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Abstract
Modeling stochastic behavior of chemical reaction networks is an important endeavor in

many aspects of chemistry and systems biology. The chemical master equation (CME) and

the Gillespie algorithm (GA) are the two most fundamental approaches to such modeling;

however, each of them has its own limitations: the GA may require long computing times,

while the CMEmay demand unrealistic memory storage capacity. We propose a method

that combines the CME and the GA that allows one to simulate stochastically a part of a

reaction network. First, a reaction network is divided into two parts. The first part is simu-

lated via the GA, while the solution of the CME for the second part is fed into the GA in order

to update its propensities. The advantage of this method is that it avoids the need to solve

the CME or stochastically simulate the entire network, which makes it highly efficient. One

of its drawbacks, however, is that most of the information about the second part of the net-

work is lost in the process. Therefore, this method is most useful when only partial informa-

tion about a reaction network is needed. We tested this method against the GA on two

systems of interest in biology - the gene switch and the Griffith model of a genetic oscillator

—and have shown it to be highly accurate. Comparing this method to four different stochas-

tic algorithms revealed it to be at least an order of magnitude faster than the fastest among

them.

Introduction
In a network of chemical reactions, the molecular concentrations at any given time cannot be
predicted with a certainty; they can only be anticipated with a certain probability. This proba-
bility can in principle be determined by solving (analytically or numerically) the chemical mas-
ter equation (CME). Attempting to do so, however, can more often than not be a frustrating
exercise: except for a handful of simple cases, the CME cannot be solved analytically, and for a
lot of interesting cases even a numerical solution can be near impossible to attain. One way
around this obstacle was an algorithm proposed by Doob [1] and later presented and popular-
ized by Gillespie [2]. The authors showed that the information stored in the CME can be
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extracted through a series of relatively simple steps coupled with the help of a pseudo-random
number generator. Known today by its popular name as the Gillespie algorithm (GA) (also
known as kinetic Monte Carlo or stochastic simulation algorithm (SSA)), this procedure guar-
antees an exact solution to the CME, provided these steps are repeated sufficiently many times
so as to build a statistically significant ensemble of data points. The solution to the CME can
thus be reconstructed step by step without the need for enormous memory storage capacity
that is usually required to solve the CME directly. The one drawback of the GA is that the num-
ber of steps required scales with the number of reactions and the magnitude of their rates. Con-
sequently, for large reaction networks the running time may become impractical.

Since it first appeared, researchers have devised faster versions of the GA, some of which are
exact [3, 4], in the sense that they give statistically identical answers as the CME, while others
rely on approximations [5–8]. In conjunction with the Langevin approximation [9], these algo-
rithms comprise a library of methods to chose from when simulating reaction networks. The
Dizzy package [10], for instance, is one such library containing four stochastic simulators of
various speed and accuracy.

With the advent of stochastic algorithms, the appeal for solving the CME directly has not
diminished however. Having an analytical solution to the CME, even an approximate one, is
extremely useful and can provide insight into the stochastic properties of chemically interact-
ing networks. It is not surprising then that many methods for finding approximate solutions to
the CME exist and continue to appear [11–16].

There exists a class of methods which involve partitioning a reaction network in a way that
facilitates either a solution to the CME [17, 18] or a faster stochastic simulation [19–21] of one
part of the reaction network, while yielding only a partial information about the rest of the net-
work. Other partitioning methods rely on large differences among the values of the reaction
rates [22, 23]. Such methods take advantage of the fast rates by considering the chemical spe-
cies affected by these rates to be in a quasi-steady state.

In this paper, we present another method where synergy between the CME and the GA is
exploited for the purpose of simulating one part of a reaction network. While previous methods
of this kind rely on a priory approximations of either the CME or the GA, we begin by deriving
the exact equations from which the next reaction time and the next reaction probability can be
computed, as well as the exact CME for the non-simulated part of the network. Once these
equations take form, they may be solved by virtue of approximations, either as a matter of
necessity or in order to speed up the simulation process. We show on two biologically relevant
examples how this method can be applied and discuss what its limitations are.

Materials and Methods

Chemical Master Equation
The time evolution of the joint probability distribution P(n, t) for a chemically reacting system
comprising Nmolecular species and J reactions is governed by the chemical master equation
(CME):

