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Abstract: Efficient and accurate estimation of the probability distribution of a data stream is an
important problem in many sensor systems. It is especially challenging when the data stream is non-
stationary, i.e., its probability distribution changes over time. Statistical models for non-stationary
data streams demand agile adaptation for concept drift while tolerating temporal fluctuations. To this
end, a statistical model needs to forget old data samples and to detect concept drift swiftly. In
this paper, we propose FlexSketch, an online probability density estimation algorithm for data
streams. Our algorithm uses an ensemble of histograms, each of which represents a different length
of data history. FlexSketch updates each histogram for a new data sample and generates probability
distribution by combining the ensemble of histograms while monitoring discrepancy between recent
data and existing models periodically. When it detects concept drift, a new histogram is added to the
ensemble and the oldest histogram is removed. This allows us to estimate the probability density
function with high update speed and high accuracy using only limited memory. Experimental results
demonstrate that our algorithm shows improved speed and accuracy compared to existing methods
for both stationary and non-stationary data streams.

Keywords: probability density estimation; streaming data; sensor system

1. Introduction

Estimating the probability density function (PDF) of a random variable based on a
stream of data samples from sensors is a fundamental problem arising in a broad range
of areas such as machine learning [1], data structures [2], and systems [3]. There are two
recent challenges in this problem.

First, the characteristics of a data stream often change. This might be due to the
accidental fluctuation caused by an insufficient number of samples. In this case, a sufficient
amount of data could reduce the fluctuation gradually. In some other cases, the data stream
itself is non-stationary. In other words, the probability distribution of a random variable
over the data stream, called concept, changes over time, which is called concept drift [4].
Concept drift occurs in many types of data such as temporal sensor data [5], video [6],
and spatiotemporal data [7]. A static model constructed with the assumption of stationarity
of the data stream may lead to an erroneous conclusion under the presence of concept drift.
Therefore, there is a need for a method that can estimate PDFs adaptively according to
concept drift for practical applications.

Second, real-world applications need to be able to handle increasing amounts of
data and high-speed data streams while keeping low latency. Therefore, the demand
for an online algorithm to estimate PDFs with high speed and high accuracy using only
a small amount of memory is ever-increasing. While there exist online PDF estimation
algorithms in literature [8–11], they usually cannot update probability models at high
speed. Furthermore, they cannot adapt well to various types of data streams including
those with concept drift.

In order to deal with these challenges, we propose FlexSketch, which is an online
probability density estimation algorithm that achieves high update speed and high accu-
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racy with only a small amount of memory for both stationary and non-stationary data
streams. As shown in Figure 1, FlexSketch estimates the PDF by using an ensemble structure
composed of several statistical models. In particular, we exploit histogram for the statistical
models, which allows fast and low-memory operations for data streams. Each histogram
represents statistics of a different length of data history. FlexSketch updates each histogram
for a new data sample and builds a new histogram when it detects the concept drift of
input data. By decoupling updating each statistical model from amending the composition
of the ensemble, FlexSketch achieves high accuracy both for stationary and non-stationary
data streams.
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Figure 1. Overview of the proposed FlexSketch.

To adapt non-stationary data streams in an efficient way, a single operation updating
the estimated PDF according to the data stream is divided into two elementary opera-
tions: “fast and minor update operation” (MINORUPDATE) and “slow and major update
operation” (MAJORUPDATE). The type of operation to be performed varies depending
on the characteristics of the data stream. When minor changes occur in a data stream,
FlexSketch updates the PDF for the data stream at high speed by using MINORUPDATE.
This operation simply updates each model in FlexSketch. In contrast, when major changes
occur in the data stream, FlexSketch updates the PDF by using MAJORUPDATE, which builds
a new model including the recent data stream and adds it to FlexSketch. Finally, FlexS-
ketch has multiple versions of a model, ranging from a version representing only recent
data to a version representing both recent and old data. FlexSketch constructs the PDF by
linear combination of these coarse models.

FlexSketch dynamically decides when to forget old data and to build a new statistical
model by measuring divergence between the current model and recently sampled data.
This allows FlexSketch to stay stable when the concept of the data stream does not change,
and to tolerate temporal out-linear data. In addition, FlexSketch achieves agile adaptation
to sudden or incremental concept drift since MAJORUPDATE integrates a newly built
histogram, which amends the statistical model. Though the histogram is a compact
data structure and easy to maintain, it may provide coarse information about probability
distribution. FlexSketch alleviates this problem by incorporating an ensemble of histograms.

The current implementation of FlexSketch only supports one-dimensional data. There are
many applications relying on statistical modeling of one-dimensional data streams such
as online anomaly detection [5,12], fault-detection [13] and DDoS detection [14], which are
potential areas where FlexSketch is applicable. While many online sensor-based applications
handle one-dimensional data, other applications need to deal with multi-dimensional data
streams. Since the limited dimension of FlexSketch circumscribes the application of FlexSketch
in some areas such as machine learning for high dimensional data [15] and anomaly detection
based on multivariate data [16], FlexSketch needs to be expanded to handle multi-dimensional
data for wider applications.
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The experimental results demonstrate that FlexSketch updates PDFs for data streams
up to 16ˆ faster than the alternatives while using only a limited amount of memory.
Moreover, FlexSketch adapts well to various types of concept drift, and it is more accurate
than the alternatives.

