robot in RL.

Chakraborti et al. (2017) — — — Theoretical: A framework for an
augmented workspace in HRI.

Solving the impedance mispatch
in HRI.

Warrier and Devasia, (2018) Real Kinova Robot In-house author
case study

Tracking the operator’s motion while
visualizing the output trajectory and
desired one

Demonstrating the robot
trajectory through tracing human
motion

Wang et al. (2018) Real UGV In-house author
case study

Detecting a target in the Robot’s
environment

Displaying the marker on the
human’s remote monitoring
device

Gradmann et al. (2018) Real KUKA Lightweight Robots In-house author
case study

Pick and place of objects clustered using
DBSCAN.

Teleoperating the robot in AR.

Sprute et al. (2019a) Real Mobile Robots 15 Participants Users were asked to define virtual borders
via an AR Google Tango tablet.

Restricting robot workspace in
HR shared environments

Bentz et al. (2019) Real Asctec Hummingbird aerial
robot

10 Participants Students were asked to perform a
multitasking scenario assisted with an
aerial robot

Developing a collaborative
human-robot multitasking
framework

Corotan and Irgen-Gioro,
(2019)

Real Arduino-controlled mobile
robot

In-house author
case study

A robot navigating a floor to reach a goal
destination while relying only on ARCore
capabilities

- Developing an AR-based
indoor navigation system

Puljiz et al. (2019) Real KUKA KR-5 robot In-house author
case study

Testing the performance of two
referencing algorithms

Making the AR setup experience
less tedious

Liu et al. (2018) Real Baxter Robot In-house author
case study

Teaching a robot to open various bottles Patching new skills to a robot in
real time through an intuitive
interphase

Tay et al. (n.d.) Real Turtlebot 3 Waffle In-house author
case study

Collecting IMU data during robot
navigation and testing performance of two
algorithms in real time

Simplifying the process of
debugging

De Gregorio et al. (2020) Real Robot Manipulator In-house author
case study

Creating two novel datasets for industrial
robotic applications using the ARS pipeline

Projecting representations on
items through a user-friendly AR
interphase

Kästner et al. (2020) Real Kuka Mobile Youbot In-house author
case study

Evaluating the performance of four
algorithms in the 6D pose detection of the
mobile robot

Making the AR setup experience
less tedious

Dias et al. (2020) Real Mobile robots and a
robotic arm

50 Participants Participants were asked to choose a
sequence of item placements for 11 task
variants to be used as a training dataset.

Teaching robots new task
variants through providing AR
enabled demonstrations

Weisz et al. (2017) Real Industrial Stäubli TX60L
Robotic arm and a
BarrettHand gripper

Five healthy
subjects and one
impaired user

Several grasping experiments Supporting impaired individuals
through an assistive grasping
system

Hastie et al. (2018) Real Autonomous Underwater
Vehicle

— Implementing the ORCA interphase to
provide explanations on robot perception
and planning algorithms

Visualizing robot intent through
increasing its transparency

(Continued on following page)
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the employee to monitor the robot’s training in real-time and
confirm its AI status.

After investigating possible interfaces that allow user-friendly
interactive teaching of a robot’s virtual borders (Sprute et al.,
2019a), the authors in Sprute et al. (2019b) used a Google-Tango
tablet to develop an AR application which prompts the user to
specify virtual points on a live video of the environment from the
tablet’s camera. The used system incorporates a Learning and
Support Module which learns from previous user-interactions
and supports users through recommending new virtual borders.
The borders will be augmented on the live stream and the user can
directly select and integrate them to the Occupancy Grid
Map (OGM).

An augmented reality framework was proposed inMuvva et al.
(2017) to provide a cost-effective medium for training a robot an
optimal policy using Q-learning. The authors used ODG-R7
glasses to augment virtual objects at locations specified by
fiducial markers. A CMU pixy sensor was used to detect both
physical and virtual objects.

An AR mobile application was developed in Tay et al. (n.d.)
that can inform the user of specific motion abnormalities of a
Turtlebot, predict their causes, and indicate future failure. This
information will be augmented on the live video of a mobile
phone and sent to the user via email. The system uses the robot’s
IMU data to train a gradient boosting algorithm which classifies
the state of the motor into fault conditions indicating the level of
balancing of the robot (tilting). This system decreases the
downtime of the robot and the time spent on troubleshooting.

The authors in Corotan and Irgen-Gioro (2019) investigated
the capabilities of augmented reality (ARCore) as an all in one
solution for localization, indoor routing, and detecting obstacles.
The application runs on a Google Pixel smartphone, which acts as
both the controller (through a three-view user interface) and the
sensor. Using its on-board localization features, an optimal path

is planned from a starting position to an end position based on a
Q-learning algorithm.

Omidshafiei et al. (Measurable Augmented Reality for
Prototyping Cyberphysical Systems, 2016) implemented an AR
environment that provides visual feedback of hidden information
to assist users in hardware prototyping and testing of learning and
planning algorithms. In this framework, a ceiling-mounted
projection system augments the physical environment in the
laboratory with specific mission-related features, such as
visualizing the state observation probabilities. In this system,
the tracking of mobile and aerial robots is based on motion-
capture cameras. Similarly, Hastie et al. (2018) presented the
MIRIAM interface developed by the ORCA Hub: a user-centered
interface that supports on-demand explainable AI through
natural language processing and AR visualizations.

Robotic Arms
An Android mobile AR application was developed in Dias et al.
(2020) as a training interface for a multi-robot system to perform
a task variant. The tablet acts as a data collection interface based
on the captured input demonstrations of several users. The
application visualizes detected robots (using AR markers) and
enables each user to construct a toy building of their choice
through sequential tasks. Deep Q-learning (Hester et al., 2017)
has been employed to learn from the sequence of user
demonstrations, predict valid variants for the given complex
task, and achieve this task through a team of robots. The
accuracy achieved in task prediction was around 80%.