_Pðn; tÞ ¼
XJ

m¼1

amðn� υmÞPðn� υm; tÞ � Pðn; tÞ
XJ

m¼1

amðnÞ; ð1Þ

where n is short for the set {n1, n2, . . ., nN}, and a1(n). . .aJ(n), are the reaction propensities,
which, for our purposes here, will depend on time only explicitly, i. e. through the variables n.
The matrix elements υiμ specify the change in ni due to the μth reaction. It will be useful later
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on to represent Eq (1) in another way [9, 24–26]. Let us define a vector state

jcðtÞi ¼
X

n1 ;n2...nN

Pðn; tÞ
YN
i¼1

jnii; ð2Þ

and operators Âi, Â
y
i and n̂i the action of which on the state |nii is

Âijnii ¼ nijni � 1i; Ây
i jnii ¼ jni þ 1i; n̂ijnii ¼ nijnii; ð3Þ

where, by definition, n̂i ¼ Ây
i Âi. The index imeans that the operators act only on the ith vector

state, leaving the rest of them untouched. The vector state |nii, and its transpose hni| are simply
the orthogonal unit column and row vectors respectively:

jnii ¼

0

:

:

0

1

0

:

:

:

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

i

hnij ¼ 0; : : 1; 0; : : :ð Þi ð4Þ

so that h0| = (1, 0, 0, . . .), h1| = (0, 1, 0, . . .), etc. The operators Âi and Â
y
i have the form

Âi ¼

0 1 0 0 : :

0 0 2 0

0 0 0 3

: :

: :

: :

2
666666666666664

3
777777777777775

i

Ây
i ¼

0 0 0 : : :

1 0 0

0 1 0

0 0 1 :

: :

: :

2
666666666666664

3
777777777777775

i

: ð5Þ
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The vector state product in Eq (2) can be thought of as a vector whose elements are the indi-
vidual vector states, |nii:

YN
i¼1

jnii ¼

jn1i

jn2i

:

:

:

jnNi

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: ð6Þ

A product of any operators, e. g. Â1Â2, could then be represented by an N × Nmatrix:

Â1Â2 ¼ Â1Â213:::1N ¼

Â1 0 0 : : :

0 Â2 0 0

0 0 13 0

: :

: :

: 1N

2
666666666666664

3
777777777777775

; ð7Þ

where 1i is the identity operator: 1ijnii ¼ jnii.
With this notation, the master equation can be written in the form

d
dt

jcðtÞi ¼ Ĥ jcðtÞi; ð8Þ

where

Ĥ ¼
XJ

m¼1

YN
j¼1

ððn̂j þ 1Þ�1ÂjÞyð�ujmÞjujmjðÂy
j ÞyðujmÞjujm j �

YN
j¼1

1j

" #
amðn̂Þ ð9Þ

is an operator acting on the vector state
QN

i¼1 jnii and θ(.) is a step function centered around
zero.

Let us check that Eqs (8) and (1) are indeed identical. To see how the operator Ĥ in Eq (9)
acts on the state |ψi, let us first look at how the operators within it act on the individual vector
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states |nji. We have

ððn̂j þ 1Þ�1ÂjÞaðÂy
j Þbjnji ¼ ððn̂j þ 1Þ�1ÂjÞa�1½ððn̂j þ 1Þ�1ÂjÞ�jnj þ bi

¼ ððn̂j þ 1Þ�1ÂjÞa�1½ðnj þ bÞðn̂j þ 1Þ�1�jnj þ b� 1i
¼ ððn̂j þ 1Þ�1ÂjÞa�1jnj þ b� 1i
¼ ððn̂j þ 1Þ�1ÂjÞa�2jnj þ b� 2i
¼ ððn̂j þ 1Þ�1ÂjÞa�3jnj þ b� 3i
�
�
�
¼ jnj þ b� ai

ð10Þ

and hence,

ððn̂j þ 1Þ�1ÂjÞyð�ujmÞjujmjðÂy
j ÞyðujmÞjujmjjnji ¼ jnj þ yðujmÞjujmj � yð�ujmÞjujmji: ð11Þ

Since the second term is merely the identity operator, it leaves the state unchanged. The
operator amðn̂Þ acting on the product state ∏j|nji also leaves it unchanged and itself becomes a

number, aμ(n). Putting the above relations together, we can write

Ĥ jci ¼
X

n1 ;n2 :::nN

Pðn; tÞĤ
YN
j¼1

jnji
" #

¼
X

n1 ;n2 :::nN

XJ

m¼1

Pðn; tÞamðnÞ
YN
j¼1

jnj þ yðujmÞjujmj � yð�ujmÞjujmji �
YN
j¼1

jnji
" #

¼
X

n1 ;n2 :::nN

XJ

m¼1

Pðn� υm; tÞamðn� υmÞ
YN
j¼1

jnji
" #

;

ð12Þ

where in the last line we used the fact that υjμ = θ(υjμ)|υjμ|−θ(−υjμ)|υjμ|. The left hand side of Eq
(8) states that

d
dt

jcðtÞi ¼
X

n1 ;n2 :::nN

d
dt

Pðn; tÞ
YN
j¼1

jnji
" #

: ð13Þ

The only way expressions Eqs (12) and (13) can be equal is if the coefficients of the product
vector state ∏j = 1|nji on both sides are equal. This leads to Eq (1).