The main contributions of FlexSketch are as follows:

• We propose a new method to estimate probability distribution for data streams with
concept drift.

• FlexSketch decouples adapting to concept drift from adjusting the statistical model for
stationary data by incorporating two separate operations.

• FlexSketch achieves low computational overhead and high throughput, which are
critical for processing of stream data, using an ensemble of compact histograms.

The remainder of the paper is organized as follows. Section 2 briefly surveys the
related work. In Section 3, the proposed FlexSketch is described in detail. Section 4 presents
extensive experimental results. Finally, the conclusions are given in Section 5.

2. Related Work

There are multiple research topics to deal with data streams with concept drift [17].
Supervised classification of data streams with concept drift is also studied extensively,
e.g., [18–21]. The core parts of these researches are how to detect concept drift, how to forget
old data, and how to rebuild a new statistical model. Some methods [9,22] gradually update
statistical model without explicit detection of concept drift. Other studies attempt to detect
concept drift in batch-based methods [23–26] and online methods [27–29]. While [30,31]
rely on process control, FlexSketch detects concept drift using a multiple-window-based
method like [32]. Researches also focused on how to measure difference in distribution
between recent data and old data. The common methods are based on entropy or KL-
divergence [33–35]. We introduce an error based metric to detect concept drift in Section 3.1.

To deal with non-stationary data, statistical models should be able to forget old data
or to depreciate their contribution. Some methods [9,36,37] decay the importance of old
data linearly or exponentially. This approach is good for tolerating temporal fluctuations.
Since gradual decaying is slow to adapt to sudden concept drift, [38,39] use sliding win-
dow mechanisms to keep some recent data and to discard old data. FlexSketch deploys
both gradual decaying and abrupt forgetting. When the input data is stationary, FlexS-
ketch depreciates old data exponentially. However, when FlexSketch detects concept drift,
it discards the oldest histogram and incorporates a new histogram, which allows FlexSketch
agile adaptation.

There exist many kinds of density estimation algorithms for data streams. Tradition-
ally, kernel density estimation is performed as a batch-processing algorithm for density
estimation of a dataset. There are some algorithms [9–11] generalized to online processing
for adaptive density estimation. They usually constitute a Gaussian mixture model by
assigning a Gaussian kernel to newly added data and thereafter merge kernels based on
certain rules. Particularly, the online kernel density estimation (denoted by oKDE in this
paper) [9] can adapt to concept drift by enabling to forget past data. However, this method
is slow in updating the estimated probability density due to the requirement of relatively
massive calculation. In contrast, we focus on developing an efficient mechanism that
can update the probability density adaptively by exploiting updating operations having
different levels of computational complexity.

There also exist methods to estimate the distribution of a data stream based on his-
tograms, including the streaming parallel decision tree (denoted by SPDT in this paper) [8],
variations of the V-optimal histogram algorithm [40,41] and quantile summarization algo-
rithms [42–45]. However, they cannot forget the contribution of the past data and adapt to
various types of concept drift. To solve this problem, model maintenance strategies using
fixed and variable size sliding windows [46–48] for histograms can be used. [7] proposes
a histogram-based sketch mechanism with gradual forgetting. However, it is unknown
whether they guarantee satisfactory performance when different types of concept drift
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occurs. On the other hand, FlexSketch efficiently updates the statistical model for both high
accuracy and high efficiency by amending the composition of the ensemble.

There are some studies using ensemble methods, e.g., [49–51]. While some meth-
ods [33,34] use hierarchical structure, FlexSketch uses flat combination of compact and
simple data structure like [19,52]. Most of previous works focus on improving accuracy
of supervised classification for data streams with concept drift. On the other hand, FlexS-
ketch uses the ensemble technique to improve the update speed of density estimation.

3. Proposed Method

The goal of our method is to estimate the PDF of stationary (i.e., without concept drift)
and non-stationary (i.e., with concept drift) data stream at high speed and high accuracy
while using a small amount of memory. Here, the meaning of accurately estimating the
PDF for a stationary data stream is straightforward. On the other hand, for a non-stationary
case, it is not simple and has several aspects. We consider the accuracy of density estimation
for a non-stationary data stream from three points of view. First, the estimated PDF should
forget old concepts quickly after concept drift occurs. Second, the estimated PDF should
adapt to the latest concept as soon as a concept drift occurs. Third, the estimated PDF
should remain stable even if an accidental outlier occurs in the data stream.

To fulfil these requirements, the proposed method is built on the following ideas.

(a) We choose a histogram as the statistical model. When there are only minor changes
in the data stream, a histogram is a suitable model since it can be updated at a
high speed.