The authors in Warrier and Devasia (2018) implemented a
Complex Gaussian Process Regressionmodel to learn the intent of
a novice user during his/her teaching of the End Effector (EE)
position trajectory. A Kinect camera captures the user’s motion,
and an AR HMD visualizes the desired trajectory versus the
demonstrated trajectory, which allows the operator to estimate

TABLE 2 | (Continued) Qualitative information and analysis of each paper.

References Robot Methodology Human-robot interaction

Real/
Virtual

Type Human subject Experiment

Cao et al. (2019) Real Mobile robot with Arduino
Braccio Arm

12 Participants Users were asked to perform continuous
motion, define ghosts, and complete an
assembly task. Also, they filled a
questionnaire

A framework for human-robot
collaborative task

Kastner et al. (2020) Real Kuka Mobile Youbot In-house author
case study

Testing a modified version of the VoteNet
architecture

Making the AR setup experience
less tedious

Zhang et al. (2020) Real ABB Yumi robot In-house author
case study

Grasping of different objects detecting
using the developed pipeline

Visualizing robot intent in terms
of the planned grasps

Zein et al. (2020) Virtual Parrot AR Drone In-house author
case study

Drone autonomously navigating a path in a
simulated Gazebo environment

A framework to assist users in
UAV teleoperation

El Hafi et al. (2020) Real Toyota Human Support
Robot

In-house author
case study

Customer interaction task Achieving human-robot
integration in customer-service
scenarios

Chu et al. (2008) Real 7 DOF Robotics arm In-house author
case study

Pick and place task using the TDS input A human-robot collaborative
framework for people with
disabilities

Gadre, (2018) Real Baxter Robot In-house author
case study

Pick and place tasks for several objects Creating an intuitive AR
interphase for collecting
demonstration
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the error (i.e., difference between the two trajectories) and correct
accordingly. This approach was tested by a single operator and
showed a 20% decrease in the tracking errors of demonstrations
compared to manual tracking.

AR solutions were investigated in Ong et al. (2010) to correct
for model mismatches in programming by demonstration (PBD),
where they used an HMD as a feedback and data collection
interface for robot path planning in an unknown environment.
The user moves a virtual robot (a probe with ARmarkers) along a
desired 3D curve with a consistent orientation, while evaluating
the drawn curve using AR. The collected data points are then fed
to a three-stage curve learning method, which increased the
accuracy of the desired curve. The system was further
enhanced in Fang et al. (2013) through considering robot
dynamics, basically the end effector (EE) orientation. Once the
output curve is generated, a collision-free volume (CFV) is
displayed and augmented on a desktop screen to the user who
can select control points for EE orientation. Some limitations in
the proposed interface were found, such as the difficulty in
aligning the virtual robot with the interactive tool, occluding
markers or moving them out of the camera’s view, and selecting
inclination angles that are not within range, causing the EE to
disappear from the display. Consequently, the used AR visual
cues were further developed for a robust HRI in Fang et al. (2014),
such as the use of virtual cones to define the orientation range of
the EE, colors to distinguish dataset points, control points, and
points outside the range of the CFV, and an augmented path
rendered by a set of selected control points.

A HoloLens HMD was also used in Liu et al. (2018) as an AR
interface in the teaching process of interpretable knowledge to a
7-DoF Baxter robot. The full tree of robot coordinates TF and
latent force data were augmented on the physical robot. The
display also offers the user to turn on the robot’s learned
knowledge represented by a “Temporal And-Or graph,” which
presents live feedback of the current knowledge and the future
states of the robot.

A semi-automatic object labeling method was developed in De
Gregorio et al. (2020) based on an AR pen and a 2D tracking
camera system mounted on the arm. In this method, a user first
outlines objects with virtual boxes using an AR pen (covered with
markers) and a robot acquires different camera poses through
scanning the environment. These images are used to augment
bounding boxes on a GUI which enables the user to refine them.

The authors in Gadre (2018) implemented a training interface
facilitated by Microsoft HoloLens for learning from
demonstration. The user can control the EE position by
clicking commands on a transparent sphere augmented on the
EE and use voice commands to start and end the recording of the
demonstration. Through clicking on the sphere at a specific EE
position, the system will store it as a critical point (CP) and
augment a transparent hologram of the robot on its position as a
visual reminder of all saved CPs. The saved CPs are then used to
learn a Dynamic Movement Primitive (DMV).

A spatial programming by demonstration (PBD) called
GhostAR was developed in Cao et al. (2019), which captures
the real-time motion of the human, feeds it to a dynamic time
warping (DTW) algorithm which maps it to an authored human

motion, and outputs corresponding robot actions in a human-
lead robot-assist scenario. The captured human motions and the
corresponding robot actions are saved and visualized to the user
who can observe the complete demonstration with saved AR
ghosts of both the human and robot and interactively perform
edits on robot actions to clarify user intent.

The authors in Zhang et al. (2020) created the Dex-Net deep
grasp planner, a distributed open-source pipeline that can predict
100 potential grasps from the object’s depth image based on a pre-
trained Grasp Quality CNN. The grasp with the highest Quality
value will be overlaid on the object’s depth map and visualized on
the object through an AR application interface provided by
ARKit. The system was able to produce optimal grasps in
cases where the top-down approach doesn’t detect the object’s
complex geometry.

An AR assistive-grasping system was implemented in Weisz
et al. (2017) that can be used by impaired individuals in cluttered
scenes. The system is facilitated by a surface electromyography
(sEMG) input device (a facial muscle signal) and can be evaluated
using an augmented reality desktop-based display of the grasping
process. The interface allows a visualization of the planned grasp.
The probabilistic road map planner (Kavraki et al., 1996) was
used to verify the reachability of an object and a K-nearest
neighbor (KNN) classifier for classifying objects into reachable
and unreachable.