The formal solution to Eq (8) is

jcðtÞi ¼ eĤ tjcð0Þi; ð14Þ

where |ψ(0)i is the initial vector state specified entirely by P(n, 0). The operator eĤ t is called the
evolution operator. Multiplying both sides of Eq (14) by hn| and invoking the orthogonality
relation hn0jni ¼ dn0

1
n1
dn0

2
n2
:::dn0NnN

we obtain the probability distribution

hnjcðtÞi ¼ hnjeĤ tjcð0Þi ¼ Pðn; tÞ; ð15Þ

where for brevity jni ¼QN
i¼1 jnii. With this formalism it is easy to write down quantities such
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as the transition probabilities. For example,

Wðn0; t0jn; tÞ ¼ hn0jeĤ ðt0�tÞjni; ð16Þ

means the probability to find the system in the state n0 at time t0 if at time t it was in the state n.
Lastly, let us also write down the identity operator in the form

1 ¼
X
n

jnihnj ð17Þ

as it will be useful in later sections.

Gillespie Algorithm
The idea behind the GA is to simulate a chain of Markov processes by sampling the probability
distribution of the time elapsed since the last reaction, τ, and the probability that a specific
reaction, μ, will occur at τ, such that any reaction occurring at τ has probability 1. The steps are
as follows:

1. At some initial time t (e. g. t = 0) select your initial state n and compute the propensities aμ(n).

2. Select two random numbers r1 and r2.

3. Compute τ using the formula

t ¼ ð1=a0Þ ln ð1=r1Þ; ð18Þ
where a0 ¼Pm amðnÞ.

4. Find the smallest integer j that satisfies

Xj

j0¼1

aj0 ðnÞ > r2a0ðnÞ; ð19Þ

and set j = μ.

5. Update the system according to nðt þ tÞ ¼ nðtÞ þ um and set t = t + τ.

6. Return to step 1.

Repeating these steps until t reaches some final time leads to a particular path, or realization,
for n. In order to obtain the same information within this time interval as is contained in the
CME, one must compute this realization infinitely many times. It is in this sense that the GA
and the CME are exactly equivalent. Of course, in practice one only needs to compute a finite
number of realizations to extract meaningful information about the system. Depending on
how many realizations are considered “sufficient” and how long it takes to compute each reali-
zation, the GA may be a fast route to solving the CME, or it may be a very slow one. In the next
section we will show how one can combine the CME and the GA in order to simulate stochasti-
cally a part of a system.

CME-GA hybrid
Consider a reaction network of J reactions with propensities {a1, . . ., aJ}, comprising two sets of
molecular species:m ¼ fm1; :::;mN1

g and n ¼ fn1; :::; nN2
g (N1 + N2 = N). The propensities

are some functions ofm and n, but not time. Let us arrange the reactions into two groups,
G1 = {a1, . . ., aK−1} and G2 = {aK, . . ., aJ}, such that the reactions in group G1 can affect both
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m and n, while the reactions in group G2 can only affect n. During a time interval, τ, in which
no reaction occurs in G1, the CME for G2 can be written as follows:

_Pmðn; tÞ ¼
XJ

m¼K

amðm;n� umÞPmðn� um; tÞ

�Pmðn; tÞ
XJ

m¼K

amðm;nÞ:
ð20Þ

The subscriptsm in Pm(n, t) serve as a reminder that the solution of Pm(n, t) will depend on
their value. Note that by definition nmay change during τ only via the reaction channels in G2,
but not in G1. Let us now see how one can sample τ and the next reaction in G1 from their
respective probability distributions in a manner similar to the one described in the previous
section. We begin by deriving the probability distribution for τ.

Let us divide time into L discrete infinitesimal intervals, Δt, such that ΔtL = τ. Using the
notation introduced earlier, the probability that no reaction in G1 occurs in the time τ can be
expressed as

QðtÞ ¼
X

n0 ;n1 ;:::

Pmðn0; 0Þ
YL�1

k¼0

e�SkDt�

hnLjeĤDtjnL�1ihnL�1jeĤDtjnL�2i:::hn2jeĤDtjn1ihn1jeĤDtjn0i;
ð21Þ

where Sk ¼
PJ

i¼K aiðm;nkÞ and k refers to the kth time interval. The exponential terms, exp
[−Sk Δt], are the probabilities that, starting at time tk = kΔt, no reaction occurs in the time Δt.
Since the Ss are numbers, not operators, we can move them wherever we want within the total
product. Especially useful is to move each exp[−Sk Δt] just left of the state |ni for each k:

QðtÞ ¼
X

n1;n2 ;:::

hnLjeĤDte�SL�1DtjnL�1ihnL�1jeĤDte�SL�2DtjnL�2i:::