(b) Our method uses an ensemble data structure consisting of several histograms.
The ensemble structure can compensate for inaccuracy of a histogram.

(c) We design two adaptation techniques. If the data stream is stationary or there are
only minor changes in it, FlexSketch updates the models, i.e., histograms. On the
other hand, if there are major changes in the data stream, updating the models may
not guarantee sufficient accuracy. To address this issue, we generate a new model
that represents the changed data stream and adds it to the data structure.

Let S denote the data structure of the FlexSketch framework. S consists of a recent
data stream and multiple versions of a statistical model as follows:

S “ tQ,M1, . . . ,MNM , n1, . . . , nNMu (1)

where Q is the buffer for the recent dataset given through the input data stream, Mi is the
ith histogram, NM ě 2 is the total number of histograms, and ni is the number of data used
to update Mi. Since we build a new histogram when a major change in the data stream is
detected, the histograms in S are created at different times. As a convention, M1 is the most
recently added one and MNM is the oldest one. This means that Mi`1 is older than Mi
and thus undergoes more updates. Therefore, ni`1 ą ni. Each histogram is a set of disjoint
intervals called bins (Ij) and the frequency count (mj) for each bin, where j “ 1, . . . , NB:

M “ tI1, . . . , INB , m1, . . . , mNBu. (2)

Two important operations of FlexSketch are (a) the update operation for the data
stream online and (b) the query operation to obtain the probability for a certain data,
which are explained below.

3.1. Update Operation

Algorithm 1 summarizes the operation to update S with a given data sub-stream
X whose number of data is |X|. First, S is updated at a minor level using operation
MINORUPDATE and X is appended in the buffer. If the size of the buffer Q exceeds a
threshold NQ, i.e., if only the minor update has been performed with a certain number
of data, the adequacy of the most recently added model M1 is examined by operation
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DIAGNOSE. If a large discrepancy is found from the operation between the recent data
stream stored in Q and M1, the major update operation (MAJORUPDATE) is performed
and the buffer is cleared.

Algorithm 1: Update operation.
Input: S “ tQ,M1, . . . ,MNM , n1, . . . , nNMu, sub-stream: X, size limit of Q: NQ, number of models: NM,

DIAGNOSE threshold: γ
Output: Updated S

1 S Ð MINORUPDATEpS , Xq
2 Q Ð QY X
3 if |Q| ą NQ then
4 if DIAGNOSEpM1, Qq ě γ then
5 S Ð MAJORUPDATEpS , Qq
6 end
7 Q Ð ∅
8 end
9 return S

10 function MinorUpdate(S , X):
11 for i Ð 1 to NM ´ 1 do
12 Mi Ð SINGLEUPDATEpMi, Xq
13 ni Ð ni ` |X|
14 end
15 S Ð tQ,M1, . . . ,MNM , n1, . . . , nNMu

16 return S
17 function MajorUpdate(S , X):
18 M1 Ð BUILDpS , Xq
19 n1 Ð |X|
20 S Ð tQ,M1,M1, . . . ,MNM´1, n1, n1, . . . , nNM´1u

21 return S

The MINORUPDATE operation causes only minor changes of S . The steps of the
operation are shown in lines 10 to 16 of Algorithm 1. Each histogram in S except the oldest
one (MNM ) is updated by operation SingleUpdate. This operation consists of two steps.
First, it searches the bin Ij whose interval contains each data in X, x. For fast search, we use
the red-black tree method. Second, it increases the count of Ij, mj, by 1. If there is no bin for
x, x is ignored. This causes a discrepancy between the histogram and X, which is resolved
by the MAJORUPDATE operation.

The DIAGNOSE operation measures the amount of discrepancy between the most
recent model M1 and the data stream in Q. If the output of the operation is larger than a
threshold γ, we consider that concept drift occurs and the MAJORUPDATE operation needs
to be performed.

There are some requirements for the DIAGNOSE operation. First, its result should be
invariant under scaling transformation of the data, so that the threshold is independent of
the scale of the data. Second, the result of DIAGNOSE should be stable even when only a
small number of data are given; otherwise, MAJORUPDATE is performed too frequently,
which results in increased computational complexity, and the PDF estimation becomes
inaccurate. Third, the result of DIAGNOSE must be finite even if the input dataset is not
included in the domain of the histogram; otherwise, the result will diverge whenever
accidental outliers deviate from the domain.