The authors in Chakraborti et al. (2017) proposed combining
AR technology with electroencephalographic (EEG) signals to
enhance Human-robot collaboration specifically in shared
workspaces. Two AR interaction modalities were implemented
via an HMD. The first facilitates the human-in-the-loop task
planning while the other enhances situational awareness.
Through observing the emotions from EEG signals, the robot
can be trained through reinforcement learning to understand the
user’s preferences and learn the process of human-aware task
planning.

Aerial Robots
A teleoperation system was developed in Zein et al. (2020) that
recognizes specific desired motions from the user joystick input
and accordingly suggests to auto-complete the predicted motion
through an augmented user interface. The proposed system was
tested on Gazebo using a simulated Parrot Ar. Drone 2.0 and
performed better than manual steering by 14.8, 16.4, and 7.7% for
the average distance, time, and Hausdorff metric, respectively.

The authors in Bentz et al. (2019) implemented a system in
which an aerial collaborative robot feeds the data from the head
motions of a human performing a multitasking job to an
Expectation-Maximization that learns which environment
views have the highest visual interest to the user.
Consequently, the co-robot is directed to capture these
relevant views through its camera, and an AR HMD
supplements the human’s field of view with views when needed.

Overall, the advantages of augmented reality in facilitating the
integration of AI to robotics applications are manifold. AR
technologies can provide a user-friendly and intuitive medium
to visualize the learning process and provide the live learned state
of the robot. They also provide a medium for the robot to share its
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present and future intent, such as the robot perceived knowledge
and the robot’s planned actions based on its AI algorithms.
Although the AR HMDs - such as those provided by
Microsoft HoloLens and Oculus Rift - are the most commonly
used for an intuitive HRI, they still have their limitations such as
their narrow field of view (FOV) and impractical weight. Other
AR interfaces used included mobile phones, tablets, and desktop
displays. The latter is more practical in simulations, otherwise, the
user will need to split attention between the actual robot and the
augmented display. Tablets and mobile phones are generally
more intuitive but impractical in situations where the user has
to use both hands. Spatial AR, also known as projection-based
AR, is less used due to its mobility restrictions.

AI Supports AR
In this cluster, AI contributes to an accurate and more reliable
augmented reality application, or interface, such as applying deep
learning for detecting obstacles in the robot’s path. Papers are also
grouped depending on the type of robotic platform used.

Mobile Robots
The authors in Ghiringhelli et al. (2014) implemented an AR
overlay on the camera view of a multi-robot system. The system
supports three types of information: textual, symbolic, and
spatially situated. While the first two reveal insights about the
internal state of each robot without considering its orientation or
camera perspective, spatially situated information depends on
how the robot perceives its surrounding environment and are
augmented on each robot using its frame of reference. Properly
augmenting information depends on a visual tracking algorithm
that identifies robots from the blinking code of an onboard
RGB LED.

InWang et al. (2018), the authors used deep learning to obtain
the location of a target in the robot’s view. The robot first runs
simultaneous localization and mapping (SLAM) to localize and
map the place in an urban search and rescue scenario. Once the
robot detects a target in the area, an AR marker is placed on its
global coordinate and displayed to the user on the augmented
remote screen. Even when the detected target is not within
display, the location of the marker changes according to its
place relative to the robot.

The authors in Kastner et al. (2020) developed a markerless
calibration method between a HoloLens HMD and a mobile
robot. The point cloud data acquired from the 3D depth sensor of
the AR device are fed into a modified neural network based on
VoteNet. Although the approach was feasible in terms of an
accurate localization and augmentation of the robot by a 3D
bounding box, the intensive live processing operations of point
cloud data was very slow. Two seconds was the time needed for
the user to stay still while the neural network processes the
incoming data, which can be impractical and lead to a bad
user experience.

Alternatively, Kästner et al. (2020) investigated using the 2D
RGB data provided by the HoloLens instead, which is relatively
faster to process than 3D data and can be applied to any AR
device. SSPE neural networks were deployed in order to localize
the six DOF pose of a robot. Meanwhile, the resulting bounding

boxes are augmented to the user, who can evaluate the live
training process. This method is around 3% less accurate than
the first one but almost 97% faster.

Robotic Arms
The authors in Puljiz et al. (2019) reviewed the referencing and
object detection methods used in the robotics field in general and
the referencing methods currently used between a robot and the
HMD in particular. Based on this, authors proposed three
referencing algorithms that can serve this particular domain:
Semi-Automatic One Shot, Automatic One Shot, and
Automatic Continuous. While the trials for the proposed
automatic methods (based on neural networks) are still in
their infancy, a detailed implementation of Semi-Automatic
referencing (ICP and Super4PCS algorithms) was tested on a
KUKA KR-5 robot. With a minimal user input - positioning a
cube (a seed hologram) on the base of the robot and rotating its
z-axis towards its front - the referenced robot will be augmented
on the actual one via the Microsoft HoloLens display.

An AR teleoperation interface was implemented in Gradmann
et al. (2018) of a KUKA lightweight robot using a Google Tango
Tablet. The interface allows the user to change the robot joint
configuration, move the tool center point, and perform grasping
and placing objects. The application provides a preview of the
future location of the robot by augmenting its corresponding
virtual one according to the new joint configuration. Object
Detection was done using Tango’s built-in depth camera and
RGB camera and is based on DBSCAN algorithm.

The authors in (Chu et al., 2008.) used a Tongue Drive System
as input for an assistive grasping system facilitated through an AR
interface. The system implements the YOLO neural network [39]
for object detection and a deep grasp algorithm (Chu and Vela,
2018) for detecting the graspable locations for each object.
Consequently, this information (bounding boxes and grasp
lines) will be properly augmented on objects within the user’s
FOV. Furthermore, a virtual menu provides the user with robot
affordances that can be performed.