:::hn2jeĤDte�S1Dtjn1ihn1jeĤDte�S0Dtj�i;
ð22Þ

where j�i ¼Pn0
Pmðn0; 0Þjn0i is the initial state. Now, thanks to the fact that

Skjnki ¼
XK
i¼1

aiðm;nkÞjnki ¼ Ŝkjnki ¼
XK
i¼1

aiðm; n̂kÞjnki; ð23Þ

and the relation lim�!0 exp½B̂��exp½Ĉ�� ¼ exp½ðB̂ þ ĈÞ�� for arbitrary operators B̂ and Ĉ , we
may write

QðtÞ ¼
X
nL

hnLjeĤ
0Dt

X
nL�1

jnL�1ihnL�1j
 !

eĤ
0Dt

X
nL�2

jnL�2ihnL�2j
 !

:::

:::eĤ
0Dt

X
n1

jn1ihn1j
 !

eĤ
0Dtj�i ¼

X
nL

hnLjeĤ
0tL j�i;

ð24Þ

where Ĥ 0 ¼ Ĥ þ Ŝ. Recalling Eq (17), we can set all the terms in the parentheses to unity. The
expression for Q(τ) can now be written as

QðtÞ ¼
X
nL

QmðnL; tLÞ; ð25Þ
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where, setting tL to τ,

Qmðn; tÞ ¼ hnjeĤ 0tj�i: ð26Þ

This expression is identical in structure to Eq (15) and as such can be expressed in a differ-
ential form:

_Qmðn; tÞ ¼
XK�1

m¼1

amðn� υmÞQmðn� υm; tÞ

�Qmðn; tÞ
XJ

m¼1

amðnÞ;
ð27Þ

with the initial conditions that Qm(n, 0) = Pm(n, 0). This equation resembles Eq (20) except
that now we have all propensities, from G1 and G2, appearing in the second term.

Next we need to compute the probability pμ that the μth reaction in G1 occurs at time τ.
This is given by the probability that the μth reaction occurs given a specific set n, multiplied by
the probability of having n, and then summing over all n. In symbols:

pm ¼
X

n1 ;:::;nN

Pmðn; tÞ
amðm0;nÞ
aðm0;nÞ

; aðm0;nÞ ¼
XK�1

n¼1

anðm0;nÞ: ð28Þ

We now have everything we need to simulate the evolution ofm via the CME-GA. Here are
the steps:

1. Select your initial setm and initial probability Pm(n, 0) and hence Qm(n, 0) (since Pm(n, 0)
= Qn(n, 0)).

2. Solve Eqs (20) and (27) and compute Q(τ) and pμ for μ = 1, . . ., K − 1 according to Eqs (25)
and (28).

3. Compute τ and select the next reaction μ according to:

i. Generate a random real number ξ1 in the range [0, 1] and solve ξ1 = Q(τ) for τ

ii. Generate another random real number ξ2 in the range [0, 1] and select the smallest inte-

ger k that satisfies the condition
Pk

j¼1 pj > x2. Set μ = k.

4. Updatem and let Pm(n, τ) be the new initial condition for Eqs (20) and (27) if and only if
the selected reaction does not effectuate a change in ni. If the selected reaction changes an ni
by ±wi (wi = 1, 2. . .), the new initial probability Pm(n, τ) must be modified according to:

Pmðn; tÞ ! Pmðn; tÞjni¼ni�wi
if ni ! ni þ wi

Pmðn; tÞ ! L̂iPmðn; tÞ if ni ! ni � wi;

where L̂i is an operator that transforms Pm(n, τ) like so:

L̂iPmðn; tÞ ¼ ½Pmðn; tÞjni¼0 þ Pmðn; tÞjni¼wi
�dni0

þ
Xwi�1

j¼1

Pmðn; tÞjni¼jdnij

þPmðn; tÞjni¼niþwi

Ywi�1

j¼0

ð1� dniwi
Þ:
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If more than one species of n is affected by a reaction in G1, the above transformation must

be applied to all of them, e. g. L̂1L̂2:::Pmðn; tÞ.
This procedure allows one to simulate stochastically a part of a reaction network, i. e.m, at

the expense of losing information about the rest of the network, i. e. n. However, the tractability
of this algorithm will depend on the system of interest and on the way in which it is partitioned.
If, for instance, a particular choice of partition leads to Eqs (20) and/or (27) being too compli-
cated to solve efficiently, the speed of this algorithm may end up being inferior to other sto-
chastic algorithms. Another obstacle to efficiency is having to solve ξ1 = Q(τ) for τ, which,
depending on the particulars of P(τ), might be a difficult task. One way to solve for τ is to use a
minimization algorithm that optimizes the measure (ξ1 − Q(τ))2 with respect to τ. This, how-
ever, will likely require a number of steps, calling into question the efficiency of this algorithm.
Same can be said of Eq (28), in which the summation(s) may or may not have a closed form.
These potential difficulties require not only that the system be partitioned wisely, but also
that some of the steps above be simplified/approximated. In the next section we will test the
CME-GA on two biological systems and see how it may be applied effectively and accurately.