To design a DIAGNOSE operation satisfying these requirements, we first define the
error function ∆pxq between X and M as the absolute difference between the cumulative
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distribution function (CDF) of M, CDFMpxq, and the empirical distribution function (EDF)
for X, EDFXpxq (Figure 2a):

∆pxq “ |CDFMpxq ´ EDFXpxq|. (3)

Then, a representative value of the error function serves as the output of the DIAGNOSE

operation. We consider two options, i.e., the maximum value given by

qε “ max
x

∆pxq (4)

and the mean value given by

sε “

ż 1

0
∆ ¨ pp∆qd∆ (5)

where pp∆q is the PDF for ∆. qε or sε may be used as the result of DIAGNOSE directly.
Note that since ∆pxq is the difference between two probability distributions, its value can
take only between 0 and 1, which is the range of the integration. However, we note that
the range of qε and sε, which is between 0 and 1, is too narrow for practical use. Thus,
for convenience, we scale them to obtain the final output of DIAGNOSE as follows:

δ “
ε

1´ ε
(6)

Note that δ “ 0 for ε “ 0, δ » ε for small ε (i.e., ε ! 1), and δ “ 8 for ε “ 1. Therefore,
the output of DIAGNOSE ranges from 0 to8 through this scaling.

2 1 0 1 2
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Figure 2. Example of the error function. (a) The error function is given as the difference (solid line) between the cumulative
distribution function (CDF) of a model (dashed line) and the empirical distribution function (EDF) of a sub-stream (dash-dot
line). (b) The probability density function (PDF) for the value of the error function.

The MAJORUPDATE operation is shown in lines 18 to 21 in Algorithm 1. It first builds
a new histogram M1 with X through operation BUILD in order to accommodate a big
change (i.e., concept drift) in the data stream. Then, the new histogram is enqueued to S as
the first model of the ensemble and the oldest one (MNM ) is dequeued from S .

The BUILD operation is shown in Algorithm 2. It basically creates a new histogram that
covers the data ranges of both the existing histograms in S and the recent data, so that the
new histogram can account for the characteristics of the recent data. First, the boundaries
of the bins of the new histogram are obtained so as to uniformly split the range of the
combined CDF (CDF of S and EDF of X) (lines 2 to 4 of Algorithm 2). Then, the EDF of X
is used to obtain the count in each bin (lines 5 to 8 of Algorithm 2).
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Algorithm 2: Build operation.
Input: S “ tQ,M1, . . . ,MNM , n1, . . . , nNMu, sub-stream: X, number of bins: NB
Output: new histogram: M1

1 CDF Ð pCDFS ` EDFXq{2
2 for j Ð 1 to NB ` 1 do
3 zj Ð CDF´1pCDFUp0,1qp

j
NB`2 qq

4 end
5 for j Ð 1 to NB ` 1 do
6 Ij Ð rzj, zj`1q

7 mj Ð |X| ¨ pEDFXpzj`1q ´ EDFXpzjqq

8 end
9 M1 Ð tI1, . . . , INB , m1, . . . , mNBu

10 return M1

3.2. Query Operation

The query operation is to obtain the probability of a certain input data using S that
has been established using the past data through the update operations explained above.
As mentioned before, we employ an ensemble approach for this using the histograms
contained in S . In other words, the probability of a given data x is calculated from S as a
linear combination of the PDFs represented by the histograms Mi, i.e.,

pS pxq “
NM
ÿ

i“1

αi ¨ pMipxq, (7)

where pMipxq is the probability of x from histogram Mi and αi is the weight of Mi.
The former is given by the proportion of the data count for the bin to which x belongs, i.e.,

pMpxq “

$

&

%

mj

|Ij|¨
řNB

k“1 mk
, x P Ij,

0, otherwise,
(8)

where |Ij| is the size of an interval and we omit the subscript i for simplicity. The weight αi
is determined in a way that a newer histogram receives a higher weight. Then, the final
probability (7) depends more on the histograms that have been built more recently. For this,
we use that an older histogram has been updated with more data, i.e., ni`1 ą ni. Specifically,
the weight αi is set to be negatively proportional to ni, where the exponential function is
used to ensure the weight value remains positive and, at the same time, to forget an old
concept exponentially:

αi “
expp´ni´1λ{NQq

řNM
k“1 expp´nk´1λ{NQq

, (9)

with n0 “ 0. Here, λ is a hyperparameter. Note that
řNM

i“1 αi “ 1 due to the normalization
and 1 ą αi ą αi`1 ą 0 because ni ă ni`1.

To see how this works, let us consider the situation where concept drift occurs con-
tinuously so that we can assume that n “ ni`1 ´ ni and α “ αi`1{αi “ expp´nλ{NQq for
all i. And, let a PDF of concept Ca changing over time be pCa for positive integer a with
C1 being the latest one. Then, pM1 “ pC1 , pM2 “ pC1 ` pC2 , . . . , pMNM

“ pC2 ` . . . since

MINORUPDATE does not update the oldest model. Then, pS9p1` α` ¨ ¨ ¨ ` αNM´1qpC1 `

pα` ¨ ¨ ¨ ` αNMqpC2 ` ¨ ¨ ¨ holds. In other words, the contribution of the concept decreases at
a rate of α. This means that FlexSketch forgets an old concept exponentially.
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4. Experiments

We evaluate the computation time, accuracy, and memory usage of the proposed
method for various types of stationary and non-stationary data streams. In particular,
we compare our method with the two representative existing density estimation algorithms,
oKDE [9] and SPDT [8].