Aerial Robots
A teleoperation surveillance system was proposed in Sawarkar
et al. (2016) composed of an unmanned ground vehicle (UGV)
and an unmanned aerial vehicle (UAV) in the context of a hostile
environment. The IMUmeasurements of a VR goggle are used to
control the rotations of a camera mounted on each vehicle. The
live video stream is processed to detect individuals and their
probabilities of being terrorists using a CNN. This information is
then augmented to the user through the goggle.

As implied in literature, artificial intelligence techniques are a
great means for a robust visualization and an improved user
experience. Traditional techniques to augment information on
objects or targets are mainly using fiducial AR markers, which are
impractical in cases of new environments such as in urban search
and rescue (USAR) scenarios. On one hand deep learning can
improve robot perception of its environment to detect objects and
properly augment related information on each. On the other
hand, it can be used to localize the robot itself and reveal
information during its live performance. A key consideration
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for these systems is the processing requirements versus the
current capabilities of the hardware.

Application-Based Analysis
This section focuses on the areas in which AR and AI were
applied. In other words, we explain here how the challenges of a
certain robotics application - such as learning from
demonstration and robot localization - were addressed
through leveraging resources from augmented reality and
artificial intelligence. We divide this into three main headings:
Learning (12 papers), Planning (8 papers), and Perception (9
papers). Tables 3, 4, and 5 summarize the advantages as well as
disadvantages and limitations of each method in each of the three
subheadings respectively.

Learning
In general terms, a robot is said to learn from its environment or
from the human if it can develop novel skills from past experience
and adapt according to the situation at hand. According to the
collected literature, we divide the scope of learning here to two
basic paradigms: Learning from demonstration and Learning to
augment human performance.

Learning From Demonstration
Robot learning from demonstration (LFD) is described as the
ability of a robot to learn a policy – identified as a mapping
between the robot world state and the needed actions – through
utilizing the dataset of user demonstrated behavior (Argall et al.,
2009). This dataset is called the training dataset, and it is formally
composed of pairs of observations and actions. Consequently,
training channels are a bottleneck in such applications, and this is
where augmented reality comes very handy. AR interfaces can act
as a means for demonstrating the required behavior, and more
importantly, improve the overall process through demystifying
user intent. Consequently, the user can intuitively understand the
“robot intent” (i.e., how the robot is understanding his/her
demonstration). On the other hand, AI can be used for the
robot to learn the “user intent” (i.e., understand what the user
wants the robot to perform and adapt accordingly), and visualize
this intent through AR. The following analysis clarifies this within
the context of LFD.

In Ong et al. (2010) and Fang et al. (2013, 2014), data points of
the demonstrated trajectory (of a virtual robot) are collected,
edited, and visualized through a HMD/GUI allowing the user to
intuitively clarify his/her intent of the desired trajectory. These
demonstrations are first parameterized using a Piecewise Linear
Parameterization (PLP) algorithm, then fed to a Bayesian neural
network (BNN), and finally reparametrized. Authors compared
error metrics and demonstrated that the proposed three-stage
curve learning method (PLP, BNN, and reparameterization)
improved the accuracy of the output curve much faster than
the basic approach. Similarly, authors in Gadre (2018) used the
Microsoft HoloLens as an interface for data collection in
demonstrating a desired curve for a real Baxter robot. The
interface allows the user to interactively control a teleoperation
sphere augmented on the robot EE. The environment is modeled
as a Markov Decision Process, and the agent (robot) learns a

Dynamic Movement Primitive based on the user-defined critical
points. Data from demonstrations were processed through a
least-square function. Although this methodology supports an
intuitive interface for collecting training data, it was prone to
errors as the real robot and hologram were not lining up all the
time, causing inaccurate representation of locations.
Furthermore, the system was only tested by a single expert
demonstrator.

In Warrier and Devasia (2018), the authors trained a kernel-
based regression model to predict the desired trajectory of the EE
based on a database of human-motor dynamics. Through observing
the human-motor actions collected through a Microsoft Kinect
camera, the model can infer the intent of the user of the desired
trajectory. A single trial allows the robot to infer a new desired
trajectory, which is then visualized to the user through the HoloLens
against the actual demonstrated trajectory. This allows the user to
spatially correct the error through moving their hand (tracked using
the Skeleton Tracking routine) to minimize the distance between the
demonstrated and desired trajectories. Alternatively, the authors in
Liu et al. (2018) captured demonstrations by tracking hand-object
interactions collected through a LeapMotion sensor. After manually
segmenting the captured data into groups of atomic actions (such as
pinch, twist, and pull), this data is used to train a modified version of
the unsupervised learning algorithm: ADIOS (Automatic
Distillation of Structure). This induces a Temporal and Or Graph
(AOG), a stochastic structural model which provides a hierarchical
representation of entities. The AR interface then allows to
interactively guide the robot without any physical interactions, for
example through dragging the hologram of the virtual robot to a
new pose.

In Cao et al. (2019), the humanmotion is captured through the
AR elements (Oculus Rift and two Oculus Touch Controllers)
and saved as ghost holograms. Dynamic TimeWarping is used to
infer the human motion in real time from a previously compiled
list of groups that represent human authorized motions. The
workflow of the proposed system consists of five modes: The
Human Authoring Mode in which the demonstrations are
recorded, The Robot Authoring Mode in which the user can
interactively author the collaborative robot task, The Action
Mode in which the user performs the new collaborative task,
and The Observation and Preview Modes for visualizing saved
holograms and an animation of the whole demonstration.

A tablet was used in Dias et al. (2020) for data collection,
prompting the user to construct a toy building through
controlling a multi-robot system consisting of two mobile
robots to carry blocks of different types and one robot arm for
pick and place and a grid of state cells is used to represent the
workspace. Given that the user can select between 135 possible
actions to construct the toy, the application stores this data for
training the DNN model. The model computes the posterior
probability of the uncertain action (how the user is building the
structure), predicting the move with the highest probability
depending on what the current state is in the occupancy grid.
Although the model performed successful task variants for 80% of
the trials, authors indicated that further improvements should be
done to improve the prediction of sequential actions and
investigate more complex tasks.
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Learning to Augment Human Performance
Machine Learning opens a great avenue for improving the quality
and efficiency of tasks performed by humans, such as
maintenance and troubleshooting, multitasking work, or even
teleoperation. AI would be used for understanding data and
providing suggestions that would augment (improve) human
performance of the task at hand. In the following analysis, we
analyze content within this perspective, focusing on how the
application was improved.