Results

The genetic switch
Let us consider a single-gene motif with positive autoregulation and a promoter cooperativity
of 2. This system can exhibit very large noise [27] due to its positive feedback, and is therefore
of interest in systems biology. The simplest yet realistic version of this gene motif is the one
described by the following reactions (see Fig 1A):

S0 þ n !a1S0n S1 m!Km mþ n

S1 !
b1S1 S0 þ n n!qn �

S1 þ n !a2S1n S2

S2 !
b2S2 S1 þ n

S0 !
r0S0 S0 þm

S1 !
r0S1 S1 þm

S2 !
rS2 S2 þm

m !km �

ð29Þ

wherem stands for the copy number of mRNA molecules, n for the copy number of proteins,
and S0, S1 and S2 label the promoter states: unoccupied, occupied by one protein, and occupied
by two proteins, respectively. The reaction propensities appear above each arrow. The parame-
ters αi, βi, r, r0, K, k, q are the reaction frequencies per molecule. One can get a sense for the
dynamics of this system by looking at the evolution of its averaged variables, �S0, �S1, �S2, �m and
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Fig 1. The genetic switch: reactions and dynamics. A) A schematic of the genetic switch. B) Dynamics of
average mRNA,m, protein, n, and the three states of promoter, S0, S1 and S2. The chosen reaction
frequencies in inverse minutes were: α1 = α2 = 0.001, β1 = β2 = 1, r0 = 0.1, r = 10, K = 1, k = 0.05, q = 0.01.

doi:10.1371/journal.pone.0149909.g001
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�n, given by the set of ordinary differential equations (ODE)

_�S1 ¼ a1�nð1� �S1 � �S2Þ þ b2
�S2 � ða2�S1�n þ b1Þ�S1;

_�S2 ¼ a2
�S1�n � b2

�S2;

_�m ¼ r�S2 þ r0 � k �m;

_�n ¼ K �m � q�n;

ð30Þ

where �S0 ¼ 1� �S1 � �S2. Fig 1B shows the dynamics of �S0, �S1, �S2, �m and �n.
Let us now employ the CME-GA to study the stochastic properties of a part of this system.

Notice that the reactions were organized into two columns. The reactions in the left column
effectuate a change in eitherm or in both Si and n together, but not exclusively in n; the reac-
tions that change n only appear in the right column. Hence, referring to the notation in the pre-
vious section, the left column represents the setm = {S0, S1, S2,m}, while the right column
represents the set n = {n}. Hence, the two equations, Eqs (20) and (27), reduce to:

_Pmðn; tÞ ¼ KmPmðn� 1; tÞ þ qðnþ 1ÞPmðnþ 1; tÞ � Pmðn; tÞðKmþ qnÞ; ð31Þ

and

_Qmðn; tÞ ¼ KmQmðn� 1; tÞ þ qðnþ 1ÞQmðnþ 1; tÞ
�Qmðn; tÞ½ða1S0 þ a2S1Þnþ b1S1 þ b2S2 þ r0þ rS2 þ ðK þ kÞmþ qn�:

ð32Þ

It is easy to check that, provided the initial probability Pmðn; 0Þ is a Poisson distribution, the
solution to both, Eqs (31) and (32), is also a Poisson distribution. Thus

Pðn; tÞ ¼ e�λðtÞ λðtÞn
n!

; ð33Þ

and

Qðn; tÞ ¼ e�gðtÞ hðtÞn
n!

; ð34Þ

where for notational simplicity the indexesm were omitted. Inserting P(n, t) and Q(n, t) into
Eqs (31) and (32) respectively yields

_λ ¼ Km� qλ; ð35Þ

_h ¼ Km� ~qh; ð36Þ

_g ¼ ~K � qh; ð37Þ

where ~q ¼ a1S0 þ a2S1 þ q and ~K ¼ b1S1 þ b2S2 þ r0 þ rS2 þ ðK þ kÞm. With the initial
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conditions Q(n, 0) = P(n, 0), and hence g(0) = h(0) = λ(0), we obtain

λðtÞ ¼ λð0Þ � Km
q

� �
e�qt þ Km

q
; ð38Þ

hðtÞ ¼ λð0Þ � Km
~q

� �
e�~qt þ Km

~q
; ð39Þ

gðtÞ ¼ λð0Þ � Km
~q

� �
q
~q

� �
ðe�~qt � 1Þ þ ~K � Kmq

~q

� �
t þ λð0Þ: ð40Þ

The probability distribution for τ acquires a closed form:

QðtÞ ¼
X1
n¼0

Qðn; tÞ ¼ e�gðtÞþλðtÞ: ð41Þ

Referring to Eq (28), we can readily compute the probabilities for each reaction in the left
column to occur. In the order in which they appear in Eq (29), they read:

p1 ¼ S0 1� a1
nþ a1

� �� �

p2 ¼ S1
b1

a2

1

nþ a1

� �

p3 ¼ S1 1� a2
nþ a2

� �� �

p4 ¼ S2
b2

b2 þ r þ km

p5 ¼ S0
r0
a1

1

nþ a1

� �
þ S1

r0
a2

1

nþ a2

� �
þ S2

r
b2 þ r þ km

p6 ¼ S0
km
a1

1

nþ a1

� �
þ S1

km
a2

1

nþ a2

� �
þ S2

km
b2 þ r þ km

;

ð42Þ

where

a1 ¼
r0 þ km

a1
; a2 ¼

b1 þ r0 þ km
a2

; ð43Þ

and h. . .i stands forP1
n¼0 Pðn; tÞð:::Þ. To work out the exact expressions for all the ps we can

employ the formula

X1
n¼0

bn

ðaþ nÞn! ¼ Bða; bÞ; Bða; bÞ ¼ ð�bÞ�a½GðaÞ � Gða;�bÞ�; ð44Þ

with Γ(.) being the Gamma function. Thus, we have

1

nþ ai

� �
¼ e�λðtÞBðai; λðtÞÞ: ð45Þ

We now have all ingredients to run the CME-GA. However, before we do, let us consider
the computational expenses involved in performing all the steps. In particular, solving Eq (41)
for τmay slow down the algorithm considerably, as it requires an optimization algorithm of
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some kind. One way to avoid this is to solve Eq (41) approximately by assuming that the solu-
tion, i. e. τ, is small and expand ln Q(τ) up to τ2. The equation for τ then becomes

ln x1 ¼ lnQðtÞ � �b1tþ b2t
2=2: ð46Þ

where

b1 ¼ ~K � Kmþ ð~q � qÞλð0Þ; b2 ¼ ½Km� ~qλð0Þ�ð~q � qÞ: ð47Þ

Writing τ = τ0 + τ1, where τ0 satisfies ln1/ξ = b1 τ0 and τ1 is a correction, we obtain the ratio

t1
t0

¼ 1

2

ðb2=b1Þ ln ð1=x1Þ
b1 � ðb2=b1Þ ln ð1=x1Þ

: ð48Þ

Thus, as long as τ1/τ0 < �, where � is some small number, e. g. 0.001, we may write

t ¼ 1

b1
ln

1

x1
: ð49Þ

This equation is identical in structure to Eq (18), especially when we see that b1 = (α1 S0 +
α2 S1)λ(0) + β1 S1 + β2 S2 + r0 + rS2 + km, which is just the sum of all reactions in the left col-
umn but with n replaced by its average, λ(0). The condition τ1/τ0 < �must be incorporated
into the CME-GA and checked for each cycle; if it fails, Eq (41) must be solved by some other
means, e. g. an optimization algorithm.

Similarly for the reaction probabilities, we may simplify them by expanding 1/(ai + n)
around n − hni and then averaging each term:

1

ai þ n

� �
� 1

ai þ λð0Þ þ
λð0Þ

ðai þ λð0ÞÞ3 �
λð0Þ

ðai þ λð0ÞÞ4 � ��; ð50Þ

where we used the fact that for a Poisson distribution hni = h(n − hni)2i = h(n − hni)3i, which
in the present case is equivalent to λ(0). Here again we need to keep in mind that this approxi-
mation may become inaccurate (depending on the number of terms), as for instance when
λ(0), a1 < 1.

Finally, before running the CME-GA, we need to address its forth step. Remember that
expressions Eqs (33) and (34) are the solutions to Eqs (31) and (32) only if their initial distribu-
tions are Poissonian. However, when reactions 1–4 in the left column occur, we must add to or
subtract from the system one copy of n, and then modify the new initial probability P(n, τ)
according to step 4 of the CME-GA. This however will render Eqs (33) and (34) incorrect.
There may be ways to overcome this problem; however, in the present case, with α1, α2 <<1,
we are justified in ignoring it. Running the CME-SSA with the parameters of Fig 1 leads to the
results of Fig 2.