4.1. Datasets

Stationary datasets: We consider three distributions. The first is a standard normal
distribution, N p0, 1q, which appears frequently. The second is a bimodal distribution,
1{2N p´2, 1q` 1{2N p2, 1q, which is used to test if a density estimation algorithm can recognize
multiple modes. The third is a log-normal distribution, lnN p0, 1q, which is used to test
if an algorithm can estimate a long-tailed distribution. For all cases, one million data are
randomly generated to follow the distributions.

Non-stationary datasets: For non-stationary datasets, we consider three types of
concept drift as follows. For each case, we use one million data randomly sampled from
the distribution.

(a) Sudden concept drift is defined as the case where the distribution of the data stream
changes suddenly. It is to test how well a density estimation algorithm forgets
old concepts after concept drift occurs. The underlying distribution is a normal
distribution whose mean value changes abruptly, i.e., N

`

xptq, 1
˘

, where xptq “ 0
for t ă t1 and xptq “ x1 for t ě t1. We consider t1 “ 300 and x1 “ 5 as shown in
Figure 3a.

(b) Incremental concept drift is defined as the case where the distribution of the data
stream changes incrementally. It is to test how well a density estimation algorithm
adapts to the latest concept. The underlying distribution is a normal distribution
whose mean value moves at a constant speed, i.e., N

`

xptq, 1
˘

, where xptq “ 0 for
t ď t1 and xptq “ v1 ¨ pt´ t1q for t ą t1. We set t1 “ 300 and v1 “ 0.01, as shown in
Figure 3b.

(c) Blip concept drift is defined as the case where the distribution of data stream
suddenly changes and returns to the original state in a short time. It is to test how
well the estimated PDF remains stable even if an outlier occurs. The underlying
distribution is a normal distribution whose mean value changes suddenly and
returns, i.e., N

`

xptq, 1
˘

, where xptq “ x1 for t1 ă t ď t1 ` tε and xptq “ 0 otherwise.
tε is the duration of blip concept drift, which is set to tε “ 3. We also set x1 “ 5 and
t1 “ 300, as shown in Figure 3c.
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Figure 3. Changes in mean of distributions for data streams where concept drift occurs. (a) Sudden concept drift.
(b) Incremental concept drift. (c) Blip concept drift.
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4.2. Implementation

The parameters of FlexSketch are selected such that it has similar accuracy to oKDE and
SPDT for the stationary data streams as follows: NM “ 3, NQ “ 30, λ “ 2.5, and γ “ 0.4.
FlexSketch is implemented in Scala, which is publicly available at GitHub [53]. For oKDE, we
use the JAVA implementation available in [54]. For SPDT, we use the Scala implementation
in [55]. Note that the accuracy of SPDT decreases when concept drift occurs since SPDT
stores the entire frequencies of the data stream. To address this issue, we modify SPDT
by using a sliding window, which is referred to as SPDTw. The window size is set to
100 (this value was tuned such that SPDTw would exhibit similar accuracy to SPDT for
stationary data. Increases in window size favor accuracy of stationary (or slowly changing)
data streams to sudden concept drift, which reductions cause the inverse. Therefore, we
calibrated these comparative methods for equitable results), for which SPDTw shows
similar accuracy to FlexSketch for non-stationary data streams.

We perform all experiments on a machine with 4-core Intel CPU i7-7700K @ 4.2 GHz
and 16 GB memory. The experiments run on a single thread. The version of Scala is 2.12.5
and the version of Java is 1.8.0.

4.3. Performance Metrics

Throughput We evaluate the computation times of the update and query operations
of FlexSketch in million operations per second (Mops), which indicates the number of times
per second our benchmark operation can be executed. There is a performance degradation
in JVM in the first few iterations. Thus, we start to record the throughput after 20 iterations
to warm up. Then, we record the mean value of the throughputs for the subsequent 30
iterations to minimize accidental deviations.

Error We measure the discrepancy between the estimated PDF and the ground truth
distribution. We adopt the scaled mean average error (scaled MAE) of CDF, which is
defined in (5) with scaling in (6), i.e., δ “ sε

L

p1´sεq.
Adaptability When concept drift occurs, the PDF estimated by a density estimation

algorithm changes over time, so does the error. Thus, the mean of the error for a given
time interval is not a sufficient metric for the accuracy of the algorithm for non-stationary
data streams. Instead, we measure the adaptability of the algorithm using how the error
changes over time. For this, we introduce a damped harmonic oscillator model in classical
mechanics (e.g., a vibrating mass connected to a spring under damping) to represent
the change in the error of the density estimation. In other words, the stability against
outliers is equivalent to the resistance force (or frictional force) and the UPDATE operation
is equivalent to the restoring force. The density estimation algorithm tries to make the
error smaller as the error increases and to keep the error unchanged as the error suddenly
increases. Then, the governing equation for the time-dependent error δptq can be written as:

`

:δptq ` :δ0ptq
˘

` c ¨
`

9δptq ` 9δ0ptq
˘

loooooooomoooooooon

resistance force

` k ¨ δptq
loomoon

restoring force

“ 0 (10)

where δ0ptq is the error between before and after the data distribution changes, 9δ and :δ
are the first- and second-order time derivatives of δ, respectively, and k and c are model
coefficients. k and c are determined by fitting the observed values of δptq and δ0ptq to the
model (10) under the assumption of over-damped oscillation (i.e., pc{2q2 ą k). The solution
is given by

δptq “ A1e´pc{2`
?

c2{4´kqt
looooooooooomooooooooooon

short-lived term

` A2e´pc{2´
?

c2{4´kqt
looooooooooomooooooooooon

long-lived term

(11)

where A1 and A2 are constants. Based on the fitted model, the following four performance
metrics are derived.
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(a) Half-life: In order to measure the adaptability of an algorithm under sudden concept
drift, we measure the time taken until the error at the time of concept drift is reduced
by a half, which is denoted as half-life:

t1{2 “ δ´1`1{2 ¨ δpt1q
˘

. (12)

This metric basically measures how quickly an old concept is forgotten in the
short term.

(b) Lifetime: Similarly, we also quantify how long the contribution of the past data
stays, or equivalently, how quickly the old concept is forgotten in the long term.
The lifetime is defined as the time required for a long-lived term in (11) to reduce to
1{e times its initial value, which is given by

τ “

ˆ

c{2´
b

c2{4´ k
˙´1

. (13)

(c) Lag: The lag measures how well the estimated PDF adapts to the data stream under
incremental concept drift. It is defined as the absolute ratio of δ and the derivative
of δ0 at t Ñ8, which can be obtained by

ˇ

ˇ

ˇ

ˇ

ˇ

δp8q
9δ0p8q

ˇ

ˇ

ˇ

ˇ

ˇ

“
c
k

. (14)

If an algorithm does not adapt well to the concept drift, the accumulated error
makes the algorithm lag behind more and more.

(d) Instability The instability measures how fast the estimated PDF moves for a short
duration when blip concept drift occurs. It is defined as the velocity of the error,
which can be approximated as

σ “ 9δpt1q »
δpt1 ` tεq ´ δpt1q

tε
. (15)

Memory Usage The PDF estimated using the density estimation algorithm continues
to use memory. After the estimation, this result or its changing history is recorded in
the disk if necessary. Therefore, we record only the memory usage of the estimated PDF,
but not the whole memory usage consumed by the UPDATE or QUERY operation.

4.4. Throughput

We compare the throughput performance of the existing and our methods for the
two key operations, i.e., updating the estimated density and producing the probability
for a given data, which correspond to the UPDATE and QUERY operations in our method,
respectively.

UPDATE Figure 4a shows the throughputs of the update operation of different density
estimation algorithms for different types of data streams. The throughput of FlexSketch is
1.1 Mops, which is 16ˆ, 16ˆ, and 1800ˆ higher than that of oKDE, SPDT, and SPDTw,
respectively, for the stationary data streams. For the non-stationary data streams, the through-
put of FlexSketch is 0.37 Mops, which is 5.8ˆ, 5.7ˆ, and 570ˆ higher than that of oKDE,
SPDT, and SPDTw, respectively. For the mixture data streams, the throughput of FlexSketch
is 0.61 Mops, which is 9.7ˆ, 9.3ˆ, and 1000ˆ higher than that of oKDE, SPDT, and SPDTw,
respectively. We also perform the one-sample Wilcoxon signed-rank test under the hypothesis
that the median of the throughput differences between the proposed method and the existing
methods is zero, which confirms the significance of the differences (p ă 0.005). This result
demonstrates that the additional computation time to manage multiple models is signifi-
cantly smaller than the computation time to represent the data stream elaborately. This effect
becomes more prominent when major concept drift does not occur. However, it shows a
noticeable improvement even for a data stream with frequent major concept drift.
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Figure 4. Throughput performance of the update and query operation (a higher value is better).

QUERY Figure 4b shows the throughputs of different density estimation algorithms
for the query operation. The throughput of FlexSketch is 0.47 Mops, which is similar to that
of SPDT and SPDTw and smaller than that of oKDE. As shown in (7), FlexSketch linearly
combines multiple models for each query. In order to improve the querying speed, we can
add a caching algorithm, although it consumes 20–30% more memory. The throughput
of FlexSketch is significantly improved with cache up to 4.1 Mops, which is 1.2ˆ, 9.2ˆ,
and 9.4ˆ higher than that of oKDE, SPDT, and SPDTw, respectively.

4.5. Accuracy (Error and Adaptability)

We compare the accuracy of FlexSketch with that of the alternatives by measuring
errors for the stationary and non-stationary data streams.