Multitasking is improved in Bentz et al. (2019), where data
from a HMD are fit to a model that identifies views of interest to
the human, directs an aerial co-robot to capture these views, and
augments them on his/her. The input data is the head pose
collected through a VICON motion capture system. A function,
modeled as a mixture of Gaussians, receives this data and
estimates the human visual interest via expectation
maximization (EM). Although the average time to complete
the primary task increased by around 10–16 s, the head
motions recorded throughout the experiment were reduced by
around 0.47 s per subject.

In Tay et al. (n.d.), the authors investigated two machine
learning models trained on IMU sensor data of a Turtlebot to
predict possible motor failures. SAS Visual Data Modelling and
Machine Learning (VDMML) was used to test which of the
Random Forest Model and Gradient Boosting would perform

better to track the balance (tilting) of the robot. Gradient Boosting
was chosen as it showed a lower average squared error in
predictions, with 315 generated decision trees and 426
maximum leaf size.

An “Autocomplete” framework was proposed in Zein et al.
(2020) that would support novice users in teleoperating complex
systems such as drones. The system takes the human input from a
Joystick, predicts what the actual desired teleoperation command
is, and then shares it with the user through an augmented reality
interface. The used model is an SVM trained on 794 motion
examples to classify the input motion as one from a library of
motion primitives which currently are lines, arcs, 3D helix
motions, and sine motion.

In this section, two learning paradigms were discussed, robot
learning from demonstration (LFD) and robot learning to
augment human performance. The presented literature affirms
that AR and AI will be extensively integrated in these two robotics
applications in the near future. In the former, AR serves as a user-
friendly training interphase and has a great potential for swarm
mobile robotics, as multiple users can more easily train a multi-
robot system. In the context of manipulators and robotic arms,
visualizing demonstrations in real time allows the user to
understand trajectories, correct for errors, and introduce new
constraints to the system. In the latter, there is a potentially
growing avenue to employ AI in robotic applications that

TABLE 3 | The advantages as well as the disadvantages and limitations of each method in the Learning sub-heading.

References Effects of AR and AI

Advantages Disadvantages and limitations

Ong et al. (2010) + Intuitive visualizing and planning of EE orientations and CFV.
+21.7% decrease in max error compared to the base case

- Performance deteriorates for non-planar surfaces due to poor tracking
capabilities.

- High speed of manual curve tracing can cause large variations
Fang et al. (2013) + Add, modify, and delete control points.

+ define EE orientation angles at control points
- Distracting AR visualizations.
- Unexperienced users found difficulties in not occluding the marker

Fang et al. (2014) + User-friendly interphase to visualize and modify control points - Performance deteriorates for non-planar surfaces due to poor tracking
capabilities.

- High speed of manual curve tracing can cause large variations
Warrier and Devasia,
(2018)

+ 20% decrease in tracking errors.
+ User-friendly interface to demonstrate trajectories and visualize
them

- Multiple trials are needed during the training phase to record the response
dynamics.

- Limited FOV of the HoloLens
Bentz et al. (2019) + Robot can learn human visual interest while avoiding collisions.

+ Recorded head motions reduced by 0.47s per subject
- Increase in human’s performance time by around 10–16 s

Liu et al. (2018) + Intuitive interface for adding a new task and removing an existing
one.

+ Visualizing robot’s action plan as a T-AOG.
+ An early diagnosis of failure.
+ Increased success rate in robot opening bottles

- Error prone robot localization and tracking of markers.
- Limited FOV provided by HoloLens
- Images provided by HoloLens are blurred with a low-quality color contrast

Tay et al. (n.d.) + Detection of faulty conditions based on IMU data.
+ Decreasing the time spent on troubleshooting

- Poor localization ability

Dias et al. (2020) + Intuitive AR interphase for robot control.
+ 80% accuracy in performing a task variant

- Model predictions of invalid actions

Cao et al. (2019) + Intuitive interface for visualizing saved demonstrations as ghost
holograms.

+ Editing demonstrations in real time

- Half of participants found AR ghosts to be distracting and obstructive after
some time

Zein et al. (2020) + Intuitive interface for selection of suggested trajectories.
+ The average distance, time, and Hausdorff metric were improved by
14.8, 16.4, and 7.7% respectively

- Impractical using real drones: AR visualizations will only be applicable for a
limited view of the drone (given the constrained FOV of HMDs or projection-
based systems)

Gadre, (2018) + User-friendly interface for robot teleoperation.
+ Intuitive editing of endpoints.
+ Shadow visualizations of future orientation

- Unstable robot hologram (drifting due to poor tracking).
- Error prone alignment of virtual robot with real robot, and sphere locations
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understand user instructions (of the task at hand) and employ AR
to visualize what the robot understands and interactively ask for
feedback from the user. This has a great potential in complex
applications where multiple factors concurrently affect the
process, such as in the cases of teleoperating unmanned aerial
vehicles (UAVs) or controlling mobile robots in dynamic
environments like in the case of USAR.

Planning
This cluster groups papers in which AI is integrated to improve
task planning, path planning, and grasping.

Task Planning
In Chakraborti et al. (2017), a system for human-aware task
planning was proposed featuring an “Augmented Workspace”
allowing the robot to visualize their intent such as their current
planning state, and a “Consciousness Cloud” which learns from
EEG signals the intent of the human collaborator while executing
the task. This cloud is two-fold: an SVM model is used to classify
input EEG signals into specific robot commands, and a Q-learning
model which learns from the task-coupled emotions (mainly stress
and excitement levels) the preferences of the human to plan
accordingly. Although results were promising on novice users,
authors reflected that the significance of the system might
drastically decrease when tested on experienced individuals and
proposed this as a future work.