The Griffith model of a genetic oscillator
Consider now a larger network consisting of a promoter with three states, S0, S1, and S2, an
mRNA, and a protein that can be in several conformations, e. g. when undergoing a multi-step
phosphorylation [28], such that in its final conformation the protein can bind to its promoter
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and repress it (see Fig 3A). The reactions for this system are as follows:

S0 þ nd !
a1S0nd S1 m!Km mþ n1

S1 !
b1S1 S0 þ nd n1!

an1 n2

S1 þ nd !
a2S1nd S2 �

S2 !
b2S2 S1 þ nd �

S2 þ nd !
a3S2nd S3 �

S3 !
b3S3 S2 þ nd �

S3 þ nd !
a4S3nd S4 �

S4 !
b4S4 S4 þ nd �

S0 !
rS0 S0 þm nd�1!

and�1 nd

m !km � nd!
qnd

�

ð51Þ

Here againm refers to the mRNA copy number, ni to the protein copy number, where the
indexes i = 1, . . ., d label different protein conformations. The differential equations for �S0, �S1,
�S2, �S3, �S4, �m and �ni read:

_�S1 ¼ a1�nd
�S0 þ b2

�S2 � ða2�nd þ b1Þ�S1;

_�S2 ¼ a2�nd
�S1 þ b3

�S3 � ða3�nd þ b2Þ�S2;

_�S3 ¼ a3�nd
�S2 þ b4

�S4 � ða4�nd þ b3Þ�S3;

_�S4 ¼ a4�nd
�S3 � b4

�S4;

_�m ¼ r�S0 � k �m;

_�n1 ¼ K �m � a�n1;

_�n2 ¼ að�n1 � �n2Þ;
�
�
�

_�nd ¼ a�nd�1 � q�nd;

�S0 ¼ 1� �S1 � �S2 � �S3 � �S4

ð52Þ

For some values of its reaction rates, this system can exhibit sustained oscillations, as shown
in Fig 3.
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The solutions to Eqs (20) and (27) for the right column are products of Poisson distribu-
tions,

Pðn; tÞ ¼
Yd
i¼1

λiðtÞni
ni!

e�λiðtÞ ð53Þ

Qðn; tÞ ¼ e�gðtÞ
Yd
i¼1

hiðtÞni
ni!

; ð54Þ

provided again that their initial distributions are also Poisson. Inserting these into Eqs (20) and

Fig 2. Comparison of the CME-GAwith the GA—Genetic switch. A) A superposition of 100 realizations generated by the GA. The black solid curve
represents the average of 500 realizations, while the white curve is the solution of Eq (30) for �m. B) Probability distributions form at t = 150min and
t = 300min, showing the match between the CME-GA (asterisk) and the GA (bar) constructed from an ensemble size of 10000. C) Comparison between the
CME-GA and the GA of the averages and standard deviations ofm, S0, S1 and S2. The ensemble size was 1000.

doi:10.1371/journal.pone.0149909.g002
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Fig 3. The Griffith model: reactions and dynamics. A) A schematic of the Griffith model. B) Dynamics of
average mRNA,m, protein, n, and the five states of promoter, S0, S1, S2, S3 and S4. The chosen reaction
frequencies in inverse minutes were: α1 = α2 = α3 = α4 = 0.01, β1 = β2 = β3 = β4 = 1, r = 10, K = 1, k = 0.05,
q = 0.05, a = 0.1. The number of protein conformations, d was set to 10.

doi:10.1371/journal.pone.0149909.g003
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(27) leads to differential equations for the λs:

_λ1 ¼ Km� aλ1;

_λ2 ¼ aðλ1 � λ2Þ;
�
�
�

_λd ¼ aλd�1 � qλd;

ð55Þ

and another almost identical set for the hs but with q replaced with
~q ¼ a1S0 þ a2S1 þ a3S2 þ a4S3, and

_g ¼ ~K � qhd; ð56Þ

with ~K ¼ b1S1 þ b2S2 þ b3S3 þ b4S4 þ rS0 þ ðK þ kÞm. The solutions for the λs, hs and g are

λiðtÞ ¼ mK
a

� e�at
Xi�1

j¼0

1

j!
mK
a

� λi�jð0Þ
� �

ðatÞj; i < d;

λdðtÞ ¼
Xd�2

j¼0

e�qt

j!
Km
a

� λd�j�1ð0Þ
� �

a
a� q

� �jþ1

½Gðjþ 1Þ � Gðjþ 1; ða� qÞtÞ�

þ Km
q

þ λdð0Þ �
Km
q

� �
e�qt;

hiðtÞ ¼ λiðtÞj
q!~q

; 8i;

gðtÞ ¼ Kmt � q
Z t

0

hdðt0Þdt0:

ð57Þ

Following the steps detailed in the previous section, we arrive at the same approximation
for τ:

t ¼ 1

b1
ln

1

x1
; b1 ¼ ða1S0 þ a2S1Þλdð0Þ þ b1S1 þ b2S2 þ r0 þ rS2 þ km; ð58Þ

with the same error parameter as in Eq (48), τ1/τ0, but now with
b2 ¼ ð~q � qÞðaλd�1ð0Þ � qλdð0ÞÞ.
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The propensities p1 to p10 are given by

p1 ¼ S0 1� a1
nd þ a1

� �� �

p2 ¼ S1
b1

a2

1

nd þ a1

� �

p3 ¼ S1 1� a2
nd þ a2

� �� �

p4 ¼ S2
b2

a3

1

nd þ a2

� �

p5 ¼ S2 1� a3
nd þ a3

� �� �

p6 ¼ S3
b3

a4

1

nd þ a3

� �

p7 ¼ S3 1� a4
nd þ a4

� �� �

p8 ¼ S4
b4

b4 þ km

p9 ¼ S0
r0
a1

1

nþ a1

� �

p10 ¼ km
S4

kmþ b4

þ
X4
i¼1

Si�1

ai

1

nd þ ai

� �" #
;

ð59Þ

with

a1 ¼
km
a1

; a2 ¼
kmþ b1

a2
; a3 ¼

kmþ b2

a3
; a4 ¼

kmþ b4

a4
; ð60Þ

Finally, making the approximation that reactions p1-p8 do not alter Pm(n, 0) significantly,
and expanding the terms h. . .i in nd − λd(τ), we can run the CME-GA. The results are shown in
Fig 4.

Discussion
The method presented herein provides a means of stochastically simulating a reaction sub-net-
work. Because most of the information about the rest of the network is lost, its usefulness is
limited to cases where partial information about a network is sufficient. The two examples dis-
cussed above illustrate the accuracy of this method. In terms of efficiency, Table 1. shows the
computation times of the CME-GA and five other stochastic simulation algorithms that were
used to simulate the two models. It is clear that the CME-GA is significantly more efficient
than any of the other algorithms.

Important to notice is the relation between the speed of CME-GA and the abundance of
those molecular species that appear in the CME Eq (20). Since the speed of the GA scales with
the number of species and their abundance, and the CME does not (at least when it can be
solved exactly), different partitions will lead to different speeds. If, for instance, we had chosen
to partition either of the example systems such that the mRNA appeared in the CME Eq (20)
instead of the protein, and it was the protein that was simulated via the GA, the computational
time would have been drastically increased. Therefore, a network to be partitioned must be
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Fig 4. Comparison of the CME-GAwith the GA—the Griffith model. A) Graphs 1–3 show individual realizations generated by the GA. The forth graph
shows a superposition of 50 realizations. B) Probability distributions form at t = 350min and t = 500min, showing the match between the CME-GA (asterisk)
and the GA (bar) constructed from an ensemble size of 10000. C) Comparison between the CME-GA and the GA of the averages and standard deviations of
m, S0, S1, S2, S3 and S4. The ensemble size was 1000.

doi:10.1371/journal.pone.0149909.g004
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done so wisely. This of course may be in conflict with the user’s desire to simulate a particular
set of species. Consequently, if the CME-GA is to remain superior in speed to others, it must be
limited to such partitions where the species with large molecular numbers are placed in the
non-simulated sub-network.

Although Eqs (20) and (27), which are necessary for the CME-GA to run, were derived
exactly, without any assumptions, in practice they may not always be tractable and will require
approximations. However, bisecting a system into two groups as proscribed above necessarily
renders the CME less complex (Eq (1) vs. Eq (20)) and hence more manageable. It should be
noted that as the simulated reaction network grows larger, the time between reactions becomes
shorter. This means that Eqs (20) and (27), given a large sub-network (i. e. G1), will only need
to be solved for very short times. Another relief may come from moment closure methods [29–
31]: since the propensities in Eq (28) can be expressed as a sum of statistical moments (see Eq
(50)), one needs only to solve the set of equations for a few moments, instead of the full CME
for the sub-system G2; and same goes for Qm(n, t). This last approach might in fact be the most
promising way of extending our algorithm to more complex systems.

Lastly, it bears mentioning that although the information about the sub-system G2 is lost, it
may not always be completely lost for all types of systems. In both examples discussed above,
when the original CME, Eq (1), is multiplied by the variables in G2 and summed over all vari-
ables, one ends up with

_�n ¼ K �m � q�n; ð61Þ

for the genetic switch, and

_�n1 ¼ K �m � a�n1;

_�n2 ¼ að�n1 � �n2Þ;
:

:

:

_�nd ¼ a�nd�1 � q�nd

ð62Þ

for the Griffith model. And because �m is computed via the CME-GA, all the above equations
have a closed form.

Table 1. State of the art vs. CME-GA.

Algorithm Genetic switch Griffith model

Gillespie direct 37 300

Gibson-Bruck 60 297

Tau-leaping simple 60 304

Tau-leaping complex 44 126

CME-GA 2 14

Comparison of computing times (rounded to nearest second) of the four standard algorithms with the

CME-GA hybrid. For both, the genetic switch and the Griffith model, the ensemble size was 1000. The

stopping time was: 500 for the former and 2000 for the latter.

doi:10.1371/journal.pone.0149909.t001
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