4.5.1. Stationary Case

Figure 5 compares the estimation error of each algorithm after performing the update
operation for three different stationary data streams. The error of FlexSketch for the
normal distribution is 0.012, which is 0.75ˆ, 1.2ˆ, and 3.2ˆ less than those of oKDE, SPDT,
and SPDTw, respectively. It is intuitive that oKDE records the lowest error because it
estimates the distribution by using a mixture of Gaussian distributions. SPDTw is less
accurate than FlexSketch since the number of data used for update by SPDTw is limited to a
fixed size within its window (note that the parameters of SPDTw are deliberately selected
so as to have similar accuracy as FlexSketch when concept drift occurs, as mentioned in
Section 4.2).

Normal Bimodal Log-normal
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0.050
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 0.039 

Figure 5. Estimation error (δ) for stationary data streams (a smaller value is better).

The error of FlexSketch for the bimodal distribution is 0.018, which is 0.98ˆ, 1.2ˆ,
and 2.5ˆ smaller than those of oKDE, SPDT, and SPDTw, respectively. oKDE using a
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Gaussian kernel shows the best result, as in the case of the normal distribution. And,
the performance of FlexSketch is equal to that of oKDE within a margin of error. This indi-
cates that the BUILD operation successfully constructs a new model that recognizes different
modes well. Again, SPDTw is less accurate than FlexSketch for the aforementioned reason.

The error of FlexSketch for the log-normal distribution is 0.025, which is 1.4ˆ, 0.93ˆ,
and 2.0ˆ smaller than those of oKDE, SPDT, and SPDTw, respectively. Contrary to the
results for the normal and bimodal distributions, FlexSketch and SPDT, which have high
degrees of freedom, show smaller errors than oKDE.

4.5.2. Non-Stationary Case

Figure 6 shows the error and adaptability performance of different methods under
sudden concept drift, i.e., the errors over time between the PDFs estimated using different
algorithms and the underlying distribution of the data stream in Figure 6a, and the half-life
and lifetime in Figure 6b. When the concept drift occurs at t “ 300, the errors jump to
1.0 or higher for all methods. As soon as the PDFs adapts to the new concept, the PDF
forgets the old concept and the errors slowly fall to zero. In the short term, the error of
oKDE decreases more quickly compared to SPDTw and FlexSketch, resulting in the shortest
half-life by oKDE. However, oKDE shows the longest lifetime, indicating that it is affected
by the old concept for a long time. In the long term, FlexSketch shows the smallest error in
Figure 6a and also the shortest lifetime in Figure 6b.
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(b)
Figure 6. Error and adaptability performance under sudden concept drift. (a) Change of the error over time. The period
between about 400 and 650 is omitted for better visualization, and the error after t “ 650 is magnified with the scale at the
right side. (b) Half-life (left side) and lifetime (right side). A smaller value is better.

We also measure the accuracy of the three methods over data generated by the MOA
framework [56] for sudden concept change. Function 2 and 3 of the SEA generator [57]
is used with a narrow drift-window (100 samples) to produce data streams and the error
is measured against the mean of each cluster at the 2000 sample point after the drift.
FlexSketch, SPDTw and oKDE exhibit errors of 0.27, 0.21 and 0.57, respectively. Though the
overall trend is similar, FlexSketch shows a slightly higher error than SPDTw since the
window size of SPDTw is small enough to evade from the effect of old data.

In Figure 7, the performance of different methods under incremental drift is shown.
The error of FlexSketch is saturated at 0.11, while those of SPDTw and oKDE are saturated
at 0.14 and 0.58, respectively, as shown in Figure 7a. In addition, Figure 7b shows that
FlexSketch has the smallest lag (5.3ˆ and 1.2ˆ smaller than those of oKDE and SPDTw,
respectively). This demonstrates that FlexSketch can not only speed up computation,
but also adapt more accurately to the changes in the data stream. This is also consistent
with the observation for sudden concept drift that FlexSketch forgets the past concept faster
than oKDE in the long term.
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Figure 7. Error and adaptability performance under incremental concept drift. (a) Change of the error over time. (b) Lag (a
smaller value is better).

Figure 8a shows the errors of the three algorithms for the case of blip concept drift.
The errors of FlexSketch and SPDTw increase only by 0.0021 and 0.0050, respectively, due to
the blip concept drift, whereas oKDE shows a much larger increase of the error (up to 0.84).
The comparison of the instability metric in Figure 8b also confirms that FlexSketch shows
significantly improved performance, especially compared to oKDE.
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Figure 8. Error and adaptability performance under blip concept drift. (a) Change of the error over time. (b) Instability (a
smaller value is better).

4.6. Memory Usage

Figure 9 compares the amount of memory used in the data structures of different
density estimation algorithms for the stationary data stream. Our FlexSketch consumes
6.2 kbytes of memory, which is 1.3ˆ, 1.4ˆ and 0.68ˆ more than that of oKDE, SPDT,
and SPDTw, respectively. Since we set NM “ 3, one could expect that FlexSketch requires
3ˆmore memory usage than the others. However, the increased amount of memory con-
sumption is much less than such an expectation by using efficient histogram computation.
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Figure 9. Comparison of memory usage.