Path Planning
Optimal path planning through reinforcement learning was done
in Muvva et al. (2017) in a working environment combining both
physical and AR (virtual) obstacles. The environment is
represented as a Markov Decision Process, and the Depth First
Search (DFS) was used for a sub-optimal solution. Then the robot
is trained to find the optimal path in grid world using Q-learning
which returns the path as the optimal policy learned. Similarly in
Corotan and Irgen-Gioro (2019), the robot learns the shortest path
to its destination using Q-learning while relying solely on ARCore
capabilities of localization and object avoidance. However, authors
concluded that the robot’s dependence on one input (basically the
camera of a smart phone mounted on the robot) supported by
ARCore is inefficient. Whenever anything obstructs the sensor, the
robot loses its localization and routing performance.

Grasping
A deep AR grasp planning system was proposed in Zhang et al.
(2020) which utilizes theARKit platform to collect point cloud data of
the object-to-grasp as well as visualizing the planned grasp vector
overlaid on the object’s depth map. The pipeline is five-folds:
Recording RGB images of the object to grasp, extracting the point
cloud using Structure from Motion (SFM), cleaning the data using
RANSAC andKNN, transforming the data to an artificial depthmap,
and finally feeding this map to a pre-trained GQ – CNN. Although
this methodology was efficient in detecting optimal grasps for cases
where the traditional top-down approach fails, its downside is the
very high time taken for collecting data (2min per object).

The authors in Chu et al. (2018) also investigated AR and AI
solutions for grasping, specifically those controlled by a Tongue

Drive System (TDS). The input is RGB-D images from the META
AR glasses, and the output is potential grasp predictions each
represented by a 5D grasp rectangle augmented on the target
object. Before applying the deep grasp algorithm (Chu et al., 2018),
YOLO (Redmon et al., 2016) is first applied on the RGB-D for
generating 2D bounding boxes, which are furthermanipulated into
3D bounding boxes for localization. The system achieved
competitive results with state-of-the-art TDS manipulation tasks.

Through using grasp quality measurements in Weisz et al.
(2017) taking into consideration the uncertainty of the grasp
acquisition and the object’s local geometry in a cluttered scene,
the system can robustly perform grasps that match the user’s
intent. The presented human-in-the-loop system was tested on
both healthy and impaired individuals and subjects successfully
grasped 82% of the objects. However, subjects found some
difficulties in the grasp-refinement phase mainly due to their
lack of the gripper’s friction properties.

Based on the literature presented, we foresee several opportunities
for the utilization of AR and AI in future planning and manipulation
tasks. This can result in a paradigm shift in collaborative human-in-
the-loop frameworks, where AI can add the needed system
complexities and AR can bridge the gap for the user to
understand these complexities. For example, the challenges of
assistive robotic manipulators (Graf et al., 2004; Chen et al., 2013)
to people with disabilities can bemitigated, and the integration of new
input modalities to grasp planning can be facilitated. Concurrently, in
all planning frameworks, attention should be given to the added
mental load of AR visualizations, which might obstruct the user in
some cases or even hinder efficient performance.

Perception
This cluster groups papers in which AI is integrated for robot and
environment perception through object detection or localization.

Object Detection
In Sawarkar et al. (2016) the data received from the IP camera
mounted on the UGV is initially de-noised using the Gaussian
filter, then processed using two algorithms for detecting
individuals: an SVM trained with HOG features, and a Haar
Cascade classifier. These algorithms detect the human anatomy
and selects it as the ROI, which is then fed to a CNN trained to
recognize individuals holding several types of guns. Once the data
is processed, the detected human is augmented with a colored
bounding box and a percentage representing his/her probability
of being a terrorist.

In Wang et al. (2018), an automatic target detection mode was
developed for the AR system based on an object semi-supervised
segmentation applied to a convolutional neural network. The
segmentation algorithm used is the One-Shot Video Object
Segmentation (OSVOS). The methodology is limited as the chosen
algorithm was prone to errors especially when there is no target in the
view. Furthermore, post-processing the results was needed unless the
user manually specifies whether a target is within view or not.

In De Gregorio et al. (2020), authors compared the results of
two object-detecting CNNs: YOLO and SSD on the dataset they
generated using ARS, an AR semi-automatic object self-annotating
method. The proposed method enabled the annotation of nine
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sequences of around 35,000 frames in 1 hour compared to manual
annotation which usually takes around 10 h to annotate 1,000
frames improving the data annotation process. Furthermore, both
recall and precision metrics were increased by around 15%
compared to manual labeling. In El Hafi et al. (2020), authors
developed a method to form spatial concepts based on multimodal
inputs from imaged features obtained by AlexNet-based CNN
(Krizhevsky et al., 2012), self-location information from the Monte
Carlo localizer, and word information obtained from a speech
recognition system.

To reduce the time spent on restricting the workspace of
mobile co-robots, authors in Sprute et al. (2019b) developed a
learning and support system that learns from previous user-
defined virtual borders and recommends similar ones that can be
directly selected through an AR application. The system uses a
perception module based on RGB cameras and applies a deep
learning algorithm (ResNet101) to the semantically segmented
images of previous user interactions. Some limitations are mainly
due to occlusion from furniture or having a camera setup that
doesn’t cover the whole area.

The DBSCAN algorithm was used in Gradmann et al. (2018)
to detect objects for a pick and place task. Objects are clustered
according to their depth and color information provided by the
depth camera of the Google Tango tablet. AR provides a live
visual interface of the detected objects and a preview of robot
intent (future position). 82% of pick and place tasks with different
object positions were performed successfully, although the
algorithm’s runtime can be impractical for some applications.

Robot Localization
In order to localize the robot and properly augment the
information on each robot in a multi-robot system, authors in
Ghiringhelli et al. (2014) used an active marker (one blinking RGB
LED per robot) imaged by a fixed camera overlooking the robots
environment. The blinking of each LED is set to a predefined

pattern alternating two colors (blue and green). Initially, bright
objects were detected through a fast beacon-detection frame-based
algorithm. These detected objects were filtered first through
evaluating the Track Quality Index, and then through a linear
binary model which classifies the tracked points of the RGB color
into either blue or green, based on a logistic regression learning of
the blue and green color features applied during calibration.

The authors in Puljiz et al. (2019) presented a review of
different approaches that can potentially be used for
referencing between a robot and the AR HMD, such as
training a neural network to estimate the joint positions of a
robot manipulator based on RGB data (Heindl et al., 2019). This
was actually done in Kästner et al. (2020) to localize the six DOF
pose of a mobile robot instead, while evaluating the training
process through the AR interface. Authors compared two state-
of-the-art neural networks – SSPE and BetaPose - previously
trained on real and artificial datasets. The artificial dataset is
based on a 3D robot model generated by Unreal Engine and
annotated using NDDS plugin tool. Both networks, upon
receiving a live video stream from the HoloLens, predicted
accurate 3D pose of the robot, with the SSPE being 66%
faster. Estimating the pose based on depth sensor data was
investigated in Kastner et al. (2020). Authors also developed
an open source 6D annotation tool for 2D RGB images.

In this section, almost all the literature is an integration of AI
to improve the AR experience, whether in innovating robust
calibration methods or improving the tracking and object
detection capabilities of AR systems. This provides an insight
of what is done and what can be done to achieve a smooth
integration of augmented reality applications. These methods are
still limited in terms of robustness to ambient conditions like
lighting, and the problem of increased computational time is still
impractical for some applications. However, this can be mitigated
in the future as hardware power is constantly improving and
cloud computing is becoming ubiquitous.

TABLE 4 | The advantages as well as the disadvantages and limitations of each method in the Planning sub-heading.

References Effects of AR and AI

Advantages Disadvantages and limitations

Muvva et al. (2017) + Robot successfully avoided both physical and
augmented obstacles

- Impractical robot setup for some field applications.
- Robot cannot avoid any new physical object

Chakraborti et al. (2017) + Enforcing safety to the H-R workspace.
+ Closed loop feedback through EEG signals

- Narrow FOV.
- Non-robust robot performance: learning algorithm doesn’t always converge due to
limited Emotive SDK capabilities

Corotan and Irgen-Gioro,
(2019)

+ Intuitive interface for visualizing and controlling robot
behavior.

+ Inexpensive setup: single device for localization, routing,
and object detection

- Poor robot localization.
- Camera obstructions cause major performance drops.
- Motion tracking fails for long distances

Weisz et al. (2017) + A user-friendly interface for visualizing and accepting
grasps.

+ Successful grasping of 82% of objects

- The grasp refinement stage is very time-consuming

Zhang et al. (2020) + Visualizing AR grasp overlays and planned grasp lines.
+ Success rate in grasping all 8 objects was 95%.
+ Can produce optimal grasps that the standard top-down
approach can’t

- Scanning process is tedious and time consuming

(Chu et al., n.d.) + Visualizing an intuitive virtual menu for robot affordances.
+ The proposed pipeline increases operation speed by five
times

- Success rate decreases by 20% compared to the manual method
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The Ethical Perspective of Robotics and AI
As robots become ubiquitous, there are ethical considerations
ranging from liability to privacy. The notion of a robot’s ability
to do ethical decision making was first framed in Wallach and
Allen (2009) yet the need to set rules for robot morality has been
foresighted much earlier in Asimov’s fiction literature. Several
organizations are trying to set guidelines and standards for such
systems, we mention the IEEE 7010–2020 standard on ethically
aligned design. The ethical challenges arising from complex
intelligent systems span civilian and military use. Several aspects
of concern emerged, ranging from discrimination and bias to
privacy and surveillance. Service robots, which are designed to
accompany humans at home or work present some of the greatest
concerns as they serve in private and proprietary environments.
Currently, AI capabilities possessed by robots are still relatively
limited, where robots are only capable of a simple navigation task
or taking a simple decision. However, as the research field evolves,
robots will be able to do much more complex tasks with a greater
level of intelligence. Therefore, there is a moral obligation for
ethical consideration to evolve with the evolving technology.

CONCLUDING REMARKS

This paper provided a systematic review of literature on robotics
which have employed artificial intelligence (AI) algorithms and
augmented reality (AR) technology. A total of 29 papers were
selected and analyzed within two perspectives: A theme-based
analysis featuring the relation between AR and AI, and an

application-based analysis focusing on how this relation has
affected the robotics application. In each group, the 29 papers
were further clustered based on the type of robotics platform and
the type of robotics application, respectively. The major insights
that can be drawn from this review are summarized below.

Augmented reality is a promising tool to facilitate the integration
of AI to numerous robotics application. To counter the effect of
increased complexity in understanding AI systems, AR offers an
intuitive way of visualizing the robot internal state and its live
training process. This is done through augmenting live
information to the user via an HMD, a desktop-based GUI, a
mobile phone, or a spatial projection system. This proved to
improve several applications, such as learning by demonstration
tasks, grasping, and planning. Learning from demonstration for
robot manipulators is a field that has greatly benefited from the
integration of AR and AI for an intuitive and user-friendly method
of teaching, as done in Fang et al. (2014) and Liu et al. (2018). AR has
served as a user-friendly interface to ask the user to accept or reject
theAI output, such as recommending to “Autocomplete” a predicted
trajectory or suggesting a faster mapping of new virtual borders. We
suspect the use of AR could contribute to the acceptability and trust
of the general public in AI-enabled robots, as it can explicitly reveal
the decision-making process and intentions of the robot. This also
has the potential to contribute to not only increasing the efficiency of
robotic systems but also their safety.