4.7. Effects of Parameters

We investigate the effects of the algorithm parameters, i.e., NM, NQ, λ, and γ, on the
performance in terms of throughput of the UPDATE operation, error, and memory usage
for the stationary data stream and the non-stationary data stream with incremental concept
drift. The ranges of the parameters are as follows: 2 to 10 for NM, 10 to 150 for NQ, 0.2 to 3.0
for λ, and 0.01 to 2.3 for γ. Experimental results with the combinations of these parameter
values are analyzed below.

4.7.1. Stationary Case

Figure 10a is a three-dimensional representation of the throughput, error, and memory
usage for the stationary data stream as the parameters are changed. Many of the data points
are located in the upper left side, indicating that FlexSketch achieves high throughputs and
low errors over various combinations of the parameter values.

Figure 11 presents the effect of each parameter separately by increasing one of the four
parameters while the others remain fixed. The following observations can be made. First,
as NM increases, the throughput tends to decrease because of increased computational
complexity for more histograms, while the error does not change (Figure 11a). Second,
increasing NQ and γ results in decreased errors and increased throughputs in Figure 11b,d,
respectively. The improved throughput is because using a larger Q, or increasing the thresh-
old γ allows the computationally intensive MAJORUPDATE operation to be performed less
frequently. Since the MAJORUPDATE operation adds a model representing the latest data to
the data structure, performing less MAJORUPDATE operations reduces the dependence on
the latest data, which improves the accuracy for the stationary data stream. Third, the value
of λ does not affect much on the performance (Figure 11c).

4.7.2. Non-Stationary Case

Figure 10b shows the throughput, error, and memory usage for the non-stationary
data stream with incremental concept drift as the parameters are changed. Depending on
the values of the parameters, the performance of FlexSketch may become degraded (i.e.,
larger errors, lower throughput, or larger memory consumption).

Figure 12 shows how each parameter affects to the performance, from which we
draw the following observations. First, as shown in Figure 12a, increasing NM results in
lowering the throughput without changing the error much, which is due to the increased
number of histograms as in the case of the stationary data stream. Second, when NQ or γ
increases, a trade-off relationship is observed, i.e., the throughput increases but the error
also increases (Figure 12b,d). Suppressing the MAJORUPDATE operation with increased
NQ or γ improves the throughput, but prevents FlexSketch from accurately adapting to the
concept drift. Third, by increasing λ, the contribution of past data is reduced and thus the
error can be reduced.
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Figure 10. Performance of FlexSketch for various combinations of parameters’ values. (a) Stationary
data stream. (b) Non-stationary data stream.
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Figure 11. Trajectories (represented by red arrows) of the performance of FlexSketch for the stationary data stream as the
value of each parameter increases (a) NM (b) NQ (c) λ (d) γ.
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Figure 12. Trajectories (represented by red arrows) of the performance of FlexSketch for the non-stationary data stream with
incremental concept drift as the value of each parameter increases. (a) NM (b) NQ (c) λ (d) γ.

5. Conclusions

In this paper, we have proposed the FlexSketch framework, which is an online algo-
rithm based on an ensemble of histograms and consists of three operations: MINORUPDATE,
MAJORUPDATE, and DIAGNOSE. Since it dynamically determines when to forget old data
by observing divergence, it estimates probability distributions stably for stationary data
streams without invoking the MAJORUPDATE operation. FlexSketch adapts to concept drift
swiftly for non-stationary data streams by updating underlying model rapidly using MA-
JORUPDATE. As shown in Section 4.5.2, FlexSketch estimates probability distribution with
high accuracy for data streams with sudden and incremental concept drift. Because FlexS-
ketch utilizse simple histogram as the elemental data structure, it achieves high through-
put update and query operations using only limited memory. The experimental results
demonstrated the advantages of the method we propose in this paper. FlexSketch exhibits
significantly improved speed compared to its alternatives. Moreover, FlexSketch adapts



Sensors 2021, 21, 1080 17 of 19

well to various non-stationary data streams while maintaining stability over temporal
fluctuations. Nevertheless, FlexSketch has a disadvantage since it has multiple parameters.
As discussed in Section 4.7, FlexSketch exposes some changes in throughput and accuracy
according to parameters, which could be a burden of design choice in domain specific
applications. While FlexSketch exhibits preferable characteristics, it needs to be extended to
overcome the current limitation of supporting one-dimensional data only, which could be
a drawback for some applications. In our future work, we plan to extend our method for
multi-dimensional data streams. Because histogram is a simple and efficient underlying
data structure for ensemble methods as shown in this paper, we will try to incorporate
multi-dimensional histogram [58,59] to accommodate multi-dimensional data. In addi-
tion, we will explore applications that utilize probability estimation as a core building
block. Drifting data stream classification [35] and anomaly detection in non-stationary data
stream [60] would be good candidates to deploy FlexSketch for practical applications.
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