To improve the AR experience, accurate and reliable calibration
and object localization methods are needed. As can be seen from
the literature, artificial intelligence is a viable element supporting
this notion for robotics applications. AR markers are widely used

TABLE 5 | The advantages as well as the disadvantages and limitations of each method in the Perception sub-heading.

References Effects of AR and AI

Advantages Disadvantages and limitations

Ghiringhelli et al.
(2014)

+ Visualizing perceived knowledge of each robot.
+ Adopted tracking algorithm works even on very small robots

- Unless two LEDS are mounted and visible on each robot, tracking fails

Sawarkar et al.
(2016)

+ Allowing teleoperator to access and control a first person display of
the remote environment.

+ Visualizing the algorithm’s results in detecting a terrorist

- Limited FOV of the HoloLens

Wang et al. (2018) + Localizing and tracing the object of a target in the robot’s
environment

- Algorithm fails if target is not in the room.
- Post-processing segmentation results is needed

Gradmann et al.
(2018)

+ 82% of program executions were successful.
+ Intuitively change joint, robot control mode, and gripper control

- Slow object detection runtime.
- Adopted algorithm might be inapplicable given a high number of objects in
scene

Sprute et al. (2019b) + 91.5% F1 score for LSS.
+ Accuracy is as high as for a system without an LSS.
+ Easy validation of AI output

- Any occlusions to the overhead camera might cause failing.
- Complicated setup in some environments.
- Performance highly depends on the type of environment

Puljiz et al. (2019) + Minimizing human workload for calibration - Decrease in robustness and accuracy compared to marker-based
approaches

De Gregorio et al.
(2020)

+ Intuitive interface to define and modify bounding boxes.
+ Diminishing the computational cost of image labeling.
+ Decreasing the annotation time by up to 9 h
+15% increase in precision and recall scores

- The preliminary stage of the pipeline requires manual object detection, which
might cause inaccuracies

Kästner et al. (2020) + Markerless 3D object localization.
+ 97% decrease in computational time

- 3% decrease in accuracy

Kastner et al. (2020) + Markerless 3D object localization - High computational cost
- Impractical and could result in a bad user-experience

El Hafi et al. (2020) + Teaching robot new spatial concepts through the AR interface and
natural language.

+ Monitor AI status in real time

- Expensive solution for retail stores (given the current price of HMDs)
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but are limited in dynamic environments and in cases of
occlusions. Deep neural networks for object detection and robot
localization seem the most promising for unstructured robotic
environments (De Gregorio et al., 2020; El Hafi et al., 2020),
although they rely more on computational power and some
methods are still computationally demanding. However,
progress in hardware and cloud computing is making AI more
viable in such scenarios. We suspect that AI will be used more for
context and situational awareness in addition to detection of
objects and events, which are capabilities that would enrich
more AR displayed content.

The potentials of integrating these two elements in robotics
applications are manifold and provide a means of deciphering the
traditional human-robot mismatch model. Specifically, in the
context of human-robot collaboration, AI can be used to
understand the real user intent filtered from the perceived tasks
the robot traditionally performs as in the work of Zein et al. (2020).
At the same time, AR can visualize information of the robot’s
understanding of the user intent as in the work of Ghiringhelli et al.
(2014), providing a closed feedback loop into the model mismatch
paradigm. The combination of these technologies will empower the
next phase on human-robot interfacing and interaction. This is an
area that highlights the importance of AI working side by side with
humans instead of being perceived as a substitute for them.

This study confirms the many benefits of integrating AR and
AI in robotics and reveals that the field is fertile and expects a
striking surge in scholarly work. This result aligns with the
current trends of incorporating more AI in the field of
robotics (Dimitropoulos et al., 2021). After the outbreak of
COVID-19, the demand to replace humans with smart robots
have become critical in some fields (Feizi et al., 2021) affirming
the increasing trend. Similarly, AR technology is currently at its
rise, with several broad applications spanning education (Samad
et al., 2021), medicine (Mantovani et al., 2020), and even sports
(da Silva et al., 2021). As AR and AI related technologies evolve,
their integration will have numerous advantages to every
application in robotics as well as other technological fields.”

Despite the well-developed resources, some limitations need to be
addressed for powerful implementation of AR and AI in robotics. For
example, AR devices are still hardware-limited, and some do not
support advanced graphical processing, which challenges the
implementation of computationally intensive AI algorithms on AR
devices in real-time. Current methods rely on external remote servers
for heavy computations, which might be impractical in some cases.
Furthermore, vision-based approaches to track objects using AR
markers are prone to errors and performance drops largely when

occlusions happen or under challenging lighting conditions. Further
improvements in AR hardware are needed to improve processing,
battery life, and weight; all are elements needed for AR use for an
extended period of time.

Future work can apply new out-of-the-boxAItbox1 techniques to
improve the AR experience with tracking methods robust in
dynamic situations. Additional work is needed in AI to better
understand human preferences in “how,” “when,” and “what” AR
visual displays are shown to the user while debugging or performing
a collaborative task with a robot. This can be framed when a robot
can fully understand the “user intent” and show the user only
relevant information through an intuitiveAR interface. Similarly, AR
holds potentials for integrating AI in complex robotics applications,
such as grasping tasks in highly cluttered environments, detecting
targets and localizing robots in dynamic environments and urban
search and rescue, and teleoperating UAVs applying intelligent
navigation and path planning. The future will have AI and AR in
robotics ubiquitous and robust, just like networking, a given in a
robotic system.

The major limitation of this systematic review is the
potential underrepresentation of some papers combining
AR, AI, and robotics. Given the choice of search terms
identified in Methods, there is a possible incomplete
documentation of research papers that do not contain a
specified keyword, rather contain another synonym or an
implied meaning in text.
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